CN106084232B - 荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备和应用 - Google Patents

荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备和应用 Download PDF

Info

Publication number
CN106084232B
CN106084232B CN201610597454.0A CN201610597454A CN106084232B CN 106084232 B CN106084232 B CN 106084232B CN 201610597454 A CN201610597454 A CN 201610597454A CN 106084232 B CN106084232 B CN 106084232B
Authority
CN
China
Prior art keywords
chlorophenol
solution
added
molecularly imprinted
imprinted polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610597454.0A
Other languages
English (en)
Other versions
CN106084232A (zh
Inventor
韩爽
姜海燕
程卉
袁欣
王远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiqihar University
Original Assignee
Qiqihar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiqihar University filed Critical Qiqihar University
Priority to CN201610597454.0A priority Critical patent/CN106084232B/zh
Publication of CN106084232A publication Critical patent/CN106084232A/zh
Application granted granted Critical
Publication of CN106084232B publication Critical patent/CN106084232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0424Elimination of an organic solid phase containing halogen, nitrogen, sulphur or phosphorus atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Power Engineering (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种荧光磁性氧化石墨烯基4‑氯酚分子印迹聚合物的制备及应用,属于功能材料技术领域,该分子印迹聚合物是将氧化石墨烯与磁性材料复合,再在其表面修饰荧光量子点,最后通过分子印迹技术,制备出能够对4‑氯酚模板分子具有特异性识别能力的荧光磁性氧化石墨烯基4‑氯酚分子印迹聚合物,该分子印迹聚合物具有大的比表面积,识别位点多,传质速率快、选择吸附性能优良;该分子印迹聚合物在磁场作用下可以使聚合物在复杂基质中快速分离出来,并可应用于对4‑氯酚具有特异性的荧光检测;该分子印迹聚合物作为固相萃取剂,可以用来特异性富集和检测痕量4‑氯酚,该方法富集倍数高、检测限低,因此具有较高的萃取能力和效率。

Description

荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备和应用
技术领域
本发明涉及一种荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备和应用,属于功能材料技术领域。
背景技术
4-氯酚(4-CP)是生物杀虫剂、木材防腐剂、染料、除锈剂等产品的主要成分,在应用中对环境造成严重污染。残留在环境中的4-氯酚对人类和动物有直接危害,不仅可引起消化系统、神经系统、呼吸系统疾患,而且还有致癌性。在通常的自来水氯化处理时,水体里含有的酚类物质,容易被氯化后生成4-氯酚,由此危害到水安全。因此,在环境水体中建立一种对4-氯酚灵敏、准确、快速的分离检测方法具有重要意义。
制备对某一指定目标物,也被称为模板分子具有特异识别性的高聚物的技术被称为分子印迹技术(Molecular Imprinting Technique, MIT),制备的聚合物称为分子印迹聚合物。在印迹聚合物中存在与模板分子可以记忆性识别的含有功能基团的立体空穴结构。这种立体的空穴与模板分子相互匹配可以特异性地再次与该分子相结合,具有专一性识别作用。结合磁性材料的MIT制备的聚合物称为磁性分子印迹聚合物,在完成识别吸附过程后,传统分子印迹聚合物和外界介质需要离心或过滤进行分离。磁性分子印迹聚合物则只要在外加磁场的存在下即可以实现与介质的分离,操作简单快速,从而使得MIT的应用领域得到进一步的发展。
氧化石墨烯特有的二维平面结构拥有巨大的比表面积,结构中具有很大的共轭体系。其化学稳定性高,制备成本较低,是现在非常理想的二维纳米材料。将磁性氧化石墨烯与分子印迹相结合,将结合磁性、高选择性和氧化石墨烯的独特性质,进一步提高印迹聚合物的性能和多功能性。荧光分析技术灵敏度比较高,具有较宽的线性范围。与普通有机荧光染料相比量子点具有优越的光学性质,如较高的量子产率和抗光漂白等。所以将荧光量子点纳米材料和具有高选择性的分子印迹纳米膜与磁性氧化石墨烯结合用于新型荧光传感器的设计具有很强的优越性。
磁性分子印迹固相萃取吸附剂与常规的固相萃取(SPE)萃取柱填料相比,除了具有高的选择性能外,磁性分子印迹固相萃取剂的比表面积更大、扩散距离短,少量的吸附剂和较短的平衡时间就能实现萃取分离,因此具有较高的萃取能力和效率。
发明内容
本发明要解决的技术问题是提供一种荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备及应用,以实现对4-氯酚操作简单快速的荧光检测,和作为选择性固相萃取剂,高效去除和痕量检测水体中的4-氯酚。
为解决上述技术问题本发明所采用的技术方案是:一种荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备方法,具体步骤如下:
1)氧化石墨烯的制备:
在三口瓶中加入23mL质量浓度为98%的浓硫酸,放入冰浴中冷却至4℃以下,机械搅拌下加入1g的天然石墨鳞片、0.5g的硝酸钠,搅拌1h后加入3g的高锰酸钾,控制反应液温度在10~15℃,搅拌2h后将反应液温度升高至35℃,反应30min后加入80mL的去离子水,将反应液温度升高至95℃,反应30min,待反应液颜色变成金黄色后,加入60mL的去离子水,再加一定量的体积浓度为30%的H2O2,同时搅拌至没有气泡再冒出,过滤,用体积浓度为5%的HCl和去离子水充分洗涤直至滤液中无SO4 2-,并用蒸馏水将样品洗涤至中性,将产物超声震荡剥离40min后,将黄色沉淀物干燥48h,最后得到氧化石墨烯样品;
2)磁性氧化石墨烯的制备:
将步骤1)得到的0.5g的氧化石墨烯粉末分散于120mL的乙二醇中,超声2h后得到氧化石墨烯分散液,将0.25g的FeCl3•6H2O和0.5g的无水醋酸钠加入到氧化石墨烯分散液中,机械搅拌30min后,将溶液装入不锈钢反应釜中,于200℃下晶化48h,将制得的产物用乙醇清洗数次,于60℃下真空干燥24h,最后得到磁性氧化石墨烯;
3)碲化镉量子点的合成
将25.5mg的碲粉和30.3mg的NaBH4混合加入装有2mL水的试剂瓶中,在氮气保护下,超声反应30min,得到NaHTe水溶液,然后将0.2mmol的CdCl2溶于100mL的水中,超声溶解后加入40µL的巯基乙酸,向以巯基乙酸溶液中加入0.5mol·L-1的NaOH溶液,使溶液pH=9,在氮气保护下,将制备的2mL的NaHTe水溶液迅速加入上述溶液中,磁力搅拌下,于90℃加热回流30min,得到碲化镉量子点溶液,将异丙醇逐滴加入到碲化镉量子点溶液中,当出现小颗粒悬浮物后,停止加入异丙醇,继续搅拌15min,将所得的浑浊液放在冰水浴中,直到小颗粒与上层液体分离,将上层清液吸出,下层浑浊液放在干燥箱中干燥,直至液体全部挥发,即得纯化后的碲化镉量子点;
4)荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备
将步骤3)制得的0.2~2.0g的碲化镉量子点超声分散于0.05mol/L的聚乙二醇(mPEG-SH)溶液中,室温下反应12~24h,再加入步骤2)制得的0.05~0.50g的磁性氧化石墨烯和20~100ml的乙醇,机械搅拌30min,将0.5~5.0mmol的3-氨丙基三乙氧基硅烷和0.2~2.0mmol的4-氯酚溶解于10~80mL的乙醇溶剂中,将0.5~5.0mL的正硅酸乙酯加入到上述混合物中,机械搅拌下加入0.2~2.0mL的体积浓度为25%的氨水溶液,机械搅拌24~48h,反应后在超声条件下用甲醇反复冲洗聚合物直至洗脱液中检测不到4-氯酚,洗脱结束后完全干燥得到的即为荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物(MIPs)。
进一步地,根据上述制备方法得到的一种荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物,应用于对4-氯酚的荧光检测。
进一步地,根据上述制备方法得到的一种荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物作为固相萃取剂,应用于去除和痕量检测水体中的4-氯酚。
本发明的有益效果是:本发明首次将氧化石墨烯、荧光量子点、磁性材料与分子印迹技术结合,制备多功能复合物,用于特异性识别检测4-氯酚,其优点在于:
1)该分子印迹聚合物以氧化石墨烯为载体,具有大的比表面积,识别位点多,传质速率快、选择吸附性能优良;
2)该分子印迹聚合物具有磁性,可以使聚合物在磁场作用下从复杂基质中快速分离出来;
3)该分子印迹聚合物具有荧光性能、特异性识别性能,可应用于操作简单、快速的对4-氯酚具有特异性的荧光检测;
4)该分子印迹聚合物作为固相萃取剂,比表面积更大、扩散距离短,少量的吸附剂和较短的平衡时间就能实现萃取分离,可以用来特异性富集和检测痕量4-氯酚,该方法富集倍数高、检测限低,因此具有较高的萃取能力和效率。
附图说明
下面结合附图和具体实施方式对本发明进一步说明。
图1为实施例5制备的荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的磁滞曲线。
图2为荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物对4-氯酚的Stern-Volmer方程图。
图3为荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物对不同酚类物质的淬灭常数。
图4为(a)加标自来水样品经过荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物萃取的HPLC色谱图;(b)加标自来水样品未经过MIPs萃取的HPLC色谱图。
具体实施方式
实施例1
一种荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备方法,该制备方法的具体步骤如下:
1)氧化石墨烯的制备:
在三口瓶中加入23mL质量浓度为98%的浓硫酸,放入冰浴中冷却至4℃以下,机械搅拌下加入1g的天然石墨鳞片、0.5g的硝酸钠,搅拌1h后加入3g的高锰酸钾,控制反应液温度在10~15℃,搅拌2h后将反应液温度升高至35℃,反应30min后加入80mL的去离子水,将反应液温度升高至95℃,反应30min,待反应液颜色变成金黄色后,加入60mL的去离子水将反应液稀释,终止反应,再加一定量体积浓度为30%的H2O2,同时搅拌至没有气泡再冒出,过滤,用体积浓度为5%的HCl和去离子水充分洗涤直至滤液中无SO4 2-,并用蒸馏水将样品洗涤至中性,将产物超声震荡剥离40min后,将黄色沉淀物干燥48h,最后得到氧化石墨烯样品;
2)磁性氧化石墨烯的制备:
将步骤1)得到的0.5g的氧化石墨烯粉末分散于120mL的乙二醇中,超声2h后得到氧化石墨烯分散液,将0.25g的FeCl3•6H2O和0.5g的无水醋酸钠加入到氧化石墨烯分散液中,机械搅拌30min后,将溶液装入不锈钢反应釜中,于200℃下晶化48h,将制得的产物用乙醇清洗数次,于60℃下真空干燥24h,最后得到磁性氧化石墨烯;
3)碲化镉量子点的合成
将25.5mg的碲粉和30.3mg的NaBH4混合加入装有2mL水的试剂瓶中,在氮气保护下,超声反应30min,得到NaHTe水溶液,然后将0.2mmol的CdCl2溶于100mL的水中,超声溶解后加入40µL的巯基乙酸,向以巯基乙酸为稳定剂的溶液中加入0.5mol·L-1的NaOH溶液,使溶液pH=9,在氮气保护下,将制备的2mL的NaHTe水溶液迅速加入上述溶液中,磁力搅拌下,于90℃加热回流30min,得到碲化镉量子点溶液,将异丙醇逐滴加入到碲化镉量子点溶液中,当出现小颗粒悬浮物后,停止加入异丙醇,继续搅拌15min,将所得的浑浊液放在冰水浴中,直到小颗粒与上层液体分离,将上层清液吸出,下层浑浊液放在干燥箱中干燥,直至液体全部挥发,即得纯化后的碲化镉量子点;
4)荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备
将步骤3)制得的0.2g的碲化镉量子点超声分散于0.05mol/L的功能化聚乙二醇(mPEG-SH)溶液中,室温下反应12h,再加入步骤2)制得的0.05g的磁性氧化石墨烯和20ml的乙醇,机械搅拌30min,将0.5mmol的3-氨丙基三乙氧基硅烷做为功能单体和0.2mmol的4-氯酚做为模板分子溶解于10mL的乙醇溶剂中,将0.5mL的正硅酸乙酯作为交联剂加入到上述混合物中,机械搅拌下加入0.2mL的体积浓度为25%的氨水溶液,机械搅拌聚合24h,反应后在超声条件下用甲醇反复冲洗聚合物直至洗脱液中检测不到4-氯酚,洗脱结束后完全干燥得到的即为MIPs。
实施例2
一种荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备方法,该制备方法的具体步骤如下:
1)氧化石墨烯的制备:同实施例1。
2)磁性氧化石墨烯的制备:同实施例1。
3)碲化镉量子点的合成:同实施例1。
4)荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备:
将步骤3)制得的2.0g的碲化镉量子点超声分散于0.05mol/L的聚乙二醇(mPEG-SH)溶液中,室温下反应24h,再加入步骤2)制得的0.50g的磁性氧化石墨烯和100ml的乙醇,机械搅拌30min,将5.0mmol的3-氨丙基三乙氧基硅烷和2.0mmol的4-氯酚溶解于80mL的乙醇溶剂中,将5.0mL的正硅酸乙酯加入到上述混合物中,机械搅拌下加入2.0mL的体积浓度为25%的氨水溶液,机械搅拌48h,反应后在超声条件下用甲醇反复冲洗聚合物直至洗脱液中检测不到4-氯酚,洗脱结束后完全干燥得到的即为MIPs。
实施例3
一种荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备方法,该制备方法的具体步骤如下:
1)氧化石墨烯的制备:同实施例1。
2)磁性氧化石墨烯的制备:同实施例1。
3)碲化镉量子点的合成:同实施例1。
4)荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备
将步骤3)制得的1.0g的碲化镉量子点超声分散于0.05mol/L的聚乙二醇(mPEG-SH)溶液中,室温下反应16h,再加入步骤2)制得的0.25g的磁性氧化石墨烯和50ml的乙醇,机械搅拌30min,将2.5mmol的3-氨丙基三乙氧基硅烷和1.0mmol的4-氯酚溶解于40mL的乙醇溶剂中,将2.5mL的正硅酸乙酯加入到上述混合物中,机械搅拌下加入1.0mL的体积浓度为25%的氨水溶液,机械搅拌聚合32h,反应后在超声条件下用甲醇反复冲洗聚合物直至洗脱液中检测不到4-氯酚,洗脱结束后完全干燥得到的即为MIPs。
实施例4
一种荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备方法,该制备方法的具体步骤如下:
1)氧化石墨烯的制备:同实施例1。
2)磁性氧化石墨烯的制备:同实施例1。
3)碲化镉量子点的合成:同实施例1。
4)荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备
将步骤3)制得的1.5g的碲化镉量子点超声分散于0.05mol/L的聚乙二醇(mPEG-SH)溶液中,室温下反应20h,再加入步骤2)制得的0.40g的磁性氧化石墨烯和80ml的乙醇,机械搅拌30min,将4.0mmol的3-氨丙基三乙氧基硅烷和1.5mmol的4-氯酚溶解于60mL的乙醇溶剂中,将4.0mL的正硅酸乙酯加入到上述混合物中,机械搅拌下加入1.5mL的体积浓度为25%的氨水溶液,机械搅拌聚合40h,反应后在超声条件下用甲醇反复冲洗聚合物直至洗脱液中检测不到4-氯酚,洗脱结束后完全干燥得到的即为MIPs。
实施例5
一种荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备方法,该制备方法的具体步骤如下:
1)氧化石墨烯的制备:同实施例1。
2)磁性氧化石墨烯的制备:同实施例1。
3)碲化镉量子点的合成:同实施例1。
4)荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备
将步骤3)制得的0.6g的碲化镉量子点超声分散于0.05mol/L的聚乙二醇(mPEG-SH)溶液中,室温下反应14h,再加入步骤2)制得的0.15g的磁性氧化石墨烯和30ml的乙醇,机械搅拌30min,将1.5mmol的3-氨丙基三乙氧基硅烷和0.6mmol的4-氯酚溶解于20mL的乙醇溶剂中,将1.5mL的正硅酸乙酯加入到上述混合物中,机械搅拌下加入0.6mL的体积浓度为25%的氨水溶液,机械搅拌聚合18h,反应后在超声条件下用甲醇反复冲洗聚合物直至洗脱液中检测不到4-氯酚,洗脱结束后完全干燥得到的即为MIPs。图1为MIPs的磁滞曲线,从图1中可以看出,随着外界磁场值降低到零,MIPs的矫顽力和剩余磁化强度也趋向于零,磁滞曲线与原点对称,由此证明MIPs具有超顺磁性。这说明,在氧化石墨烯表面确实合成出Fe3O4,因为磁性Fe3O4的存在,使得复合物MIPs具有磁性。MIPs的饱和磁化强度值为:23.21emu•g-1。MIPs所具有的磁性,有助于MIPs的运动和聚集,可以使MIPs很容易从复杂样品中分离出来。表1为MIPs的比表面积分析,从表1中可以看出,MIPs表现出大的比表面积,说明MIPs具有较多的孔结构。碲化镉在分子印迹过程中容易发生无序性的团聚,导致制备的分子印迹孔穴包埋在印迹聚合物的内部过深,或模板分子洗脱困难,造成印迹孔穴数量减少。MIPs中碲化镉量子点与氧化石墨烯具有氢键和电荷等作用而排列在氧化石墨烯的表面,保证了MIPs中大部分结合位点可以在或者靠近载体表面,为高的吸附容量和较快的动力学过程提供了前提。
表1 MIPs的比表面积分析
实施例6
MIPs的荧光检测应用:
吸附等温荧光光谱常用来研究荧光分子印迹聚合物吸附性能。室温下将实施例5制备的4mL的0.05mg•mL-1的MIPs分散于乙醇溶液中,向该溶液中加入不同量的4-氯酚,稀释至20mL后,搅拌15min,取上述混合溶液的悬浮液测量其荧光强度。在荧光检测实验中,荧光检测条件为:荧光激发波长为475nm,激发波长和发射波长的狭缝宽度均为10nm,荧光强度在发射波长555nm处被记录。随着溶液中4-氯酚浓度的增加,MIPs对4-氯酚的吸附量也随之增加,其荧光强度减弱程度也逐渐增强。实验表明,当4-氯酚的浓度范围为0.5μmol•L-1~35μmol•L-1时,MIPs乙醇溶液的荧光淬灭程度与4-氯酚的浓度呈良好的线性关系。通过荧光检测分析中所得到的MIPs随4-氯酚乙醇溶液浓度的改变得到的荧光发射光强度大小,按照Stem-Volmer公式(公式1),绘制MIPs的淬灭常数Ksv与浓度C的关系,
I0/I=1+Ksv[C] (1)
式中I0——不含淬灭分子时被测溶液的原始荧光强度值;
I——淬灭分子的浓度为[C]时被测溶液的荧光强度值;
Ksv——荧光淬灭物质的淬灭常数(μ-1•mol-1•L);
C——淬灭分子在被测溶液中的浓度(μmol•L-1)。
图2是MIPs对4-氯酚的Stern-Volmer方程图,由图可知,4-氯酚的浓度为0.5μmol•L-1~35μmol•L-1的范围内,经线性拟合处理所得到的MIPs的方程为:I0/I-1=0.0169[C]+0.0016,R2=0.9977。拟合后方程表现良好的线性关系,说明MIPs通过荧光信号的改变对4-氯酚具有识别能力。定量限(lower limit of quantitation, LOD)可用3σ/K表示,其中σ为空白的标准偏差;K为校正曲线斜率。由此可求得MIPs对4-氯酚乙醇溶液浓度的定量限为0.16μmol•L-1,相对标准偏差(relative standard deviation,RSD)为3.7%。由此可见,本实验所制备的MIPs对印迹分子4-氯酚体现出较高的亲和识别性能,MIPs的荧光特性使MIPs可以应用于对4-氯酚进行简单、快速的荧光检测分析中,扩大了分子印迹技术的应用领域。
实施例7
MIPs的吸附选择性应用:
为考察MIPs对4-氯酚的选择性,选择了几种与4-氯酚的结构类似的物质来衡量其选择性。研究中将MIPs加入到一系列不同浓度的4-氯酚、2-氯酚和苯酚溶液中,具体实验步骤为:室温下将实施例5制备的4mL的0.05mg•mL-1 的MIPs分散于乙醇溶液中,向该溶液中分别加入相同浓度的4-氯酚、2-氯酚和苯酚溶液,稀释至20mL后,搅拌15min,取上述混合溶液的悬浮液测量其荧光强度。在荧光检测实验中,荧光检测条件为:荧光激发波长为475nm,激发波长和发射波长的狭缝宽度均为10nm,荧光强度在发射波长555nm处被记录。图3为MIPs对不同酚类物质的淬灭常数,图中给出了MIPs对4-氯酚、2-氯酚和苯酚的淬灭常数柱状图。通常,模板分子被吸附到MIPs的表面越多,荧光淬灭常数就越大,从图中可以看出,上述几种酚类物质对MIPs乙醇溶液均会产生一定程度的荧光淬灭,但4-氯酚淬灭效率最高,这是由于在MIPs表面留有与4-氯酚分子构形相匹配的孔穴结构,为待测目标物的吸附提供了更好的空间,该孔穴中含有能与4-氯酚相互键合的作用位点,能对模板分子4-氯酚进行选择性识别。
实施例8
MIPs的MISPE-HPLC检测应用:
将实施例5制备50mg的MIPs加入到100mL质量浓度为10μg•L-1的4-氯酚水样中,在25℃下,吸附40min,随后用磁铁收集MIPs,用5mL甲醇洗脱液超声3min辅助洗脱4-氯酚,收集洗脱液,氮气吹干,最后用1.0mL甲醇溶解残渣,取20µL进行高效液相色谱分析,流动相为甲醇:水=80:20,紫外检测波长为280nm。
在上述固相萃取条件下,将分子印迹固相萃取(MISPE)与高效液相色谱(HPLC/UV)联用建立对痕量4-氯酚的分析方法,得出了各种相关参数。水样品的线性范围位于0.003~1.5μmol•L-1之间,相关性系数为0.9991,根据信噪比(S/N)的3倍计算检出限为0.15ng•mL-1。在样品浓度为0.5μmol•L-1条件下,平行测定5次后,得到精密度为2.5%。将一系列不同浓度的4-氯酚标准溶液,经过MISPE处理后以浓度为横坐标,峰面积为纵坐标得到的校正曲线的线性部分的斜率,与未经MISPE处理的标准溶液得到的标准曲线的斜率的比值得到富集因子(enrichment factor)为550。这些数据充分显示了利用MIPs做固相萃取材料的优点,即具有高效性和灵敏性,合成的MIPs对4-氯酚具有较高的吸附容量,可以应用于对4-氯酚的痕量检测。
为进一步研究建立的MISPE-HPLC检测方法对含有痕量4-氯酚的实际样品检测的可行性,比较了加标4-氯酚的自来水样品(4-氯酚浓度为10µg•L-1)经过MISPE处理前后的HPLC图。图4-b是加标自来水样品未经过MIPs萃取的HPLC色谱图,从图4-b中可以看出,由于4-氯酚浓度过低,在加标样品中并没有检测到4-氯酚的色谱峰。图4-a为加标自来水样品经过MIPs萃取后洗脱液的HPLC图。从图4-a可看出,6.9min左右可以看到一个明显的色谱峰,经过已知物保留时间定性法可知该峰为4-氯酚的色谱峰。这是由于MIPs对4-氯酚有特异性识别能力,因此对4-氯酚有较强的保留能力。同时进一步证实了合成的MIPs具有选择识别性,去除杂质能力强,可明显减少样品杂质对HPLC仪器的损耗,减少干扰物对目标化合物定性和定量的干扰,提高仪器的检测灵敏度。结果进一步说明MISPE对实际水样品中4-氯酚的富集是很有效的,建立的MISPE-HPLC检测方法可以应用于水环境中4-氯酚的痕量分析。

Claims (1)

1.一种荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备方法,其特征在于:该制备方法的具体步骤如下:
1)氧化石墨烯的制备:
在三口瓶中加入23mL质量浓度为98%的浓硫酸,放入冰浴中冷却至4℃以下,机械搅拌下加入1g的天然石墨鳞片、0.5g的硝酸钠,搅拌1h后加入3g的高锰酸钾,控制反应液温度在10~15℃,搅拌2h后将反应液温度升高至35℃,反应30min后加入80mL的去离子水,将反应液温度升高至95℃,反应30min,待反应液颜色变成金黄色后,加入60mL的去离子水,再加一定量的体积浓度为30%的H2O2,同时搅拌至没有气泡再冒出,过滤,用体积浓度为5%的HCl和去离子水充分洗涤直至滤液中无SO4 2-,并用蒸馏水将样品洗涤至中性,将产物超声震荡剥离40min后,将黄色沉淀物干燥48h,最后得到氧化石墨烯样品;
2)磁性氧化石墨烯的制备:
将步骤1)得到的0.5g的氧化石墨烯粉末分散于120mL的乙二醇中,超声2h后得到氧化石墨烯分散液,将0.25g的FeCl3•6H2O和0.5g的无水醋酸钠加入到氧化石墨烯分散液中,机械搅拌30min后,将溶液装入不锈钢反应釜中,于200℃下晶化48h,将制得的产物用乙醇清洗数次,于60℃下真空干燥24h,最后得到磁性氧化石墨烯;
3)碲化镉量子点的合成
将25.5mg的碲粉和30.3mg的NaBH4混合加入装有2mL水的试剂瓶中,在氮气保护下,超声反应30min,得到NaHTe水溶液,然后将0.2mmol的CdCl2溶于100mL的水中,超声溶解后加入40µL的巯基乙酸,向以巯基乙酸溶液中加入0.5mol·L-1的NaOH溶液,使溶液pH=9,在氮气保护下,将制备的2mL的NaHTe水溶液迅速加入上述溶液中,磁力搅拌下,于90℃加热回流30min,得到碲化镉量子点溶液,将异丙醇逐滴加入到碲化镉量子点溶液中,当出现小颗粒悬浮物后,停止加入异丙醇,继续搅拌15min,将所得的浑浊液放在冰水浴中,直到小颗粒与上层液体分离,将上层清液吸出,下层浑浊液放在干燥箱中干燥,直至液体全部挥发,即得纯化后的碲化镉量子点;
4)荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备
将步骤3)制得的0.2~2.0g的碲化镉量子点超声分散于0.05mol/L的聚乙二醇(mPEG-SH)溶液中,室温下反应12~24h,再加入步骤2)制得的0.05~0.50g的磁性氧化石墨烯和20~100ml的乙醇,机械搅拌30min,将0.5~5.0mmol的3-氨丙基三乙氧基硅烷和0.2~2.0mmol的4-氯酚溶解于10~80mL的乙醇溶剂中,将0.5~5.0mL的正硅酸乙酯加入到上述混合物中,机械搅拌下加入0.2~2.0mL的体积浓度为25%的氨水溶液,机械搅拌24~48h,反应后在超声条件下用甲醇反复冲洗聚合物直至洗脱液中检测不到4-氯酚,洗脱结束后完全干燥得到的即为荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物(MIPs)。
CN201610597454.0A 2016-07-27 2016-07-27 荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备和应用 Active CN106084232B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610597454.0A CN106084232B (zh) 2016-07-27 2016-07-27 荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610597454.0A CN106084232B (zh) 2016-07-27 2016-07-27 荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备和应用

Publications (2)

Publication Number Publication Date
CN106084232A CN106084232A (zh) 2016-11-09
CN106084232B true CN106084232B (zh) 2019-06-28

Family

ID=57448913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610597454.0A Active CN106084232B (zh) 2016-07-27 2016-07-27 荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备和应用

Country Status (1)

Country Link
CN (1) CN106084232B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406473B (zh) * 2018-11-08 2019-07-30 青岛大学 一种藻红蛋白比率荧光传感器的制备方法
CN113004479B (zh) * 2021-03-15 2022-07-08 吉林师范大学 一种基于磁性氧化石墨烯的亲水分子印迹纳米复合树脂、制备方法及其应用
CN115155546B (zh) * 2022-07-07 2023-11-21 中国人民解放军火箭军工程大学 氧化石墨烯及其制备、利用其吸附水溶液中偏二甲肼的方法和应用
CN115634671A (zh) * 2022-10-24 2023-01-24 广州南方学院 一种制备维生素b12表面分子印迹微球的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CdTe quantum dots@luminol as signal amplification system for chrysoidine with chemiluminescence-chitosan/graphene oxide-magnetite-molecularly imprinting sensor;Huimin Duan;《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》;20150928(第153期);第535-541页
Multifunctional imprinted polymers based on CdTe/CdS and magnetic graphene oxide for selective recognition and separation of p-t-octylphenol;Shuang Han;《Chemical Engineering Journal》;20150302(第271期);第87-95页
One-bath synthesis of hydrophilic molecularly imprinted quantum dots for selective recognition of chlorophenol;Tai Ye;《Chinese Chemical Letters》;20110718(第22期);第1253-1256页

Also Published As

Publication number Publication date
CN106084232A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106084232B (zh) 荧光磁性氧化石墨烯基4-氯酚分子印迹聚合物的制备和应用
Lu et al. Flow injection chemiluminescence sensor based on core–shell magnetic molecularly imprinted nanoparticles for determination of chrysoidine in food samples
Nerín et al. Critical review on recent developments in solventless techniques for extraction of analytes
CN103105386B (zh) 一种水体及水产品中孔雀石绿的检测方法
CN107082785B (zh) 一种检测氰根离子的荧光探针及其合成和应用方法
CN106540668B (zh) 磁性亲水分子印迹复合材料及其制备方法
CN102304205A (zh) 一种双酚a亚微米磁性分子印迹的制备及在包装食品检测前处理中的应用
CN106622179B (zh) 一种识别叶绿素的磁性分子印迹材料及其制备方法和应用
CN104927866A (zh) 空心多孔硅球包覆量子点荧光传感器的制备及其应用
CN110152571B (zh) 一种用于分离纯化标记蛋白的环境敏感型磁性微球及其制备方法和应用
CN104826598A (zh) 一种新型分离介质磁性羟基葫芦[8]脲的制备及应用
CN104761549A (zh) 一种钯离子探针及其制备和应用
CN109400889A (zh) 一种磁性修饰的金属有机多孔材料及其制备和应用
CN104655759A (zh) 一种适配体功能化磁性纳米材料吸附双酚a检测回收率的方法
CN103949228B (zh) 一种外表面亲水的分子印迹磁性硅胶微球的制备方法
CN106633070A (zh) 金属框架印迹材料及其制备方法
CN109839466A (zh) 一种基于三维磁性分子印迹聚合物检测奶粉中三聚氰胺含量的方法
CN101343538B (zh) 荧光硅胶粒子及其用途
CN103301820B (zh) 核-壳型罗丹明b分子印迹固相萃取磁性材料及其制备方法和应用
Jafari et al. Magnetic carbonized cellulose-MIL 101 (Fe) composite as a sorbent for magnetic solid phase extraction of selected organophosphorus pesticides combined with high performance liquid chromatography-ultraviolet detection
CN104122135A (zh) 一种浊点萃取分离富集孔雀石绿及拉曼检测方法
CN103521167A (zh) 一种硅基稀土掺杂型荧光复合材料的制备方法
CN105498721A (zh) 一种黄曲霉毒素分子印迹材料及其制备方法
CN105115947A (zh) 一种石墨烯量子点传感器及其在检测三硝基苯酚方面的应用
CN106770730A (zh) 一种甲基汞和乙基汞测定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant