CN106076344B - 活性炭负载型铜-金属氧化物催化剂及其制备方法和应用 - Google Patents

活性炭负载型铜-金属氧化物催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN106076344B
CN106076344B CN201610399455.4A CN201610399455A CN106076344B CN 106076344 B CN106076344 B CN 106076344B CN 201610399455 A CN201610399455 A CN 201610399455A CN 106076344 B CN106076344 B CN 106076344B
Authority
CN
China
Prior art keywords
catalyst
metal oxide
butanol
reaction
active carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610399455.4A
Other languages
English (en)
Other versions
CN106076344A (zh
Inventor
江大好
吴先元
倪珺
李小年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201610399455.4A priority Critical patent/CN106076344B/zh
Publication of CN106076344A publication Critical patent/CN106076344A/zh
Application granted granted Critical
Publication of CN106076344B publication Critical patent/CN106076344B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/32Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
    • C07C29/34Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups by condensation involving hydroxy groups or the mineral ester groups derived therefrom, e.g. Guerbet reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种活性炭负载型铜‑金属氧化物催化剂及其制备方法与应用,所述的催化剂由如下质量百分数的组分组成:载体活性炭55%~98%、金属Cu 1%~20%、金属氧化物MOx 1%~25%;本发明催化剂制备方便、成本低廉,可应用于乙醇脱氢缩合制正丁醇反应中,应用时采用固定床连续化反应,流程简单,反应条件相对温和,产物中正丁醇的收率达到10wt%~30wt%,产物分离后未反应的乙醇可循环再用。

Description

活性炭负载型铜-金属氧化物催化剂及其制备方法和应用
(一)技术领域
本发明涉及一种活性炭负载型铜-金属氧化物催化剂(Cu-MOx/AC)及其制备方法和应用,该催化剂可用于乙醇脱氢缩合制正丁醇。
(二)背景技术
由于化石资源的日益枯竭及其使用时带来的温室效应问题,使得可再生生物质燃料的开发及利用越来越受到人们的重视。作为一种可再生生物质燃料,生物乙醇作为汽油调合组分在欧洲、美洲、亚洲的许多国家已经广泛使用。然而,乙醇具有吸湿性强、能源密度低、腐蚀发动机汽缸等问题,因而并不是理想的汽油调合组分。丁醇难溶于水、能源密度高、对汽车发动机腐蚀性小,与乙醇相比可以与汽油以更高的比例混合(20%vs 10%),且无需对车辆进行改造,因而成为当前乙醇汽油调合组分的理想替代品。
正丁醇当前主要用于合成邻苯二甲酸二丁脂、脂肪族丁脂类及磷酸丁脂类增塑剂,这些脂类增塑剂广泛应用于各种塑料和橡胶制品。工业上正丁醇是以石油基乙烯为原料,经选择性氧化、羟醛缩合和加氢反应合成,或者以石油基丙烯为原料经羰基化和加氢反应得到。正丁醇也可采用与乙醇相似的发酵流程以生物质原料(当前主要是谷物)制取,但是生物发酵法制取丁醇的效率很低,同时生产丁醇需用较大的蒸发、加热、冷却等设施,投资费用较高。而另一方面,工业上采用生物发酵法可以将各种淀粉质和糖类生物质原料转化为生物乙醇,该工艺已经相当成熟并具备一定规模;同时,以纤维素(包括农作物秸秆、林业加工废料、甘蔗渣及城市垃圾等)为原料的第二代生物乙醇生产技术已经成为美国、日本等发达国家竞相开发的新技术方向,并且取得了较大的进展。因此,通过催化转化法将生物乙醇变成生物丁醇也随之成为当前学术和工业界关注的热点之一。在公开发表的文献中,铱、钌的络合物催化剂被用于乙醇脱氢缩合制正丁醇反应,并且取得了较高的丁醇选择性及收率,但是其制备复杂、使用氢氧化钠、乙醇钠等可溶性强碱作为乙醛羟醛缩合步骤的催化剂,特别是其采用釜式反应器,催化剂分离困难,反应不能连续化进行,因而不利于将来丁醇燃料的大规模生产[Dowson,G.R.M.,Haddow,M.F.,Wass,D.F.,Catalytic conversionof ethanol into an advanced biofuel:unprecedented selectivity for n-butanol.,Angew.Chem.Int.Ed.,2013,52,9005-9008;Chakraborty,S.P,Piszel,E.P.,Cassandra,E.H.,Jones,W.D.,Highly selective formation of n-butanol from ethanol throughthe Guerbet process:A tandem catalytic approach.,J.Am.Chem.Soc.,2015,137,14264-14267;Wingad,R.L.,Gates,P.J.,Street,S.T.G.,Wass,D.F.,Catalyticconversion of ethanol to n-butanol using ruthenium P-N Ligand complexes.,ACSCatal.,2015,5,5822-5826]。水滑石、磷灰石、磷酸锶、氧化铝负载铜和镍等固体催化剂用于乙醇脱氢缩合制正丁醇的反应也有许多公开报道,但是其丁醇的收率普遍较低(一般低于10wt%),并且反应温度和压力较高[Carvalho,D.L.,de Avillez,R.R.,Borges,L.E.P.,Mg and Al mixed oxides and the synthesis of n-butanol fromethanol.Appl.Catal.A.,2012,415-416,96-100;Tsuchida,T.,Sakuma,S.,Takeguchi,T.,Ueda,W.,Yoshioka,T.,Reaction of ethanol over hydroxyapatite affected by Ca/Pratio of catalyst.J.Catal.,2008,259,183-189;OgO,S.,Onda,A.,Yanagisawa,K.,Selective synthesis of 1-butanol from ethanol over strontium phosphatehydroxyapatite catalysts.Appl.Catal.A.,2011,402,188-195;OgO,S.,Onda,A.,Yanagisawa,K.,Iwasa,Y.,Hara,K.,Fukuoka,A.1-Butanol synthesis from ethanolover strontium phosphate hydroxyapatite catalysts with various Sr/Pratios.J.Catal.,2012,296,24-30;Riittonen,T.,Toukoniitty,E.,Madnani,D.K.,Leino,A.-R.,Kordas.One-pot liquid-phase catalytic conversion of ethanol to 1-butanol over aluminium oxide—the effect of the active metal on theselectivity.Catalysts,2012,2,68-84;Dziugan,P.,Jastrzabek,K.G.,Binczarski,M.,Karski,S.Continuous catalytic coupling of raw bioethanol into butanol andhigher homologues,Fuel,2015,158,81-90;Jordison,T.L.,Lira,C.T.,Miller.D.J.,Condensed phase ethanol conversion to higher alcohols.,Ind.Eng.Chem.Res.,2015,54,10991-11000;Riittonen,T.,Eranen,K.,Maki-Arvela,P.,Shchukarev,A.,Rautio,A.R.,Continuous liquid-phase valorization of bio-ethanol towards bio-butanol over metal modified alumina.Renew.Energ.,2015,74,369-378]。而在最新的文献中,大比表面氧化铈负载的铜被用于乙醇催化升级制丁醇反应,并且取得了67%的乙醇转化率和高达30%的丁醇收率,但是其在超临界二氧化碳介质中进行,高于10MPa的反应压力提高了对反应设备材质的要求,并且单位体积反应器丁醇的生产能力较低,因而其工业应用也受到一定程度的制约[Earley,J.H.,Bourne,R.A.,Watson,M.J.,Continuouscatalytic upgrading of ethanol to n-butanol and>C4products over Cu/CeO2catalysts in supercritical CO2.Green Chem.,2015,17,3018-30 25]。
活性炭具有发达的孔隙结构、高比表面积和丰富的表面活性基团,在工业上被广泛用于贵金属催化剂(如钯炭、铂炭等)的载体。然而由于铜的Hüttig温度(134℃)较低,加上其与活性炭载体之间较弱的相互作用,使得铜纳米粒子在活性炭表面易于烧结长大,因而铜基催化剂通常很少以活性炭为载体。
(三)发明内容
本发明通过在高比表面活性炭载体的内外表面引入适量的碱土金属或稀土金属氧化物,实现了铜活性组分在活性炭表面的高度分散及铜纳米粒子的稳定存在,同时引入了碱性活性中心,从而制备出高效、稳定的乙醇脱氢缩合制正丁醇的Cu-MOx/AC多功能催化剂。其应用于固定床乙醇连续脱氢缩合制正丁醇反应,在150~300℃、0.1~4.0MPa、LHSV=0.5~4h-1、氮气/乙醇=100~600:1(体积比)的反应条件下,表现出高达10wt%~30wt%的丁醇收率,特别是其在200h小试实验的后期达到稳定状态。
因此,本发明提供了一种活性炭负载型铜-金属氧化物催化剂(Cu-MOx/AC)及其制备方法和应用,该催化剂应用于乙醇脱氢缩合制正丁醇的固定床连续催化反应,具有较高的乙醇转化活性、丁醇选择性及收率,并具有较高的稳定性。
本发明采用如下技术方案:
一种活性炭负载型铜-金属氧化物催化剂(记作Cu-MOx/AC),由如下质量百分数的组分组成:
载体活性炭 55%~98%
金属Cu 1%~20%
金属氧化物MOx 1%~25%
优选的,所述活性炭负载型铜-金属氧化物催化剂由如下质量百分数的组分组成:
载体活性炭 65%~98%
金属Cu 1%~15%
金属氧化物MOx 1%~20%
本发明中,所述的载体活性炭为颗粒状或柱状,比表面为800~2500m2/g,最可几孔径为1~6nm,孔容为0.1~2.0ml/g;颗粒状活性炭的直径为0.4~3.5mm,颗粒强度:平均值大于1Kg/颗;柱状活性炭的颗粒直径为0.8~4mm,长度3~8mm,颗粒强度:径向强度平均值大于50N/cm。
所述的金属氧化物MOx中,M表示碱土金属或稀土金属,所述的碱土金属包括Mg、Ca、Sr、Ba等,所述的稀土金属包括La、Ce、Sm等,x=1、1.5或2。
作为本发明催化剂中的碱性活性组分,所述的金属氧化物MOx为碱土金属氧化物或稀土金属氧化物中的一种或两种以上任意比例的混合物,优选所述的金属氧化物MOx为稀土金属氧化物中的一种或两种以上任意比例的混合物;具体的,所述金属氧化物MOx为MgO、CaO、SrO、BaO、La2O3、CeO2、Sm2O3中的一种或两种以上任意比例的混合物;碱性活性组分的加入有利于提高铜的分散度及稳定性,同时提供了中间产物乙醛缩合的活性中心,从而提高了催化剂的活性、选择性以及稳定性。
本发明以颗粒状或柱状活性炭为载体,在活性炭的内外表面负载了Cu和碱性活性组分MOx,制成了颗粒状或柱状Cu-MOx/AC催化剂。活性炭载体的高比表面有利于实现Cu和碱性活性组分MOx的高度分散及紧密相互作用,这不仅提高了催化剂的乙醇脱氢活性,而且提高了中间产物乙醛经羟醛缩合得到丁醇的选择性;同时,Cu和碱性活性组分MOx之间紧密的相互作用稳定了活性炭载体表面的铜纳米粒子,在一定程度上限制了其烧结和长大。因而本发明催化剂在乙醇固定床连续脱氢缩合制丁醇的反应中表现出较高的活性、丁醇选择性和稳定性。
本发明还提供了所述活性炭负载型铜-金属氧化物催化剂的制备方法,所述的制备方法包括共浸渍法、分步浸渍法两类,制备方法中物料的投料量按上述催化剂的组分组成进行换算。
所述共浸渍法的操作步骤为:
将干燥的载体活性炭浸没于Cu前驱体(浓度为0.05~1M)和MOx前驱体(浓度为0.05~1M)混合物的溶液中,搅拌均匀后放置1~4h,然后将溶剂蒸干(使Cu前驱体和MOx前驱体均匀地负载到载体活性炭的内外表面),剩余物质置于管式炉中,在80~700℃(优选120~550℃)、惰性气氛下处理1~20h,冷却后得到所述的活性炭负载型铜-金属氧化物催化剂。
所述的分步浸渍法有3种,分别为:
分布浸渍法a,其操作步骤为:
将干燥的载体活性炭浸没于Cu前驱体(浓度为0.05~1M)溶液中,搅拌均匀后放置1~4h,然后将溶剂蒸干,剩余物质置于管式炉中,在80~700℃(优选110~550℃)、惰性气氛下处理1~20h,冷却后再浸没于MOx前驱体(浓度为0.05~0.5M)溶液中,搅拌均匀后放置1~4h,然后将溶剂蒸干,剩余物质置于管式炉中,在80~700℃(优选110~550℃)、惰性气氛下处理1~20h,冷却后得到所述的活性炭负载型铜-金属氧化物催化剂。
分布浸渍法b,其操作步骤为:
将干燥的载体活性炭浸没于MOx前驱体(浓度0.05~1M)溶液中,搅拌均匀后放置1~4h,然后将溶剂蒸干,剩余物质置于管式炉中,在80~700℃(优选110~550℃)、惰性气氛下处理1~20h,冷却后再浸没于Cu前驱体(浓度为0.05~1M)溶液中,搅拌均匀后放置1~4h,然后将溶剂蒸干,剩余物质置于管式炉中,在80~700℃(优选110~550℃)、惰性气氛下处理1~20h,冷却后得到所述的活性炭负载型铜-金属氧化物催化剂。
分布浸渍法c,其操作步骤为:
将干燥的载体活性炭浸没于Cu前驱体(浓度为0.05~1M)和MOx前驱体(浓度为0.05~1M)混合物的溶液中,搅拌均匀后放置1~4h,然后将溶剂蒸干,剩余物质置于管式炉中,在80~700℃(优选110~550℃)、惰性气氛下处理1~20h,冷却后再浸没于MOx前驱体(浓度为0.05~1M)溶液中,搅拌均匀后放置1~4h,然后将溶剂蒸干,剩余物质置于管式炉中,在80~700℃(优选110~550℃)、惰性气氛下处理1~20h,冷却后得到所述的活性炭负载型铜-金属氧化物催化剂。
上述制备方法中,
用于配制所述的Cu前驱体溶液、MOx前驱体溶液、或者Cu前驱体和MOx前驱体混合物的溶液的溶剂各自独立为甲醇、乙醇、异丙醇或去离子水等。
所述的Cu前驱体为硝酸铜、氯化铜、乙酸铜等可溶性铜盐中的一种或两种以上任意比例的混合物。
所述的MOx前驱体为硝酸镁、硝酸钙、硝酸锶、硝酸钡、硝酸镧、硝酸铈、硝酸钐等中的一种或两种以上任意比例的混合物。
上述制备方法中涉及的溶剂蒸干在旋转蒸发仪上进行,旋转蒸发仪电机的转速为10~50rpm,其腔体内的真空度为0.08~0.1MPa。
本发明所述的活性炭负载型铜-金属氧化物催化剂可应用于乙醇脱氢缩合制正丁醇反应,所述的反应在固定床反应器中连续进行,本发明催化剂在该反应中表现出10wt%~30wt%的丁醇收率。
本发明催化剂在使用前需要进行预处理,所述的预处理在流动的氮气、氢气或体积比1:10的氢气/氮气混合气中进行,空速为100~3000h-1,温度为150~550℃,时间为0.5~10h。
优选的,所述乙醇脱氢缩合制正丁醇的反应条件为:温度150~300℃,反应压力0.1~4.0MPa,液体空速0.5~4.0h-1,氮气/乙醇=100~600:1(体积比)。在该条件下,所述的丁醇选择性及收率最高,并具有较好的稳定性。反应的主要副产物有乙醛、丁醛、乙酸乙酯、2-乙基丁醇、正己醇等,未反应的乙醇可循环再用。
与现有技术相比,本发明的有益效果体现在:
(1)由上述方法制得的颗粒状或柱状Cu-MOx/AC催化剂中,铜与碱性活性组分MOx的相互作用紧密,且高度分散于高比表面活性炭载体的内外表面,因而该催化剂不仅乙醇脱氢活性高,而且反应中间产物乙醛经羟醛缩合得到丁醇的选择性也高;同时铜和碱性活性组分MOx之间紧密的相互作用稳定了活性炭载体表面的铜纳米粒子,在一定程度上限制了其烧结和长大,从而使该催化剂也具有较好的稳定性。
(2)所述的Cu-MOx/AC催化剂为颗粒状或柱状;颗粒状时直径为0.4~3.5mm,颗粒强度:平均值大于1Kg/颗;柱状时直径为0.8~4mm,长度3~8mm,颗粒强度:径向强度平均值大于50N/cm。该催化剂适用于乙醇固定床连续催化转化制正丁醇的工业化生产,从而克服了使用均相催化剂或粉末状催化剂的间歇式反应工艺中催化剂制备复杂及分离困难、劳动强度大、生产操作不安全等一系列问题。
综上,本发明的催化剂制备方便、成本低廉,应用时采用固定床连续化反应,流程简单,反应条件相对温和,产物中正丁醇的收率达到10wt%~30wt%,产物分离后未反应的乙醇可循环再用。
(四)附图说明
图1为乙醇连续脱氢缩合制正丁醇固定床反应装置的示意图;图1中,1-计量泵,2-汽化器,3-固定床反应器,4-催化剂床层,5-测温点,6-冷凝器,A-液体原料进口,B-氮气进口,C-反应器顶部,D-反应器底部,E-产品出口。
图2为实施例3制得的催化剂C上乙醇固定床连续脱氢缩合制正丁醇200h的评价结果;反应条件为:温度250℃,压力2.0MPa,液体空速为2.0h-1,氮气/乙醇=500:1(体积比)。
(五)具体实施方式
下面通过具体实施例对本发明作进一步的说明,但本发明的保护范围并不仅限于此。
实施例1
将0.7603g硝酸铜(Cu(NO3)2·3H2O)和0.4555g硝酸铈(Ce(NO3)3·6H2O)加入到10ml去离子水中,待其溶解、混合均匀后,将2g柱状活性炭颗粒加入其中浸渍4h。将上述混合物在旋转蒸发仪上先于50℃,0.09MPa的条件下干燥3h,再于80℃、0.09MPa干燥2h。将干燥后的固体物质置于管式炉中于450℃、氮气气氛里焙烧3h得到催化剂A。其金属Cu的负载量为8.4wt%,CeO2的负载量为7.6wt%,其余为活性炭载体;所得催化剂为直径0.8mm、长3~8mm的柱形颗粒,颗粒径向平均强度为124.2N/cm;其比表面积为1001.3m2/g,最可几孔径为2.9nm,孔容为0.49ml/g。
实施例2
催化剂B的制备方法同实施例1,但浸渍溶剂换成无水乙醇。其金属Cu的重量含量为8.4wt%,CeO2的负载量为7.6wt%,其余为活性炭载体;所得催化剂为直径0.8mm、长3~8mm的柱形颗粒,颗粒径向平均强度为123.5N/cm;其比表面积为1005.8m2/g,最可几孔径为2.8nm,孔容为0.49ml/g。
实施例3
催化剂C的制备方法同实施例2,但硝酸铈(Ce(NO3)3·6H2O)的质量为0.6833g。其金属Cu的重量含量为8.1wt%,CeO2的负载量为10.9wt%,其余为活性炭载体;所得催化剂为直径0.8mm、长3~8mm的柱形颗粒,颗粒径向平均强度为117.1N/cm;其比表面积为988.4m2/g,最可几孔径为2.9nm,孔容为0.45ml/g。
实施例4
催化剂D的制备方法同实施例2,但硝酸铈(Ce(NO3)3·6H2O)的质量为0.3416g。其金属Cu的重量含量为8.6wt%,CeO2的负载量为5.8wt%,其余为活性炭载体;所得催化剂为直径0.8mm、长3~8mm的柱形颗粒,颗粒径向平均强度为118.1N/cm;其比表面积为1010.2m2/g,最可几孔径为2.7nm,孔容为0.50ml/g。
实施例5
将0.7603g硝酸铜(Cu(NO3)2·3H2O)和0.4542g硝酸镧(La(NO3)3·6H2O)加入到10ml无水乙醇中,待其溶解、混合均匀后,将2g柱状活性炭颗粒加入其中浸渍4h。将上述混合物在旋转蒸发仪上先于50℃,0.09MPa的条件下干燥3h,再于80℃、0.09MPa干燥2h。将干燥后的固体物质置于管式炉中于450℃、氮气气氛里焙烧3h得到催化剂E。其金属Cu的重量含量为8.4wt%,La2O3的负载量为7.2wt%,其余为活性炭载体;所得催化剂为直径0.8mm、长3~8mm的圆柱形颗粒,颗粒径向平均强度为120.5N/cm;其比表面积为1001.3m2/g,最可几孔径为2.8nm,孔容为0.49ml/g。
实施例6
将0.7603g硝酸铜(Cu(NO3)2·3H2O)加入到10ml无水乙醇中,待其溶解、混合均匀后,将2g柱状活性炭颗粒加入其中浸渍4h。将上述混合物在旋转蒸发仪上先于50℃,0.09MPa的条件下干燥3h,再于80℃、0.09MPa干燥2h。将干燥后的固体物质置于管式炉中于450℃、氮气气氛里焙烧3h。再将冷却后所得的固体物质加入由1.3665g硝酸铈(Ce(NO3)3·6H2O)和10ml无水乙醇配制的溶液中浸渍4h。再重复上述的干燥、焙烧程序得到催化剂F。其金属Cu的重量含量为7.3wt%,Ce2O3的负载量为19.8wt%,其余为活性炭载体;所得催化剂为直径0.8mm、长3~8mm的圆柱形颗粒,颗粒径向平均强度为110.2N/cm;其比表面积为861.3m2/g,最可几孔径为2.8nm,孔容为0.36ml/g。
实施例7
将0.7603g硝酸铜(Cu(NO3)2·3H2O)和0.2278g硝酸铈(Ce(NO3)3·6H2O)加入到10ml无水乙醇中,待其溶解、混合均匀后,将2g柱状活性炭颗粒加入其中浸渍4h。将上述混合物在旋转蒸发仪上先于50℃,0.09MPa的条件下干燥3h,再于80℃、0.09MPa干燥2h。将干燥后的固体物质置于管式炉中于450℃、氮气气氛里焙烧3h。再将冷却后所得的固体物质加入由0.4555g硝酸铈(Ce(NO3)3·6H2O)和10ml无水乙醇配制的溶液中浸渍4h。再重复上述的干燥、焙烧程序得到催化剂G。其金属Cu的重量含量为8.1wt%,Ce2O3的负载量为10.9wt%,其余为活性炭载体;所得催化剂为直径0.8mm、长3~8mm的圆柱形颗粒,颗粒径向平均强度为115.5N/cm;其比表面积为983.3m2/g,最可几孔径为2.8nm,孔容为0.45ml/g。
对比例1
催化剂H的制备方法同实施例1,但所用的载体为0.85~1.4mm的球形硅胶颗粒。其金属Cu的重量含量为8.4wt%,CeO2的负载量为7.6wt%,其余为硅胶载体;所得催化剂为0.85~1.4mm的球形颗粒,其平均强度为7.9Kg/颗;所得催化剂的比表面积为355.0m2/g,最可几孔径为9.6nm,孔容为0.81ml/g。
对比例2
催化剂I的制备方法同实施例1,但所用的载体为0.85~1.4mm的球形γ-氧化铝颗粒。其金属Cu的重量含量为8.4wt%,CeO2的负载量为7.6wt%,其余为氧化铝载体;所得催化剂为0.85~1.4mm的球形颗粒,其平均强度为5.8Kg/颗;所得催化剂的比表面积为260.0m2/g,最可几孔径为6.8nm,孔容为0.60ml/g。
催化剂A、B、C、D、E、F、G、H和I在固定床乙醇连续脱氢缩合制正丁醇反应中的反应条件和结果如表1所示。
表1 不同催化剂在固定床乙醇连续脱氢缩合制正丁醇反应中的反应条件和结果
由表1的结果可以知道,与实施例的催化剂A、B、C、D、E、F和G相比,对比例的催化剂H和I上丁醇的选择性及收率低很多(主要生成乙酸乙酯);这一结果可能是硅胶或γ-氧化铝载体与铜、碱性活性组分MOx之间较强的相互作用及其引起的活性组分价态、形貌等的变化所致;相比于活性炭,硅胶和γ-氧化铝不同的表面性质,特别是酸性性质也应该是以其为载体时副产物很多的重要原因之一。

Claims (4)

1.一种活性炭负载型铜-金属氧化物催化剂在乙醇脱氢缩合制正丁醇反应中的应用,所述的催化剂由如下质量百分数的组分组成:
载体活性炭 55%~98%
金属Cu 1%~20%
金属氧化物MOx 1%~25%
其中,所述的金属氧化物MOx为La2O3、CeO2中的一种或两种以任意比例的混合物。
2.如权利要求1所述的应用,其特征在于,所述的催化剂由如下质量百分数的组分组成:
载体活性炭 65%~98%
金属Cu 1%~15%
金属氧化物MOx 1%~20%。
3.如权利要求1所述的应用,其特征在于,所述的载体活性炭为颗粒状或柱状,比表面为800~2500m2/g,最可几孔径为1~6nm,孔容为0.1~2.0ml/g;颗粒状活性炭的直径为0.4~3.5mm,颗粒强度:平均值大于1Kg/颗;柱状活性炭的颗粒直径为0.8~4mm,长度3~8mm,颗粒强度:径向强度平均值大于50N/cm。
4.如权利要求1所述的应用,其特征在于,所述的反应在固定床反应器中连续进行,所述乙醇脱氢缩合制正丁醇的反应条件为:温度150~300℃,反应压力0.1~4.0MPa,液体空速0.5~4.0h-1,氮气/乙醇体积比=100~600:1;
所述的催化剂在使用前经过预处理,所述的预处理在流动的氮气、氢气或体积比1:10的氢气/氮气混合气中进行,空速为100~3000h-1,温度为150~550℃,时间为0.5~10h。
CN201610399455.4A 2016-06-06 2016-06-06 活性炭负载型铜-金属氧化物催化剂及其制备方法和应用 Active CN106076344B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610399455.4A CN106076344B (zh) 2016-06-06 2016-06-06 活性炭负载型铜-金属氧化物催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610399455.4A CN106076344B (zh) 2016-06-06 2016-06-06 活性炭负载型铜-金属氧化物催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106076344A CN106076344A (zh) 2016-11-09
CN106076344B true CN106076344B (zh) 2018-08-21

Family

ID=57227394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610399455.4A Active CN106076344B (zh) 2016-06-06 2016-06-06 活性炭负载型铜-金属氧化物催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106076344B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110404504B (zh) * 2018-04-26 2021-09-28 西北大学 用于处理印染污水的Cu掺杂核桃壳活性炭及其制法和应用
CN110385139B (zh) * 2019-08-20 2022-05-17 大连理工大学 乙醇直接脱氢制备乙醛的催化剂、制法及应用
CN110465301B (zh) * 2019-08-23 2023-04-07 四川省达科特能源科技股份有限公司 一种活性炭催化剂及其制备方法和应用
CN110523416A (zh) * 2019-09-16 2019-12-03 吉林大学 一种用于催化乙醇转化为正丁醇的介孔炭负载型催化剂及其制备方法
CN110743557A (zh) * 2019-10-24 2020-02-04 浙江工业大学 一种用于甲醇和乙醇固定床连续催化脱氢缩合合成异丁醇的催化剂及其制备方法和应用
CN111203227B (zh) * 2020-02-26 2023-01-17 江苏大学 一种Cu/SrO/石墨烯催化剂及其制备方法和用途
CN111185165B (zh) * 2020-03-20 2022-09-20 北京工业大学 一种以水滑石和碳前体制备的铝镁钬复合氧化物负载钐铂催化剂的制备方法和应用
CN111514854A (zh) * 2020-05-01 2020-08-11 合肥学院 一种改性3d多孔碳复合吸附材料的制备方法
CN111604056B (zh) * 2020-06-03 2023-05-12 中国科学院山西煤炭化学研究所 一种负载型金属氧化物催化剂及其制备方法和应用
CN113443964B (zh) * 2021-05-28 2022-07-22 浙江工业大学 一种乙醇催化转化合成高级醇的方法
CN113332989B (zh) * 2021-05-28 2023-01-10 浙江工业大学 氧化铝负载型铜-稀土金属氧化物催化剂及其制备方法和应用
CN113976184B (zh) * 2021-10-18 2023-08-04 浙江工业大学 一种铜氧化物-稀土金属氧化物催化剂的还原方法
CN115814805B (zh) * 2022-12-13 2024-07-19 浙江工业大学 一种具有氢转移加氢活性的金属氧化物促进的铜基催化剂及其制备和应用
CN118059849A (zh) * 2024-02-18 2024-05-24 南华大学 一种生物炭基催化剂及其制备方法和在脱除挥发性有机物中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528727A (zh) * 2003-10-15 2004-09-15 浙江大学 乙醇缩合成正丁醇的方法
CN1792441A (zh) * 2005-12-21 2006-06-28 中国科学院山西煤炭化学研究所 一种处理含苯酚废水吸附-催化剂及制法和应用
CN101530802A (zh) * 2009-04-16 2009-09-16 浙江大学 乙醇缩合成正丁醇的双组分负载型催化剂及其制备方法
CN102872879A (zh) * 2012-09-26 2013-01-16 太原理工大学 一种气相合成碳酸二甲酯无氯双金属催化剂及制备和应用
CN105073697A (zh) * 2013-02-19 2015-11-18 格林尤格有限责任公司 制备高级醇

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528727A (zh) * 2003-10-15 2004-09-15 浙江大学 乙醇缩合成正丁醇的方法
CN1792441A (zh) * 2005-12-21 2006-06-28 中国科学院山西煤炭化学研究所 一种处理含苯酚废水吸附-催化剂及制法和应用
CN101530802A (zh) * 2009-04-16 2009-09-16 浙江大学 乙醇缩合成正丁醇的双组分负载型催化剂及其制备方法
CN102872879A (zh) * 2012-09-26 2013-01-16 太原理工大学 一种气相合成碳酸二甲酯无氯双金属催化剂及制备和应用
CN105073697A (zh) * 2013-02-19 2015-11-18 格林尤格有限责任公司 制备高级醇

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Selective upgrading of ethanol with methanol in water for the production of improved biofuel-isobutanol;Qiang Liu, et al.;《Green Chemistry》;20160119;第18卷;第2811-2818页 *

Also Published As

Publication number Publication date
CN106076344A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106076344B (zh) 活性炭负载型铜-金属氧化物催化剂及其制备方法和应用
CN109999880B (zh) 氮掺杂多孔碳负载双金属催化剂及其制备方法及用途
CN105562004B (zh) 一种草酸二甲酯选择性加氢用铜基催化剂的制备方法
CN108636453B (zh) 一种金属有机框架材料封装的纳米贵金属催化剂及其制备方法和应用
CN106179440B (zh) 氮掺杂多级孔炭及其制备方法和应用
US8889585B2 (en) Mesoporous carbon supported tungsten carbide catalysts, preparation and applications thereof
WO2022247717A1 (zh) 一种乙醇催化转化合成高级醇的方法
Shen et al. Glycerol valorization to lactic acid catalyzed by hydroxyapatite‐supported palladium particles
CN1883795A (zh) 一种铜锌铝系气相醛加氢催化剂的制备方法及其产品
CN113332989B (zh) 氧化铝负载型铜-稀土金属氧化物催化剂及其制备方法和应用
Miao et al. Efficient one-pot production of 1, 2-propanediol and ethylene glycol from microalgae (Chlorococcum sp.) in water
CN108623436B (zh) 一种一锅法转化纤维素为生物乙醇的方法
CN110743557A (zh) 一种用于甲醇和乙醇固定床连续催化脱氢缩合合成异丁醇的催化剂及其制备方法和应用
CN106944050B (zh) 一种合成1,3-丙二醇的催化剂及其制备方法和应用
Xi et al. Preparation of the Ru/HZSM-5 catalyst and its catalytic performance for the 2-pentanone hydrodeoxygenation reaction
CN111054339B (zh) 制乙二醇的催化剂组合物
CN103357427B (zh) 一种纳米金属/固体碱复合催化剂、其制备方法及其用途
KR101900444B1 (ko) 리그닌 분해 반응용 촉매 및 이를 이용한 탄화수소 화합물의 제조방법
CN111054330A (zh) 用于生物质制乙二醇的催化剂及其制备方法
CN113019379A (zh) 一种用于烯醛液相加氢的催化剂及其制备方法和用途
CN101168131A (zh) 用于甲醇气相脱水制二甲醚的氧化铝催化剂
CN109485543B (zh) 由纤维素一步制备乙二醇和1,2-丙二醇的方法及其催化剂
Zhang A multifunctional carrier for composite ZnFe 2 O 4: a catalyst for improved one-step diethyl carbonate synthesis from CO 2 and ethanol
CN114130399B (zh) 有序介孔铜-稀土金属-铝复合氧化物催化剂及其应用
CN104888778B (zh) 一种催化葡萄糖氢解的Cu/MgO催化剂及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant