CN106064023B - 一种功能化氧化石墨烯复合膜的制备及应用 - Google Patents

一种功能化氧化石墨烯复合膜的制备及应用 Download PDF

Info

Publication number
CN106064023B
CN106064023B CN201610231523.6A CN201610231523A CN106064023B CN 106064023 B CN106064023 B CN 106064023B CN 201610231523 A CN201610231523 A CN 201610231523A CN 106064023 B CN106064023 B CN 106064023B
Authority
CN
China
Prior art keywords
graphene oxide
composite membrane
oxide composite
preparation
functional graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610231523.6A
Other languages
English (en)
Other versions
CN106064023A (zh
Inventor
姜忠义
王少飞
张宁
霍亭丞
张喜园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610231523.6A priority Critical patent/CN106064023B/zh
Publication of CN106064023A publication Critical patent/CN106064023A/zh
Application granted granted Critical
Publication of CN106064023B publication Critical patent/CN106064023B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

本发明公开了一种功能化氧化石墨烯复合膜的制备方法及应用,属于气体分离膜技术领域。其制备过程包括:通过Hummer法制备氧化石墨烯的水分散液,超声分散;加入金聚氧乙烯二胺,加热搅拌;将所制备的分散液通过真空抽滤法覆盖于微滤膜表面;将膜置于烘箱中干燥。本发明的优点在于:制备方法简单,所制得的膜厚度在10nm以下,石墨烯片层间距可调,所制得的复合膜用于气体分离,具有优异的综合性能。特别地,使用分子量1000的聚氧乙烯二胺制备的氧化石墨烯复合膜具有高的CO2渗透通量和CO2/CH4、CO2/N2选择性,干态条件下混合气测试CO2渗透通量可达220GPU,CO2/CH4选择性为42,CO2/N2选择性为55。

Description

一种功能化氧化石墨烯复合膜的制备及应用
技术领域
本发明涉及一种功能化氧化石墨烯复合膜的制备及应用,属于气体膜分离技术领域。
背景技术
近年来,随着工业的发展,化石燃料燃烧,产生了大量CO2气体。目前急需高效低成本的碳捕集技术。膜技术由于绿色、能耗低、设备投资低等优势得到了广泛关注,是目前有望大规模采用的技术之一。目前由于膜材料分离性能不高,限制了其进一步发展。设计制备具高渗透性和高选择性的膜材料是目前研究的热点。为实现膜的高渗透性和高选择性,膜材料应具备超薄的分离层结构,且膜孔道尺寸规则,易于实现尺寸筛分。
石墨烯材料是一种具备超薄片层结构,机械和热稳定性良好的碳材料。其来源广泛,有望将其制备成膜材料,以大规模应用。目前石墨烯膜的制备大多通过旋涂或者真空超滤法将氧化石墨烯片层覆盖于微滤膜的表面。所制备的膜由于层间距不可控,致使膜的尺寸筛分能力弱、选择性不高。小分子在膜内多以物理机制实现分离,气体分子在膜内的溶解扩散需要协同调控。目前亟需简便可控的膜制备手段,实现气体分子在膜内溶解-扩散机制的协同调控,实现石墨烯膜渗透性和选择性的同时提升。
发明内容
本发明的目的在于一种氧化石墨烯复合膜的制备方法和应用。以此方法制备的氧化石墨烯复合膜用于分离CO2/CH4、CO2/N2混合物,具有较高的CO2渗透速率和分离因子。
本发明提出的一种功能化氧化石墨烯复合膜,主要组分为氧化石墨烯,使用聚氧乙烯二胺交联,并通过真空抽滤法制备于微滤膜基底上;所述氧化石墨烯片层的大小为500nm-10μm;所述聚氧乙烯二胺的分子量为500-5000。
进一步讲,所述微滤膜材质为聚砜、聚醚砜、聚偏氟乙烯和醋酸纤维素中的任何一种。
本发明功能化氧化石墨烯复合膜的制备方法,包括以下步骤:
步骤一、通过Hummer法制备质量体积分数为1mg/L-50mg/L的氧化石墨烯水分散液,超声分散2h;
步骤二、将一定质量的聚氧乙烯二胺加入到步骤一制得的氧化石墨烯水分散液中,其中,聚氧乙烯二胺与氧化石墨烯的质量比为20/1,加热该溶液到40℃,机械搅拌至完全溶解后冷却至室温得到溶液A;
步骤三、将一微滤膜固定于真空抽滤杯中,将步骤二得到的溶液A倒入真空抽滤杯中,开启真空泵,待水完全抽滤后继续抽滤20min;
步骤四、将步骤三抽滤后得到的膜放于烘箱中交联干燥2–4h,即得功能化氧化石墨烯复合膜
将本发明功能化氧化石墨烯复合膜用于气体分离,尤其是用于CO2/CH4或CO2/N2的分离。
本发明的优点在于:制备方法简单,所制得的膜厚度在10nm以下,石墨烯片层间距可调,所制得的复合膜用于气体分离,具有优异的综合性能。特别地,使用分子量为1000的聚氧乙烯二胺作为交联剂,聚醚砜微滤膜作为基底制备的氧化石墨烯复合膜具有高的CO2渗透通量和CO2/CH4、CO2/N2选择性,干态条件下测试,混合气测试CO2渗透通量可达150GPU,CO2/CH4选择性为42,CO2/N2选择性为55。
具体实施方式
下面结合具体实施例对本发明技术方案作进一步详细描述,所描述的具体实施例仅对本发明进行解释说明,并不用以限制本发明。
实施例1、功能化氧化石墨烯复合膜的制备,步骤如下:
步骤一、通过Hummer法制备质量分数为1mg/L的氧化石墨烯的水分散液,其中,氧化石墨烯片层的大小(由于氧化石墨烯片层的平面几何形状并不是规范的圆形,因此该处的大小尺寸实际上是指氧化石墨烯片层平面形状轮廓外接圆的直径)为500nm,置于超声频率为30kHz超声清洗仪中分散2h;
步骤二、将分子量为500的聚氧乙烯二胺加入到上述的氧化石墨烯水分散液中,其中,聚氧乙烯二胺与氧化石墨烯的质量比为10/1;加热该溶液到40℃,机械搅拌1h至完全溶解,冷却至室温得到溶液A;
步骤三、将聚醚砜微滤膜固定于真空抽滤杯中,取以上步骤制得的溶液A40ml倒入真空抽滤杯中,开启真空泵,待水完全抽滤后继续抽滤20min;
步骤四、将抽滤后的得到的膜放于烘箱中50℃交联干燥2h,即得功能化氧化石墨烯复合膜。
将制得的功能化氧化石墨烯复合膜在室温、测试压力为1bar的干态测试条件下,分离CO2体积分数为20%的N2-CO2二元混合气,CO2渗透速率为135GPU(1GPU=10-6cm3(STP)/(cm2s cmHg)),CO2/N2分离因子为36,在相同条件下,分离CO2体积分数为30%的CH4-CO2二元混合气,CO2渗透速率为149GPU,CO2/CH4分离因子为25。
实施例2、功能化氧化石墨烯复合膜的制备,制备方法与实施例1基本一致,不同之处在于:步骤一中所述氧化石墨烯片层大小为2μm。
测试条件与实施例1相同,分离CO2体积分数为20%的N2-CO2二元混合气,CO2渗透速率为108GPU,CO2/N2分离因子为40,在相同条件下,分离CO2体积分数为30%的CH4-CO2二元混合气,CO2渗透速率为113GPU,CO2/CH4分离因子为58。
实施例3、功能化氧化石墨烯复合膜的制备,制备方法与实施例2基本一致,不同之处在于:步骤二中,所述聚氧乙烯二胺的分子量为1000。
测试条件与实施例1相同,分离CO2体积分数为20%的N2-CO2二元混合气,CO2渗透速率为220GPU,CO2/N2分离因子为55,在相同条件下,分离CO2体积分数为30%的CH4-CO2二元混合气,CO2渗透速率为216GPU,CO2/CH4分离因子为42。
实施例4、功能化氧化石墨烯复合膜的制备,制备方法与实施例1基本一致,不同之处在于:步骤一中所述氧化石墨烯片层大小为10μm;步骤二中,聚氧乙烯二胺的分子量为50000。
测试条件与实施例1相同,分离CO2体积分数为20%的N2-CO2二元混合气,CO2渗透速率为122GPU,CO2/N2分离因子为36,在相同条件下,分离CO2体积分数为30%的CH4-CO2二元混合气,CO2渗透速率为366GPU,CO2/CH4分离因子为35。
实施例5、功能化氧化石墨烯复合膜的制备,制备方法与实施例1基本一致,不同之处在于:步骤三中,微滤膜材质为聚砜。
测试条件与实施例1相同,分离CO2体积分数为20%的N2-CO2二元混合气,CO2渗透速率为168GPU,CO2/N2分离因子为26,在相同条件下,分离CO2体积分数为30%的CH4-CO2二元混合气,CO2渗透速率为159GPU,CO2/CH4分离因子为22。
对比例1、氧化石墨烯复合膜的制备,步骤是:
通过Hummer法制备质量分数为1mg/L的氧化石墨烯的水分散液,其中,氧化石墨烯片层大小2μm,置于超声频率为30kHz超声清洗仪中分散2h;加热该溶液到40℃,机械搅拌1h至完全溶解,冷却至室温;将聚醚砜微滤膜固定于真空抽滤杯中,将上述氧化石墨烯的水分散液40ml倒入真空抽滤杯中,开启真空泵,待水完全抽滤后继续抽滤20min;将抽滤后得到的膜放于烘箱中50℃交联干燥2h,即得氧化石墨烯复合膜。
将上述制得的氧化石墨烯复合膜在室温、测试压力为1bar的干态测试条件下,分离CO2体积分数为20%的N2-CO2二元混合气,CO2渗透速率为30GPU(1GPU=10-6cm3(STP)/(cm2s cmHg)),CO2/N2分离因子为18,在相同条件下,分离CO2体积分数为30%的CH4-CO2二元混合气,CO2渗透速率为32GPU,CO2/CH4分离因子为22。
综上,本发明制备过程中,随氧化石墨烯片层的平面尺寸增大,膜在应用中CO2渗透速率减小,CO2/N2和CO2/CH4分离因子增大;随聚氧乙烯二胺分子量的增大,膜在应用中CO2渗透速率增大,CO2/N2和CO2/CH4分离因子先增大后减小,在聚氧乙烯二胺分子量1000时出现最大值。
尽管上面对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以作出很多变形,这些均属于本发明的保护之内。

Claims (6)

1.一种功能化氧化石墨烯复合膜,其特征在于,主要组分为氧化石墨烯,使用聚氧乙烯二胺交联,并通过真空抽滤法制备于微滤膜基底上;氧化石墨烯片层的大小为500nm-10μm;聚氧乙烯二胺的分子量为500-5000。
2.如权利要求1所述的功能化氧化石墨烯复合膜,其特征在于,微滤膜材质为聚砜、聚醚砜、聚偏氟乙烯和醋酸纤维素中的任何一种。
3.一种如权利要求1-2中任一所述的功能化氧化石墨烯复合膜的制备方法,其特征在于,包括以下步骤:
步骤一、通过Hummer法制备质量体积分数为1mg/L-50mg/L的氧化石墨烯水分散液,超声分散2h;
步骤二、将一定质量的聚氧乙烯二胺加入到步骤一制得的氧化石墨烯水分散液中,其中,聚氧乙烯二胺与氧化石墨烯的质量比为20/1,加热该溶液到40℃,机械搅拌至完全溶解后冷却至室温得到溶液A;
步骤三、将一微滤膜固定于真空抽滤杯中,将步骤二得到的溶液A倒入真空抽滤杯中,开启真空泵,待水完全抽滤后继续抽滤20min;
步骤四、将步骤三抽滤后得到的膜放于烘箱中交联干燥2-4h,即得功能化氧化石墨烯复合膜。
4.如权利要求3所述的功能化氧化石墨烯复合膜的制备方法,其特征在于,步骤四中,交联温度为50℃。
5.如权利要求3或4所述制备方法制得的功能化氧化石墨烯复合膜的应用,其特征在于,用于气体分离。
6.如权利要求5所述功能化氧化石墨烯复合膜的应用,其特征在于,用于CO2/CH4或CO2/N2的分离。
CN201610231523.6A 2016-04-13 2016-04-13 一种功能化氧化石墨烯复合膜的制备及应用 Expired - Fee Related CN106064023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610231523.6A CN106064023B (zh) 2016-04-13 2016-04-13 一种功能化氧化石墨烯复合膜的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610231523.6A CN106064023B (zh) 2016-04-13 2016-04-13 一种功能化氧化石墨烯复合膜的制备及应用

Publications (2)

Publication Number Publication Date
CN106064023A CN106064023A (zh) 2016-11-02
CN106064023B true CN106064023B (zh) 2019-01-15

Family

ID=57419761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610231523.6A Expired - Fee Related CN106064023B (zh) 2016-04-13 2016-04-13 一种功能化氧化石墨烯复合膜的制备及应用

Country Status (1)

Country Link
CN (1) CN106064023B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9902141B2 (en) 2014-03-14 2018-02-27 University Of Maryland Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms
CN109070018B (zh) 2016-05-11 2022-01-11 麻省理工学院 氧化石墨烯膜和相关方法
CN107051229A (zh) * 2017-04-17 2017-08-18 江苏大学 一种聚乙烯亚胺交联的氧化石墨烯/二氧化钛层状复合膜的制备方法及其用途
CN106964263A (zh) * 2017-04-27 2017-07-21 山东金城石墨烯科技有限公司 一种耐溶剂耐污的石墨烯纳滤膜的制备方法及应用
CN108854565B (zh) * 2017-05-16 2021-02-12 中国科学院生态环境研究中心 一种氧化石墨烯定向分离膜及其制备方法和应用
CN107469635B (zh) * 2017-09-07 2019-12-17 太原理工大学 一种具有片层筛分通道的聚乙烯胺复合功能膜及其制备方法和应用
CN107570010B (zh) * 2017-10-20 2020-05-26 中国科学院烟台海岸带研究所 一种仿生透水膜及其制备方法
CN109758926B (zh) * 2018-10-31 2022-02-11 浙江工业大学 一种功能化石墨烯基纳滤膜及其制备方法与应用
CN109939571B (zh) * 2019-04-01 2022-02-11 江西师范大学 一种氧化石墨烯框架复合膜及其制备方法和应用
EP3969158A1 (en) 2019-05-15 2022-03-23 Via Separations, Inc. Filtration apparatus containing graphene oxide membrane
BR112021022979A2 (pt) 2019-05-15 2022-01-25 Via Separations Inc Membranas de óxido de grafeno duráveis
CN110508164A (zh) * 2019-08-07 2019-11-29 大连理工大学 一种结构稳定的氧化石墨烯复合膜的制备方法
CN110394070B (zh) * 2019-08-09 2021-12-03 中国海洋大学 一种多层交联氧化石墨烯、其制备方法及应用
CN110787652B (zh) * 2019-10-29 2021-10-29 南京工业大学 一种增强氧化石墨烯复合膜水稳定性的方法
CN110841487B (zh) * 2019-12-05 2022-04-15 中国石油大学(华东) 一种海水淡化膜的制备方法
CN111214964A (zh) * 2020-01-15 2020-06-02 上海翊科精密挤出技术有限公司 一种表面改性的氧合器膜及其制备方法
CN111229061B (zh) * 2020-01-17 2021-11-19 西安交通大学 一种多孔石墨烯分离膜及其制备方法
CN112645683B (zh) * 2020-12-24 2021-07-27 广东工业大学 一种具有热操纵功能石墨烯薄膜的加工方法
WO2023097166A1 (en) 2021-11-29 2023-06-01 Via Separations, Inc. Heat exchanger integration with membrane system for evaporator pre-concentration

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706264A (zh) * 2014-01-14 2014-04-09 中国海洋大学 层层自组装氧化石墨烯纳滤膜及其制备方法
CN103736400A (zh) * 2014-01-06 2014-04-23 中国海洋大学 一种氧化石墨烯复合纳滤膜的制备方法
CN104030275A (zh) * 2014-05-30 2014-09-10 上海应用技术学院 一种还原氧化石墨烯导热薄膜的制备方法
CN104275098A (zh) * 2014-10-27 2015-01-14 上海交通大学 一种仿贝壳结构层状氧化石墨烯纳米复合膜的制备方法
CN105037762A (zh) * 2015-07-17 2015-11-11 南京邮电大学 一种高机械性能氧化石墨烯聚醚胺复合薄膜的制备方法
CN105084355A (zh) * 2015-09-11 2015-11-25 四川大学 层间距可控的稳定氧化石墨烯膜及其制备方法
CN105111690A (zh) * 2015-09-25 2015-12-02 天津工业大学 一种提高三维石墨烯结构体/聚合物复合材料力学性能的方法
WO2016011124A1 (en) * 2014-07-17 2016-01-21 The Research Foundation For The State University Of New York Porous graphene based composite membranes for nanofiltration, desalination, and pervaporation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736400A (zh) * 2014-01-06 2014-04-23 中国海洋大学 一种氧化石墨烯复合纳滤膜的制备方法
CN103706264A (zh) * 2014-01-14 2014-04-09 中国海洋大学 层层自组装氧化石墨烯纳滤膜及其制备方法
CN104030275A (zh) * 2014-05-30 2014-09-10 上海应用技术学院 一种还原氧化石墨烯导热薄膜的制备方法
WO2016011124A1 (en) * 2014-07-17 2016-01-21 The Research Foundation For The State University Of New York Porous graphene based composite membranes for nanofiltration, desalination, and pervaporation
CN104275098A (zh) * 2014-10-27 2015-01-14 上海交通大学 一种仿贝壳结构层状氧化石墨烯纳米复合膜的制备方法
CN105037762A (zh) * 2015-07-17 2015-11-11 南京邮电大学 一种高机械性能氧化石墨烯聚醚胺复合薄膜的制备方法
CN105084355A (zh) * 2015-09-11 2015-11-25 四川大学 层间距可控的稳定氧化石墨烯膜及其制备方法
CN105111690A (zh) * 2015-09-25 2015-12-02 天津工业大学 一种提高三维石墨烯结构体/聚合物复合材料力学性能的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cross-Linking with Diamine Monomers To Prepare Composite Graphene Oxide-Framework Membranes with Varying d-Spacing;Wei-Song Hung等;《Chemistry of Materials》;20140414;第26卷(第9期);第2983页第2栏第1段-第2984页第1栏第1段,第2984页的实验部分第2.1-2.2节,第2985页第2栏第3-4段,第2986页第1栏第1段-第2987页第1栏第1段
Molecular pillar supported graphene oxide framework: conformational heterogeneity and tunable d-spacing;Harshal P. Mungse等;《Physical Chemistry Chemical Physics》;20150715;第17卷(第32期);第20822-20829页

Also Published As

Publication number Publication date
CN106064023A (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
CN106064023B (zh) 一种功能化氧化石墨烯复合膜的制备及应用
CN106582317B (zh) 一种用于有机溶剂纳滤的金属有机骨架修饰氧化石墨烯片层结构复合膜的制备方法
CN105727758A (zh) 一种氧化石墨烯复合膜的制备方法及应用
CN107029562B (zh) 一种基于MXene的复合纳滤膜及其制备方法
Li et al. Boosting pervaporation performance by promoting organic permeability and simultaneously inhibiting water transport via blending PDMS with COF-300
JP5200032B2 (ja) 卓越した気体分離能を有する非対称気体分離膜
CN104722215B (zh) 基于石墨烯材料的二氧化碳气体分离膜的制备方法
CN107983173A (zh) 一种高通量共价有机骨架复合膜及其制备方法
CN103657458B (zh) 聚醚嵌段酰胺复合膜、其制备方法及其用途
CN107970790B (zh) 功能梯度共价有机骨架膜及制备和应用
CN100586542C (zh) 超薄活性层的中空纤维复合膜及制备方法和应用
WO2014088214A1 (ko) 정밀여과막 또는 한외여과막 제조용 고분자 수지 조성물, 고분자 여과막의 제조 방법 및 고분자 여과막
KR20130128686A (ko) 기체 분리막 및 그 제조방법
JP2012503542A (ja) トリコット上キャスト非対称および複合分離膜
Jiang et al. A facile direct spray-coating of Pebax® 1657: Towards large-scale thin-film composite membranes for efficient CO2/N2 separation
CN103977718A (zh) 一种高水通量正渗透复合膜及其制备方法
KR20160026070A (ko) 기체분리막의 제조 방법
CN106861457A (zh) 一种含MOFs混合基质中空纤维气体分离膜的制备方法
Naito et al. Process conditions on the preparation of supported microporous SiO2 membranes by sol-gel modification techniques
CN108993165B (zh) 一种层状无机材料有机溶剂纳滤复合膜及其制备方法
CN106582314A (zh) 一种用于膜蒸馏的小孔径疏水复合膜制备方法
KR20210044160A (ko) 공유결합 트리아진 구조체를 이용한 알코올 투과증발용 복합 분리막
Xie et al. Enhanced pervaporation performance of SA-PFSA/ceramic hybrid membranes for ethanol dehydration
KR101713858B1 (ko) 이산화탄소 흡수용 소수성 알루미나 중공사막 및 그 제조방법
CN106256417B (zh) 一种高性能有机气体分离膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190115