CN106044963B - 一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法 - Google Patents

一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法 Download PDF

Info

Publication number
CN106044963B
CN106044963B CN201610595509.4A CN201610595509A CN106044963B CN 106044963 B CN106044963 B CN 106044963B CN 201610595509 A CN201610595509 A CN 201610595509A CN 106044963 B CN106044963 B CN 106044963B
Authority
CN
China
Prior art keywords
pbo
polyaniline
electrode
electrode material
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610595509.4A
Other languages
English (en)
Other versions
CN106044963A (zh
Inventor
于丽花
薛娟琴
代继哲
毕强
唐长斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN201610595509.4A priority Critical patent/CN106044963B/zh
Publication of CN106044963A publication Critical patent/CN106044963A/zh
Application granted granted Critical
Publication of CN106044963B publication Critical patent/CN106044963B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]

Abstract

一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法,包括钛基体预处理、PbO2中间层制备和聚苯胺掺杂PbO2表面活性层制备三个步骤;将导电态的聚苯胺颗粒弥散于电积溶液中,采用复合电沉积法将聚苯胺与PbO2均匀共沉积于Ti/PbO2上,通过控制聚苯胺用量、沉积电流密度、沉积温度和时间等条件,获得表面致密、均匀、晶粒明显细化的Ti/PbO2/PANi‑PbO2复合电极材料;本发明克服了非导电聚合物掺杂对PbO2电极导电性能带来的不良影响,避免了采用苯胺单体,通过单体电聚合反应实现掺杂时存在的诸多不确定性,保证了聚苯胺掺杂PbO2电极材料的性能稳定;所得电极材料活性和稳定性高,溶解稳定性明显优于未进行掺杂的PbO2电极,可显著提高PbO2电极电氧化处理生物难降解有机废水的应用安全性。

Description

一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法
技术领域
本发明属于新型电极材料制备技术领域,特别涉及一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法。
背景技术
电化学氧化过程去除工业废水中有毒和难降解有机物的关键是具有电催化活性的电极材料。高稳定性、高活性、低成本是人们期望电极材料所具备的性质。PbO2电极由于具有良好的导电和耐蚀性、较高的析氧过电位、较低的成本以及强的氧化能力,是研究和应用历史最久、也是最为广泛的氧化去除有机物的电极材料之一,具有广阔的应用前景。PbO2电极一般采用不活泼的Ti基材作为支撑,通过电化学沉积的方法获得PbO2活性膜涂层材料,称为Ti基PbO2形稳阳极(DSA)。该电极成本低廉、制备容易、利于实现自动化控制。在过去的几十年发展历程中,PbO2形稳阳极已被广泛用于处理各种有机废水,并取得了很好的应用效果。
然而,由于电解液对电极的腐蚀,钛基PbO2电极在水溶液电解领域的应用过程中会发生活性层的阳极溶解现象。这一方面导致铅元素溶出,带来二次污染风险,另一方面引起电极催化活性不断下降。为此,研究者通过在钛基PbO2活性涂层中掺杂一定量的聚合物——聚四氟乙烯(PTFE)或无机物(Co、Al、Ni)构筑PbO2复合电极材料,从而改变PbO2活性涂层的化学组成和结构,以达到提高电极抗腐蚀能力和抑制铅溶出的效果。其中,聚合物掺杂能够赋予电极高疏水性能,在获得析氧电位高、氧化有机物能力强的复合电极的同时,可以抑制电解液对电极的侵入和腐蚀,显著降低电极的质量损失和铅溶出量,具有良好的应用前景。然而,现有的PTFE掺杂改性PbO2电极材料技术也存在一定的问题,由于PTFE电阻率很高且掺杂量较大(4.0~6.0g L-1),必然会对PbO2复合电极的导电性、电氧化降解有机废水的电流效率和能耗等产生不良影响。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法,将导电态聚苯胺作为掺杂剂,采用复合电沉积的方法将聚苯胺与PbO2均匀地共沉积于Ti/PbO2上,获得表面致密、均匀、晶粒明显细化的Ti/PbO2/PANi-PbO2复合电极材料;本发明通过采用导电性好、性能稳定的导电聚合物——导电态聚苯胺(PANi)取代PTFE对PbO2电极进行掺杂,利用导电聚苯胺同时具备的防腐蚀性能和良好导电性能,达到提高电极抗腐蚀能力和抑制铅溶出效果的同时,又可避免PTFE掺杂带来的电极导电性降低的负面影响,从而进一步促进PbO2阳极材料的工业化应用。
为了实现上述目的,本发明采用的技术方案是:
一种钛基聚苯胺掺杂二氧化铅(PbO2)复合电极材料的制备方法,包括:
(1)钛板基体的预处理;通过机械打磨、除油碱洗和草酸刻蚀三个环节进行钛基材的预处理,处理后的钛板表面形成凹凸不平的麻面层,呈灰色,失去金属光泽;
(2)电沉积法制备PbO2中间层:以经过预处理的钛板为阳极,与阳极面积相等的不锈钢板为阴极,置于含0.3~0.5mol/L Pb(NO3)2和0.1~0.3mol/L HNO3的电积溶液中,在一定电流密度和温度下电氧化沉积20~30min,之后取出阳极,用蒸馏水冲洗干净,冷风吹干,得到Ti/PbO2
(3)复合电沉积法制备聚苯胺掺杂PbO2表面活性层:以Ti/PbO2为阳极,与阳极面积相等的不锈钢板为阴极,置于含0.4mol/L Pb(NO3)2、0.3mol/L HNO3和一定浓度导电态聚苯胺的电积溶液中,在一定电流密度和温度下电沉积一定时间,之后取出阳极,用蒸馏水冲洗干净,冷风吹干,得到Ti/PbO2/PANi-PbO2复合电极材料。
所述PbO2中间层的电沉积制备是在温度为50℃、电流密度为10mA/cm2的恒流条件下进行的。
所述聚苯胺掺杂PbO2表面活性层的制备中,导电态聚苯胺掺杂剂购自上海麦克林生化科技有限公司(P824522),其导电率为2S/cm、有机质子酸掺杂率>30%,将其以粒径<30μm的细小颗粒状态通过超声强化弥散于电积溶液中,添加量为0.25~1g/L。
所述聚苯胺掺杂PbO2表面活性层的电沉积制备是在电流密度为10~20mA/cm2的恒流条件下进行的。
所述聚苯胺掺杂PbO2表面活性层的电沉积温度50℃。
所述聚苯胺掺杂PbO2表面活性层的电沉积时间为30min。
本发明将适量导电态聚苯胺弥散于在Pb(NO3)2混合电积溶液中,通过复合电沉积的方式将聚苯胺与PbO2均匀地共沉积于Ti/PbO2上,通过控制聚苯胺用量、沉积电流密度、沉积温度和沉积时间等工艺条件,实现了表面致密、均匀、晶粒明显细化的Ti/PbO2/PANi-PbO2复合电极材料的制备。由于聚苯胺的良好导电性,掺杂后不像PTFE会降低PbO2电极的导电性;同时,掺杂聚苯胺后,PbO2晶粒发生显著变化,变得明显细小,有效增加了电极活性比表面积。此外,由于本发明直接采用一定量导电态的聚苯胺作为掺杂剂,通过复合电沉积的方式将聚苯胺掺杂进入PbO2电极,而非采用苯胺单体,在PbO2电氧化沉积的同时苯胺单体通过电聚合生成聚苯胺而实现掺杂,因此制备过程不涉及苯胺单体的聚合反应,避免了苯胺单体聚合反应过程存在的诸多不确定性,保证了聚苯胺掺杂PbO2电极材料性能的稳定性,即降低了电极材料制备过程的工艺复杂性,增加了其工业化应用的可行性。
本发明制备的Ti/PbO2/PANi-PbO2复合电极材料可应用于生物难降解有机废水的电化学氧化处理,其电解催化活性和稳定性均优于未进行聚苯胺掺杂的普通钛基PbO2形稳阳极,说明本发明所采用的制备方法能够实现导电聚苯胺对PbO2电极的掺杂改性。此外,本发明制备的复合电极材料的溶解稳定性、导电性亦优于PTFE掺杂PbO2电极。
附图说明
附图1为本发明中Ti/PbO2/PANi-PbO2复合电极的制备流程图。
附图2为本发明制备的Ti/PbO2/PANi-PbO2复合电极材料的X射线衍射(XRD)图谱。
附图3为本发明制备的Ti/PbO2/PANi-PbO2复合电极材料的电镜扫描(SEM)图像(放大500倍)。
附图4为本发明制备的Ti/PbO2/PANi-PbO2复合电极材料的电镜扫描(SEM)图像(放大2000倍)。
附图5为本发明制备的Ti/PbO2/PANi-PbO2复合电极材料和未进行掺杂的普通Ti/PbO2电极的阳极极化曲线。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本发明的电极制备流程如附图1所示,主要包括1)机械打磨:将规格为50mm×30mm×2mm的钛基体分别用粗细不同的180目、400目砂纸打磨,使电极表面呈银白色金属光泽,用水洗净。2)除油碱洗:用丙酮在30KHz超声波条件下清洗30min,除去钛基体上的油污。洗净后将钛板置于10(wt)%的NaOH溶液中,溶液加热至沸腾,60min后取出,用水洗净。3)草酸刻蚀:再将钛板置入10(wt)%的草酸溶液中,微沸情况下草酸蚀刻120min。4)阳极电氧化沉积法制备β-PbO2中间层:以经过预处理的钛板为阳极,面积相等的不锈钢板为阴极,极板间距为3cm,置于含0.4mol/L Pb(NO3)2和0.3mol/L HNO3的电积水溶液中,在50℃和10mA/cm2恒流作用下电氧化沉积20~30min后取出阳极,用蒸馏水冲洗干净,冷风吹干,得到Ti/PbO2;5)以Ti/PbO2为阳极,与阳极面积相等的不锈钢板为阴极,置于含0.4mol/L Pb(NO3)2、0.3mol/L HNO3和0.5g/L导电态聚苯胺的电积水溶液中,在电流密度10mA/cm2和温度50℃下电沉积30min,之后取出阳极,用蒸馏水冲洗干净,冷风吹干,得到Ti/PbO2/PANi-PbO2复合电极材料。
本发明制备的Ti/PbO2/PANi-PbO2复合电极材料的X射线衍射(XRD)图谱和电镜扫描(SEM)图像如附图2、图3和图4所示。从图2可看到,其最强衍射峰的出峰位置分别在25.36、31.98、36.18、49.05,与ICCD提供的粉末衍射数据集(PDF)提供的标准四方晶型β-PbO2对照卡(No.76-0564)吻合,说明本发明制备得到的活性层晶相组成为β-PbO2。同时,对比本发明制备电极与文献报道同类电极的XRD谱图可以发现,本发明制备的β-PbO2晶体衍射峰明显宽化。根据谢乐公式可知,晶体衍射峰越宽,晶粒尺寸越小。因此该结果表明本发明所述导电态聚苯胺的掺杂影响了β-PbO2晶体的生长方式,使其结晶度下降,晶粒细化。由图3和图4可以看出,本发明制备得到的活性层表面致密、均匀、晶粒明显细化。
实施例一
本实施例采用本发明所述方法制备的Ti/PbO2/PANi-PbO2复合电极材料为阳极,面积相等的不锈钢板为阴极,极板间距为3cm,对苯酚模拟废水进行电化学氧化降解处理。模拟废水的体积为150ml,苯酚初始浓度为100mg/L,在10mA/cm2电流作用下180min后苯酚去除率达95.24%,COD去除率为55%,比未掺杂聚苯胺的一般PbO2电极提高了10%。
实施例二
本实施例对采用本发明所述方法制备的电极材料进行电化学极化曲线测试。测试以铂片为对电极,饱和甘汞电极为参比电极,在电流密度为1A/cm2,电解液为1M的H2SO4溶液,温度为30℃下进行,并与未掺杂聚苯胺的一般PbO2电极进行对比,结果如图5所示。可见采用本发明所述方法制备的电极析氧电位正移,析氧电流降低,说明聚苯胺掺杂能够有效提高PbO2电极的析氧过电位,抑制析氧副反应的发生。
实施例三
本实施例采用本发明所述方法制备的电极材料为阳极,不锈钢板为阴极,板间距为4cm,置于有机玻璃电解槽中,槽中含有300ml浓度为1mol/L的H2SO4溶液,接通直流电源,在电流密度为10mA/cm2,30℃下极化12h后取样,通过石墨炉原子吸收光谱仪检测阳极极化过程中溶解进入溶液中的铅浓度,以此为依据评价电极的溶解稳定性,并与未掺杂聚苯胺的一般PbO2电极和掺杂6.0g L-1PTFE的PbO2电极进行对比。实验结果表明,采用本发明所述方法制备的电极在阳极极化作用下铅的平均溶出速度为1.417×10-3mg·h-1·cm-2,而掺杂PTFE的PbO2电极的铅平均溶出速度为1.583×10-3mg·h-1·cm-2,未进行任何掺杂的PbO2电极的铅平均溶出速度为1.750×10-3mg·h-1·cm-2。由此可见,导电态聚苯胺的掺杂可以明显抑制PbO2电极的阳极溶解,提高PbO2电极在酸性溶液中的溶解稳定性和安全性,且对铅溶出的抑制效果优于PTFE掺杂的PbO2电极。
实施例四
本实施例通过标准四探针法,分别对采用本发明所述方法制备的电极材料与掺杂6.0g L-1PTFE的PbO2电极进行了表面电阻率测试。实验结果表明,采用本发明所述方法制备电极的电阻率为0.11mΩ·cm,而掺杂6.0g L-1PTFE的PbO2电极的电阻率为0.14mΩ·cm,说明导电聚苯胺掺杂PbO2电极的导电性明显优于PTFE掺杂PbO2电极。
本发明的其它实施例中,Pb(NO3)2的浓度可取0.3或0.5mol/L,HNO3的浓度可取0.1或0.2mol/L,所得产品的性能与前述实施例较为一致。

Claims (3)

1.一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法,其特征在于,包括如下步骤:
(1)钛板基体的预处理;
(2)电沉积法制备PbO2中间层:以经过预处理的钛板为阳极,与阳极面积相等的不锈钢板为阴极,置于含一定浓度Pb(NO3)2和HNO3的电积溶液中,在一定电流密度和温度下电氧化沉积20~30min,之后取出阳极,用蒸馏水冲洗干净,冷风吹干,得到Ti/PbO2;其中,电积水溶液中,Pb(NO3)2浓度为0.3~0.5mol/L,HNO3浓度为0.1~0.3mol/L,所述电氧化沉积过程中温度为50℃,电流密度为10mA/cm2,保持恒流;
(3)复合电沉积法制备聚苯胺掺杂PbO2表面活性层:以Ti/PbO2为阳极,与阳极面积相等的不锈钢板为阴极,置于含一定浓度Pb(NO3)2、HNO3和导电态聚苯胺的电积溶液中,在一定电流密度和温度下电沉积一定时间,之后取出阳极,用蒸馏水冲洗干净,冷风吹干,得到Ti/PbO2/PANi-PbO2复合电极材料;其中,电积溶液中,Pb(NO3)2浓度为0.4mol/L,HNO3浓度为0.3mol/L,导电态聚苯胺添加量为0.25~1g/L;所述电沉积过程中温度为50℃,电流密度为10~20mA/cm2,保持恒流,电沉积时间为30min。
2.根据权利要求1所述钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法,其特征在于,所述步骤(1)中,通过机械打磨、除油碱洗和草酸刻蚀三个环节进行钛基材的预处理,处理后的钛板表面形成凹凸不平的麻面层,呈灰色,失去金属光泽。
3.根据权利要求1所述钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法,其特征在于,所述导电态聚苯胺掺杂剂购自上海麦克林生化科技有限公司,其导电率为2S/cm、有机质子酸掺杂率>30%,将其以粒径<30μm的细小颗粒状态通过超声强化弥散于电积溶液中。
CN201610595509.4A 2016-07-26 2016-07-26 一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法 Expired - Fee Related CN106044963B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610595509.4A CN106044963B (zh) 2016-07-26 2016-07-26 一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610595509.4A CN106044963B (zh) 2016-07-26 2016-07-26 一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN106044963A CN106044963A (zh) 2016-10-26
CN106044963B true CN106044963B (zh) 2019-01-29

Family

ID=57417576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610595509.4A Expired - Fee Related CN106044963B (zh) 2016-07-26 2016-07-26 一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN106044963B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106430455A (zh) * 2016-10-28 2017-02-22 西安建筑科技大学 一种钛基PbO2‑PANI形稳阳极的制备方法及用途
CN110010856B (zh) * 2019-04-18 2022-06-28 扬州大学 阳极氧化共沉积法制备导电性聚苯胺修饰的钛基二氧化铅电极
CN111732159B (zh) * 2020-04-30 2022-02-11 中山大学 一种新型光电催化反应器及其构建方法和应用及空气扩散阴极的应用
CN111606395A (zh) * 2020-05-20 2020-09-01 重庆科技学院 聚噻吩修饰金属铋掺杂的二氧化铅电极制备方法及其应用
CN113061955B (zh) * 2021-03-17 2023-02-21 宜兴禹博治环保科技有限公司 一种导电聚苯胺改性电极的制备方法
CN114645293B (zh) * 2022-02-16 2024-03-22 浙江工业大学 一种导电聚合物@二氧化铅/钛复合电极的制备及在电解合成丁二酸中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994202A2 (en) * 1998-10-16 2000-04-19 Wilson Greatbatch Ltd. Method for improving electrical conductivity of metals, metal alloys and metal oxides
CN101417831A (zh) * 2008-11-11 2009-04-29 北京师范大学 一种新型钛基二氧化铅电极及其制备方法
CN103253743A (zh) * 2013-04-28 2013-08-21 南京大学 一种Fe掺杂PTFE-PbO2/TiO2-NTs/Ti电极的制备方法和应用
CN103700813A (zh) * 2013-11-07 2014-04-02 西安建筑科技大学 一种制备Ti基PbO2形稳阳极的新方法
CN105621541A (zh) * 2015-12-31 2016-06-01 浙江工业大学 一种用于废水处理的过渡金属掺杂二氧化铅电极及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994202A2 (en) * 1998-10-16 2000-04-19 Wilson Greatbatch Ltd. Method for improving electrical conductivity of metals, metal alloys and metal oxides
CN101417831A (zh) * 2008-11-11 2009-04-29 北京师范大学 一种新型钛基二氧化铅电极及其制备方法
CN103253743A (zh) * 2013-04-28 2013-08-21 南京大学 一种Fe掺杂PTFE-PbO2/TiO2-NTs/Ti电极的制备方法和应用
CN103700813A (zh) * 2013-11-07 2014-04-02 西安建筑科技大学 一种制备Ti基PbO2形稳阳极的新方法
CN105621541A (zh) * 2015-12-31 2016-06-01 浙江工业大学 一种用于废水处理的过渡金属掺杂二氧化铅电极及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nanostructured PbO2-PANi composite materials for electrocatalytic oxidation of methanol in acidic sulfuric medium;Thi Thanh Thuy Mai;《Advances in Natural Sciences:Nanoscience and Nanotechnology》;20140326;第5卷(第5期);第1-5页 *

Also Published As

Publication number Publication date
CN106044963A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
CN106044963B (zh) 一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法
Xu et al. Fabrication of cerium doped Ti/nanoTiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation
Xu et al. Preparation and characterization of Ti/SnO2-Sb electrode with copper nanorods for AR 73 removal
Bi et al. Study of the mechanisms underlying the effects of composite intermediate layers on the performance of Ti/SnO2-Sb-La electrodes
CN103700813B (zh) 一种Ti基β-PbO2形稳阳极的制备方法
CN103014755B (zh) 一种长寿命钛基电极的制备方法
FI126197B (en) A method for extracting metal nanoparticles from solutions
CN106277216A (zh) 铟掺杂钛基二氧化铅电极及其制备方法和应用
You et al. Preparation of a three-dimensional porous PbO2-CNTs composite electrode and study of the degradation behavior of p-nitrophenol
CN102127776A (zh) 一种高析氢催化活性非晶镀层及其制备方法
Xu et al. A promising electrode material modified by Nb-doped TiO2 nanotubes for electrochemical degradation of AR 73
Zhen et al. Influence of nano-CeO2 on coating structure and properties of electrodeposited Al/α-PbO2/β-PbO2
CN104746097A (zh) 一种石墨烯掺杂金属氧化物阳极的制备方法
CN102703953B (zh) 一种循环伏安电沉积制备纳米铂/二氧化钛纳米管电极的方法
Liu et al. Preparation of a high-performance composite PbO2 electrode from a new bath for p-chlorophenol oxidation
CN103253743A (zh) 一种Fe掺杂PTFE-PbO2/TiO2-NTs/Ti电极的制备方法和应用
Zhang et al. The fabrication of Ti4O7 particle composite modified PbO2 coating electrode and its application in the electrochemical oxidation degradation of organic wastewater
CN108328703B (zh) 钛基二氧化钛纳米管沉积锡锑氟电极的制备及其对电镀铬废水中铬抑雾剂降解的应用
CN112723490A (zh) 一种碳纳米管改性的二氧化铅电极及其制备方法和应用
Arunachalam et al. Development of nano-spherical RuO2 active material on AISI 317 steel substrate via pulse electrodeposition for supercapacitors
CN107265573A (zh) 一种多孔电极材料制备及其用于电化学高效除藻
CN103143369A (zh) 一种石墨烯-铂/铜纳米粒子多级纳米结构材料的制备及其应用
Wu et al. A study on Ti anodic pretreatment for improving the stability of electrodeposited IrO2 electrode
Kawaguchi et al. Effects of oxide composition on structure, surface morphology, and oxygen evolution behaviors of IrO2-Ta2O5/Ti anodes prepared at a high temperature
Abedini et al. Anodized graphite as an advanced substrate for electrodeposition of PbO2

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190129

Termination date: 20210726