CN106011738B - 一种模具用表面渗镀复合涂层工艺 - Google Patents

一种模具用表面渗镀复合涂层工艺 Download PDF

Info

Publication number
CN106011738B
CN106011738B CN201610432091.5A CN201610432091A CN106011738B CN 106011738 B CN106011738 B CN 106011738B CN 201610432091 A CN201610432091 A CN 201610432091A CN 106011738 B CN106011738 B CN 106011738B
Authority
CN
China
Prior art keywords
target
flow
drying oven
vacuum drying
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610432091.5A
Other languages
English (en)
Other versions
CN106011738A (zh
Inventor
王信德
潘修河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Sood Coating Co Ltd
Original Assignee
Jiangsu Sood Coating Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Sood Coating Co Ltd filed Critical Jiangsu Sood Coating Co Ltd
Priority to CN201610432091.5A priority Critical patent/CN106011738B/zh
Publication of CN106011738A publication Critical patent/CN106011738A/zh
Application granted granted Critical
Publication of CN106011738B publication Critical patent/CN106011738B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Abstract

本发明涉及一种模具用表面渗镀复合涂层工艺,该工艺将经过离子渗氮工艺处理过的模具进行抛光、清洗处理后进行装夹,放入多弧离子镀膜设备内进行涂层工艺处理,采用等离子氮化和CrN+Al涂层相结合同时将两种处理工艺的效果优化至最佳,具有工艺温度低,加工效率高,模具变形小,能源消耗低的特点;所得模具复合涂层具有使用性能高,较高的硬度、韧性和耐磨性,优异的抗高温氧化性的特点,可有效降低模具表面摩擦系数,延长模具使用寿命,降低生产成本,提高产品竞争力,适用于对耐磨性要求高、可以承受较大冲击载荷的冷作模具钢,尤其适用于汽车领域的冲孔模、冲压模、冷镦模和冷挤压模等模具的处理,适宜进一步推广应用。

Description

一种模具用表面渗镀复合涂层工艺
技术领域
本发明涉及金属表面改性加工技术领域,具体涉及一种模具用表面渗镀复合涂层工艺。
背景技术
冷作模具钢由于其优良的硬度、韧性及耐磨性,常应用于冷挤压、厚板冷冲以及冷镦成型等方面,在汽车制造业具有广泛应用。冷作模具钢在工作时对加工材料的变形抗力比较大,模具工作部分承受较大的压力、弯曲力、冲击力及摩擦力,因此,冷作模具钢的正常报废原因一般是磨损,也有因断裂、崩力和变形超差的原因而提前失效。
制造工业的发展对模具的使用寿命提出了更加苛刻的要求,为了满足这种需求,技术人员通常采取渗氮、渗碳、碳氮共渗、表面涂层等技术来优化模具性能。目前国内很多学者已经研究了模具用的表面涂层,比如CN201320825220.9研究了一种渗镀复合表面涂层的铝压铸模具,提高了压铸模具的强度和使用寿命;200910264038.9中孔德军等人采用TD技术在Cr12MoV冷作模具钢表面制备了VC涂层,有效的提高了冷作模具钢的抗疲劳寿命;CN201310141025.9中蒋东华等人以混合硼砂和BCl2+NaCl+KCl的盐浴为载体,在盐浴中添加V2O5、Al和金属钇,并于1040-1060℃共渗6h,这种方法可制备出硬度2900-3300HV,厚度12-15μm的钒碳硼耐磨层。上述技术方案存在工艺条件苛刻,生产成本较高的问题。针对上述问题,开发一种工艺条件简单,生产成本较低的模具用表面渗镀复合涂层工艺是本领域技术人员要解决的技术问题。
发明内容
本发明要解决的技术问题是:针对现有技术中存在的问题,提供一种工艺条件简单,生产成本较低,使用寿命较长的模具用表面渗镀复合涂层工艺。
本发明解决其技术问题所采用的技术方案是:一种模具用表面渗镀复合涂层工艺,该工艺包括如下过程:将经过离子渗氮工艺处理过的模具进行抛光、清洗处理后进行装夹,放入多弧离子镀膜设备内进行涂层工艺处理,所述涂层工艺处理包括如下过程:以矩形Cr靶作为底层和过渡层的Cr来源,通过矩形靶电弧电源的电流控制矩形Cr靶的溅射率;以矩形TiAl靶作为制备TiAl涂层的Ti、Al元素来源,Ti、Al元素的原子成分比例为Ti:Al=(25-35):(65-75);采用高纯氩气作为溅射气体,用来作沉积前的溅射清洗;采用高纯氮气作为反应气体,使其离化并与Cr、Al、Ti元素结合,在模具渗氮层表面沉积形成复合的CrN+Al涂层。
进一步,上述技术方案中所述Ti、Al元素的原子成分比例为30:70。
进一步,上述技术方案中所述离子渗氮工艺处理包括如下过程:将预处理后清洗干净的模具放入离子渗氮炉中,使模具依次经历启动、抽真空、加热工序、渗氮处理、冷却和结束步骤;抽至真空条件10Pa以下启动加热,加热工序是采用脉冲电压离子放电产生辉光,加热至400-520℃,渗氮处理中通入N2和H2并调整比例为2:7–2:3,调整渗氮炉内气压为150Pa以下,开始进行渗氮处理,渗氮保温时间为12-30h,渗氮完成后自动降温至150℃以下出炉;所述加热工序包括三个阶段,第一阶段为:室温加热至150℃,炉内压力70Pa,电压400V,电流60A,脉冲时间30μs,脉冲中断时间100μs,H2流量为0.3L/min;第二阶段为:加热至300℃,炉内压力100Pa,电压430V,电流60A,脉冲时间40μs,脉冲中断时间100μs,N2流量为0.05L/min,H2流量为0.45L/min;第三阶段为:加热至430℃,炉内压力150Pa,电压450V,电流60A,脉冲时间50μs,脉冲中断时间70μs,N2流量为0.10L/min,H2流量为0.70L/min;所述渗氮处理中炉内温度保持在430℃,炉内压力150Pa,电压450-500V,电流60A,脉冲时间50μs,脉冲中断时间70μs,N2流量为0.20-0.40L/min,H2流量为0.70-0.90L/min。
进一步,上述技术方案中所述多弧离子镀膜设备的型号为PVT L4.301,所用靶材分为两组,其中Cathode1和Cathode3为一组,Cathode2和Cathode4为一组,Cathode1和Cathode3为TiAl靶,Cathode2和Cathode4为Cr靶,两组矩形靶材被均匀安装在多弧离子镀设备的炉体内壁上;所述的涂层工艺包括以下步骤:
(1)将工件载入离子镀膜设备中,开启抽真空泵使真空室内压力小于10-3mbar,通过炉内加热管进行加热,加热温度为450-500℃,加热时间为1-2h;
(2)向真空炉中通入氩气,偏压电压300V,靶材产生等离子,通过离子刻蚀工序来清洗靶材,清洗时间6min,工件清洗时偏压电压500-800V,清洗时间8-12min,氩气流量为50-100sccm,当靶材通电后,靶材中的涂层材料产生正离子,正离子以高能量打到工件基体上,实现对工件基体的清洗;
(3)将偏压电压逐渐降低至200-60V,然后反应气体N2、C2H2进入真空炉腔,靶材表面离化的涂层离子和反应气体反应形成CrN+Al涂层沉积在模具表面,反应气体N2的流量范围为200-400sccm,反应气体C2H2的气体流量范围为15-30sccm,真空炉内的真空度范围为0.01-0.016Pa;
(4)将模具在真空炉内自然冷却,温度降至180℃方可出炉,降温时间约为2.5h。
进一步,所述步骤(3)具体包括以下步骤:
(a)将2号靶材门和4号靶材门全部打开,偏压电压200V,向真空炉内通入N2和C2H2,N2流量200sccm,C2H2流量20sccm,持续60s,真空炉内真空度为0.01Pa;
(b)将2号靶材门和4号靶材门全部打开,偏压电压150V,向真空炉内通入N2,N2流量300sccm,持续900s,真空炉内真空度为0.012Pa;
(c)将2号靶材门和4号靶材门全部打开,1号靶材和3号靶材电压打开,靶门未开,偏压电压80V,向真空炉内通入N2,N2流量350sccm,持续60s,真空炉内真空度为0.012Pa;
(d)将2号靶材门和4号靶材门全部打开,3号靶材门打开一半,偏压电压80V,向真空炉内通入N2,N2流量350sccm,持续120s,真空炉内真空度为0.014Pa;
(e)将2号靶材门、3号靶材门和4号靶材门全部打开,偏压电压80V,向真空炉内通入N2,N2流量400sccm,持续4400s,真空炉内真空度为0.016Pa;
(f)将2号靶材门和4号靶材门全部打开,偏压电压80V,向真空炉内通入N2,N2流量350sccm,持续1600s,真空炉内真空度为0.014Pa。
本发明的离子渗氮工艺有效解决了氮化层硬度、耐磨性及摩擦系数之间的矛盾,离子氮化使得模具具有良好的硬度和耐磨性,硬度可达1800-2000HV,但摩擦系数和抗高温性能较差,为了改善模具的耐磨性和抗高温性能,使模具具有更高的硬度和抗高温性能的同时又可以大大降低模具表面的摩擦系数,本发明在离子氮化后又进行PVD涂层CrN+Al复合处理,使模具表面的硬度提高至2500-3000HV,摩擦系数也降低很多,为0.3-0.4,抗氧化温度得到很大改善,最高应用温度可达600℃。
有益效果:与现有技术相比,本发明的技术方案采用等离子氮化和CrN+Al涂层相结合同时将两种处理工艺的效果优化至最佳,CrN+Al涂层处理以Cr靶沉积打底层,接着依次在该CrN打底层表面沉积过渡层和功能层,1号靶材和3号靶材为高铝靶,2号靶材和4号靶材为铬靶,该离子渗氮和PVD涂层相结合的复合工艺,具有工艺温度低,时间短,加工效率高,模具变形小,能源消耗低的特点;所得模具复合涂层具有使用性能高,较高的硬度、韧性和耐磨性,优异的抗高温氧化性的特点,可有效降低模具表面摩擦系数,延长模具使用寿命(5-10倍),降低生产成本,提高产品竞争力,适用于对耐磨性要求高、可以承受较大冲击载荷的冷作模具钢,尤其适用于汽车领域的冲孔模、冲压模、冷镦模和冷挤压模等模具的处理,适宜进一步推广应用。
附图说明
为了更清楚地说明本发明的技术方案,下面结合附图做简单地介绍。
图1是本发明的技术方案的工艺流程示意图;
图2是本发明的复合涂层结构示意图。
图3是实施例1中样品得到的渗镀复合涂层的显微组织图。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但本发明不局限于下述实施例。
实施例一
一种模具用表面渗镀复合涂层工艺,其工艺流程如附图1所示,其中,所述的离子渗氮包括以下步骤:
(1)装载模具工件:装载时注意不同工件之间的距离要充足,工件上尺寸小于6mm的螺孔或者缝隙要使用螺丝或者夹板堵住;
(2)抽真空:控制面板上操作选定氮化程序,启动Vessel键,开始抽真空,真空到达临界值时开始加热;
(3)加热阶段:抽真空至10Pa以下启动加热,通过脉冲电压离子放电进行加热,炉中均匀设有三个热电偶进行测温并调整,保持炉内温度均匀,加热至430℃;具体地,加热工序包括三个阶段,第一阶段为:室温加热至150℃,炉内压力70Pa,电压400V,电流60A,脉冲时间30μs,脉冲中断时间100μs,H2流量为0.3L/min;第二阶段为:加热至300℃,炉内压力100Pa,电压430V,电流60A,脉冲时间40μs,脉冲中断时间100μs,N2流量为0.05L/min,H2流量为0.45L/min;第三阶段为:加热至430℃,炉内压力150Pa,电压450V,电流60A,脉冲时间50μs,脉冲中断时间70μs,N2流量为0.10L/min,H2流量为0.70L/min。
(a)氮化保温阶段:当温度到达设定值后,开始进行氮化,N2和H2流量比例为2:7,调整渗氮炉内气压为150Pa,保温时间为12h;
(b)冷却阶段:氮化完成后炉内自动冷却,至150℃以下方可出炉。
将上述工件在离子氮化出炉后进行抛光处理,接着进行清洗预处理,再进行CrN+Al涂层处理,具体包括以下步骤:
Ⅰ、将氮化完成后的工件抛光、清洗后装载入真空炉中;将分子泵开高速,真空在真空炉内形成,炉内真空度到达10-3mbar方可开机,启动涂层程序;通过炉内设置的四个加热管对工件进行加热,加热至450℃,加热时间2h;
Ⅱ、向真空炉内通入氩气,氩气流量为100sccm,偏压电压为300V,氩气充满炉腔,靶材产生等离子,通过离子刻蚀工序来清洗靶材,清洗时间360s;真空炉中通入氩气,偏压电压500-800V,清洗时间480-720s,通入氩气的流量为50-100sccm,当靶材通电后,靶材中的涂层材料产生正离子,正离子以较高的能量打到工件基体上,实现对工件基体的清洗;
Ⅲ、清洗工序完成后,偏压电压逐渐减小至100V-80V-60V,反应气体氮气和乙炔开始进入到真空炉腔,从靶材表面蒸发出来的涂层材料和反应气体发生反应形成最终产品,所述产品在偏压作用下沉积在工件表面;所述的反应气体氮气流量范围为200-400sccm,乙炔流量范围为15-30sccm,所述真空炉中的真空度范围为0.01-0.016Pa;
Ⅳ、涂层工序完成后,模具工件在真空下冷却,温度降至180℃下才可以充入氮气开门出炉,冷却时间约为2h。
上述步骤Ⅱ中的清洗靶材过程包括以下步骤:第一次刻蚀清洗,真空炉内通入氩气,偏压电压600V,清洗时间480s,真空炉内氩气流量50-100sccm;第二次刻蚀清洗,真空炉内通入氩气,偏压电压800V,清洗时间720s,真空炉内氩气流量50-100sccm;
所述的涂层处理工艺中的靶材包括两组靶材,Cathode1和Cathode3是一组,为TiAl(高铝)靶材,Cathode2和Cathode4是一组,为Cr靶,涂层处理工艺中的步骤Ⅲ包括以下步骤:
①2号靶材门和4号靶材门全部打开,偏压电压200V,向真空炉内通入气体氮气和乙炔,氮气流量200sccm,乙炔流量20sccm,本步骤持续时间为60s,真空炉内真空度为0.01Pa;
②2号靶材门和4号靶材门全部打开,偏压电压150V,向真空炉内通入气体氮气,氮气流量300sccm,本步骤持续时间为900s,真空炉内真空度为0.012Pa;
③2号靶材门和4号靶材门全部打开,1号靶材和3号靶材电压打开,靶门未开,偏压电压80V,向真空炉内通入气体氮气,氮气流量350sccm,本步骤持续时间为60s,真空炉内真空度为0.012Pa;
④2号靶材门和4号靶材门全部打开,3号靶材门打开一半,偏压电压80V,向真空炉内通入气体氮气,氮气流量350sccm,本步骤持续时间为120s,真空炉内真空度为0.014Pa;
⑤2号靶材门、3号靶材门和4号靶材门全部打开,偏压电压80V,向真空炉内通入气体氮气,氮气流量400sccm,本步骤持续时间为4400s,真空炉内真空度为0.016Pa;
⑥2号靶材门和4号靶材门全部打开,偏压电压80V,向真空炉内通入气体氮气,氮气流量350sccm,本步骤持续时间为1600s,真空炉内真空度为0.014Pa。
上述实施例采用等离子氮化和CrN+Al涂层相结合同时将两种处理工艺的效果优化至最佳,如附图2所示,CrN+Al涂层处理以Cr靶沉积打底层,接着依次在该CrN打底层表面沉积过渡层和功能层,1号靶材和3号靶材为高铝靶,2号靶材和4号靶材为铬靶,该离子渗氮和PVD涂层相结合的复合工艺,具有工艺温度低,时间短,加工效率高,模具变形小,能源消耗低的特点;如附图3所示,38.82μm为等离子氮化形成的渗氮层,5.88μm为CrN+Al涂层形成的打底层、过渡层和功能层共同厚度,由图可知,CrN+Al涂层边缘非常清晰平整,即:所得模具复合涂层具有使用性能高,较高的硬度、韧性和耐磨性,优异的抗高温氧化性的特点,可有效降低模具表面摩擦系数,延长模具使用寿命(5-10倍),降低生产成本,提高产品竞争力,适宜进一步推广应用。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (2)

1.一种模具用表面渗镀复合涂层工艺,其特征在于,该工艺包括如下过程:将经过离子渗氮工艺处理过的模具进行抛光、清洗处理后进行装夹,放入多弧离子镀膜设备内进行涂层工艺处理,所述涂层工艺处理包括如下过程:
以矩形Cr靶作为底层和过渡层的Cr来源,通过矩形靶电弧电源的电流控制矩形Cr靶的溅射率;以矩形TiAl靶作为制备TiAl涂层的Ti、Al元素来源,Ti、Al元素的原子成分比例为Ti:Al=(25-35):(65-75);采用高纯氩气作为溅射气体,用来作沉积前的溅射清洗;采用高纯氮气作为反应气体,使其离化并与Cr、Al、Ti元素结合,在模具渗氮层表面沉积形成复合的AlTiCrN涂层,形成具有抗氧化性能、耐磨性、抗疲劳性的涂层,该涂层命名为CrN+Al涂层;
所述离子渗氮工艺处理包括如下过程:
将预处理后清洗干净的模具放入离子渗氮炉中,使模具依次经历启动、抽真空、加热工序、渗氮处理、冷却和结束步骤;抽至真空条件为10Pa后启动加热,加热工序是采用脉冲电压离子放电产生辉光,加热至400-520℃,渗氮处理中通入N2和H2并调整比例在2:7–2:3之间,调整渗氮炉内气压为150Pa,开始进行渗氮处理,渗氮保温时间为12-30h,渗氮完成后自动降温至150℃以下出炉;
所述加热工序包括三个阶段,第一阶段为:室温加热至150℃,炉内压力70Pa,电压400V,电流60A,脉冲时间30μs,脉冲中断时间100μs,H2流量为0.3L/min;第二阶段为:加热至300℃,炉内压力100Pa,电压430V,电流60A,脉冲时间40μs,脉冲中断时间100μs,N2流量为0.05L/min,H2流量为0.45L/min;第三阶段为:加热至430℃,炉内压力150Pa,电压450V,电流60A,脉冲时间50μs,脉冲中断时间70μs,N2流量为0.10L/min,H2流量为0.70L/min;
所述渗氮处理中炉内温度保持在430℃,炉内压力150Pa,电压450-500V,电流60A,脉冲时间50μs,脉冲中断时间70μs,N2流量为0.20-0.40L/min,H2流量为0.70-0.90L/min;
所述的涂层工艺包括以下步骤:
(1)将工件载入离子镀膜设备中,开启抽真空泵使真空室内压力小于10-3mbar,通过炉内加热管进行加热,加热温度为450-500℃,加热时间为1-2h;
(2)向真空炉中通入氩气,偏压电压300V,靶材产生等离子,通过离子刻蚀工序来清洗靶材,清洗时间6min,工件清洗时偏压电压500-800V,清洗时间8-12min,氩气流量为50-100sccm;
(3)将偏压电压逐渐降低至200-60V,然后反应气体N2、C2H2进入真空炉腔,靶材表面离化的涂层离子和反应气体反应形成CrN+Al涂层沉积在模具表面,反应气体N2的流量范围为200-400sccm,反应气体C2H2的气体流量范围为15-30sccm,真空炉内的真空度范围为0.012~0.016Pa;
(4)将模具在真空炉内自然冷却,温度降至180℃以下方可出炉。
2.根据权利要求1所述的一种模具用表面渗镀复合涂层工艺,其特征在于:所述步骤(3)具体包括以下步骤:
(a)将2号靶材门和4号靶材门全部打开,偏压电压200V,向真空炉内通入N2和C2H2,N2流量200sccm,C2H2流量20sccm,持续60s,真空炉内真空度为0.01Pa;
(b)将2号靶材门和4号靶材门全部打开,偏压电压150V,向真空炉内通入N2,N2流量300sccm,持续900s,真空炉内真空度为0.012Pa;
(c)将2号靶材门和4号靶材门全部打开,1号靶材和3号靶材电压打开,靶门未开,偏压电压80V,向真空炉内通入N2,N2流量350sccm,持续60s,真空炉内真空度为0.012Pa;
(d)将2号靶材门和4号靶材门全部打开,3号靶材门打开一半,偏压电压80V,向真空炉内通入N2,N2流量350sccm,持续120s,真空炉内真空度为0.014Pa;
(e)将2号靶材门、3号靶材门和4号靶材门全部打开,偏压电压80V,向真空炉内通入N2,N2流量400sccm,持续4400s,真空炉内真空度为0.016Pa;
(f)将2号靶材门和4号靶材门全部打开,偏压电压80V,向真空炉内通入N2,N2流量350sccm,持续1600s,真空炉内真空度为0.014Pa。
CN201610432091.5A 2016-06-16 2016-06-16 一种模具用表面渗镀复合涂层工艺 Active CN106011738B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610432091.5A CN106011738B (zh) 2016-06-16 2016-06-16 一种模具用表面渗镀复合涂层工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610432091.5A CN106011738B (zh) 2016-06-16 2016-06-16 一种模具用表面渗镀复合涂层工艺

Publications (2)

Publication Number Publication Date
CN106011738A CN106011738A (zh) 2016-10-12
CN106011738B true CN106011738B (zh) 2019-04-09

Family

ID=57088439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610432091.5A Active CN106011738B (zh) 2016-06-16 2016-06-16 一种模具用表面渗镀复合涂层工艺

Country Status (1)

Country Link
CN (1) CN106011738B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106011738B (zh) * 2016-06-16 2019-04-09 江苏苏德涂层有限公司 一种模具用表面渗镀复合涂层工艺
CN108070817B (zh) * 2016-11-17 2020-02-07 广州今泰科技股份有限公司 一种金属模具钢表面复合双重处理方法
CN106756817A (zh) * 2016-11-29 2017-05-31 沈阳黎明航空发动机(集团)有限责任公司 利用PVD在模具表面制备Cr‑ZrSiN‑TiAlSiCN薄膜的方法
CN107557725A (zh) * 2017-09-19 2018-01-09 东莞市沃迪士精密机械有限公司 一种多轴旋转工作台轴承钢球表面强化工艺
CN110656301B (zh) * 2018-06-28 2023-01-13 台州普拉帝涂层有限公司 一种高速钢刀具可控渗氮-pvd复合涂层制备方法
CN108796443A (zh) * 2018-06-29 2018-11-13 常州大学 一种热作模具钢低温等离子氮化与阴极离子镀复合处理方法
CN109371217A (zh) * 2018-12-10 2019-02-22 江铃汽车股份有限公司 一种冷冲压模具的表面处理方法
CN109735797B (zh) * 2019-01-03 2019-10-29 天王电子(深圳)有限公司 奥氏体不锈钢及其硬化方法
CN109852931A (zh) * 2019-01-07 2019-06-07 纳狮新材料(浙江)有限公司 真空镀膜机及复合涂层的镀膜方法
CN110863182A (zh) * 2019-11-12 2020-03-06 东风商用车有限公司 一种齿轮冷挤压模具表面涂层强化方法
CN114059008B (zh) * 2021-11-10 2023-10-03 江苏苏德涂层有限公司 动、静铁芯等离子碳氮共渗处理方法
CN115404458A (zh) * 2022-08-26 2022-11-29 晓睿真空设备(嘉兴)有限公司 一种用于提高驱动轴耐久性的不锈钢表面处理工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103522627A (zh) * 2013-10-12 2014-01-22 中国科学院宁波材料技术与工程研究所 一种阀门密封件表面的复合涂层及其制备方法
CN103741100A (zh) * 2014-01-16 2014-04-23 常州普威特涂层有限公司 一种含高硅pvd硬质涂层工艺
CN104195552A (zh) * 2014-07-16 2014-12-10 电子科技大学 一种在硅基底上制备高电阻变化率二氧化钒薄膜的方法
CN106011738A (zh) * 2016-06-16 2016-10-12 常州普威特涂层有限公司 一种模具用表面渗镀复合涂层工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103522627A (zh) * 2013-10-12 2014-01-22 中国科学院宁波材料技术与工程研究所 一种阀门密封件表面的复合涂层及其制备方法
CN103741100A (zh) * 2014-01-16 2014-04-23 常州普威特涂层有限公司 一种含高硅pvd硬质涂层工艺
CN104195552A (zh) * 2014-07-16 2014-12-10 电子科技大学 一种在硅基底上制备高电阻变化率二氧化钒薄膜的方法
CN106011738A (zh) * 2016-06-16 2016-10-12 常州普威特涂层有限公司 一种模具用表面渗镀复合涂层工艺

Also Published As

Publication number Publication date
CN106011738A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106011738B (zh) 一种模具用表面渗镀复合涂层工艺
CN104911552B (zh) 一种热挤压模具渗镀复合表面强化方法
CN103805996B (zh) 一种金属材料表面先镀膜再渗氮的复合处理方法
US9133543B2 (en) Coating material for aluminum die casting mold and method for manufacturing the same
US20140044944A1 (en) Coating material for aluminum die casting mold and method of manufacturing the coating material
CN105132876B (zh) 一种钢制齿轮的表面复合处理方法
CN110643955B (zh) 一种高熵合金涂层及其制备方法
CN103370438A (zh) 具有Cr-Si-N涂层的热金属板材成型或冲压工具
CN104278234B (zh) 一种室温到800℃宽温域自润滑涂层的制备技术
CN113073293B (zh) 一种改善e690钢摩擦学性能的结构及方法
CN112981320A (zh) 一种钛合金表面复合涂层及其制备方法
CN113025966A (zh) 一种提高热锻模具寿命的Zr基高熵合金涂层及其制备方法
CN111500998A (zh) 一种AlTiN/TiAlSiN梯度纳米复合结构涂层及其一体化制备方法与应用
CN114632909B (zh) 一种压铸模具表面离子注入制备碳氧氮涂层的方法
CN212335269U (zh) 一种沉积在立方氮化硼刀具表面的复合涂层及真空镀膜装置
CN108070817B (zh) 一种金属模具钢表面复合双重处理方法
Rie et al. Plasma surface engineering of metals
JP5720996B2 (ja) 皮膜密着性に優れた被覆部材およびその製造方法
JP2000038653A (ja) 表面被膜を有する金型又は鋳型
CN115627445A (zh) 一种铝压铸模具抗黏附高熵硼化物复合涂层及其制备方法
CN103741100B (zh) 一种含高硅pvd硬质涂层工艺
CN112095080B (zh) 压铸铝切边模具用超硬纳米复合涂层及其制备方法
CN113322433B (zh) 一种AlTi靶放电AlTiN/AlN复合相涂层的多弧离子镀制备方法
CN112941461A (zh) 一种复合超硬强韧涂层材料以及制备方法
CN111733379B (zh) 金属带材的表面镀膜方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Xixiashu town Weishan Lake road 213135 in Jiangsu Province, Changzhou City New District No. 38

Applicant after: Jiangsu Sood coating Co., Ltd.

Address before: Xixiashu town Weishan Lake road 213135 in Jiangsu Province, Changzhou City New District No. 38

Applicant before: PVT COATING CHANGZHOU CO., LTD.

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant