CN105963707A - 一种高分子ca4键合药及其制备方法 - Google Patents

一种高分子ca4键合药及其制备方法 Download PDF

Info

Publication number
CN105963707A
CN105963707A CN201610379051.9A CN201610379051A CN105963707A CN 105963707 A CN105963707 A CN 105963707A CN 201610379051 A CN201610379051 A CN 201610379051A CN 105963707 A CN105963707 A CN 105963707A
Authority
CN
China
Prior art keywords
alkyl
medicine
bonding medicine
tumor
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610379051.9A
Other languages
English (en)
Inventor
汤朝晖
宋万通
于海洋
牛月伟
张大为
马胜
张瑜
陈学思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN201610379051.9A priority Critical patent/CN105963707A/zh
Publication of CN105963707A publication Critical patent/CN105963707A/zh
Priority to US16/097,079 priority patent/US20190142954A1/en
Priority to EP16903857.7A priority patent/EP3466415A4/en
Priority to PCT/CN2016/109812 priority patent/WO2017206477A1/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/595Polyamides, e.g. nylon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • A61K31/085Ethers or acetals having an ether linkage to aromatic ring nuclear carbon
    • A61K31/09Ethers or acetals having an ether linkage to aromatic ring nuclear carbon having two or more such linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/3332Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing carboxamide group
    • C08G65/33324Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing carboxamide group acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Pain & Pain Management (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种高分子CA4键合药及其制备方法,本发明提供的高分子CA4键合药具有式(I)所示结构,本发明提供的键合药通过将CA4接枝到特定的聚合物载体上,使得得到的键合药可以富集在肿瘤血管处并缓慢释放药物,从而在肿瘤部位长期发挥破坏肿瘤血管的功效,实现出色的肿瘤抑制效果。有效的解决了CA4P作用时间短而疗效欠佳的问题,在肿瘤治疗领域具有广阔的发展前景。而且,本发明提供的制备方法简单,原料来源广泛,可以实现批量生产,可以实现产业化。

Description

一种高分子CA4键合药及其制备方法
技术领域
本发明涉及医药合成领域,尤其涉及一种高分子CA4键合药及其制备方法。
背景技术
康普瑞汀(考布他汀,(Z)-3,4,5,4',-四甲氧基-3'-羟基二苯乙烯,Combretastatin A4,CA4)是最近开发的一种新型的抗肿瘤活性化合物,其结构式如下:
不同于传统的细胞毒素类抗癌药物,CA4并不直接杀死肿瘤细胞。CA4采用的是一种新的抗癌机制:通过与肿瘤血管内皮细胞的微管蛋白相结合,破坏肿瘤内部的血管,切断对肿瘤的血液和养分供应,引发肿瘤内部严重的坏死。由于肿瘤血管和正常组织血管的结构性差异,CA4选择性破坏肿瘤血管,而对正常组织的血液供给基本没有影响。因此,这类药物被抗癌领域寄予厚望。
由于CA4的水溶性差,难以通过静脉直接给药,1995年,Pettit等设计合成了CA4的磷酸酯化二钠盐前体药物康普瑞汀磷酸二钠(CA4P),其结构如下:
CA4P极大地改善了CA4水溶性和药代动力学性质,利用磷酸酯酶在增殖的血管内皮细胞中的浓度高于正常细胞的特点,使CA4P在肿瘤血管中被选择性激活,靶向释放出CA4并发挥抗血管、抗肿瘤作用。在一系列的小鼠肿瘤模型中,CA4P全身给药能快速和选择性地阻断肿瘤血管,与传统化疗、放疗和热疗等联合运用时往往能取得更好的疗效。目前,CA4P的专利所有人美国OXiGENE公司已完成CA4P的二期临床试验,在抗甲状腺癌上已经进入三期临床。但是,CA4P在临床使用中仍然存在快速的血液清除速率、作用时间短、停药后反复等。研究发现,CA4的微管抑制作用是可逆的,其引起的血管内皮细胞改变在药物移除后能够迅速恢复,并且小分子CA4P及CA4在组织内的停留时间较短。肿瘤不同于正常组织,由于其过度的生长和促血管生长因子的大量表达,使得肿瘤表面血管生成速度很快,因此长期有效的肿瘤血管抑制是必需的,否则肿瘤仍然可以快速生长。而CA4P快速的体内清除和不充分的肿瘤部位驻留都严重影响了其发挥长期的肿瘤血管抑制的效果;因此得到能够在肿瘤部位作用时间长的CA4类血管阻断剂抗肿瘤药物是目前需要解决的问题。
发明内容
有鉴于此,本发明所要解决的技术问题在于提供一种高分子CA4键合药及其制备方法,本发明提供的高分子CA4键合药可以长时间的在肿瘤部位驻留和蓄积。
本发明提供了一种高分子CA4键合药,具有式(I)所示结构,
其中,
R1选自C2-C10的直链烷基、C3-C10的支链烷基或C6~C20的芳基;
R2选自氢原子或者阳离子;
R3选自未取代的C1-C20的烷基或取代的C1-C20的烷基;
R4选自氢原子或者C1-C6的烷基酰基;
L1、L2、L3独立的选自-CH2-或-CH2CH2-;
x,y,z为聚合度,10≤x+y+z≤5000,y>0,z>0;
n为聚合度,10≤n≤500。
优选的,所述R1为C3-C8的直链烷基、C5-C8的支链烷基或C8~C15的芳基。
优选的,所述R2选自氢原子、金属阳离子或有机阳离子。
优选的,所述R2选自氢原子、钠离子、钾离子、铵离子或者带正电荷的氨基酸离子。
优选的,所述R3选自未取代的C2-C20的直连烷基、未取代的C3-C20的支连烷基、取代的C2-C20的直链烷基或取代的C3-C20的支链烷基。
优选的,所述取代的C2-C20的直链烷基中的取代基为羟基、醛基、氨基、巯基和糖残基中的一种或几种;
所述取代的C3-C20的支链烷基中的取代基为羟基、醛基、氨基、巯基和糖残基中的一种或几种。
优选的,所述R4选自氢原子、乙酰基或丙酰基。
优选的,所述x,y,z的取值范围为30≤x+y+z≤300。
本发明还提供了一种高分子CA4键合药的制备方法,包括:
将具有式(II)结构的共聚物与CA4在缩合剂的作用下反应得到式(I)结构的高分子CA4键合药,
其中,
R1选自C2-C10的直链烷基、C3-C10的支链烷基或C6~C20的芳基;
R2选自氢原子或者阳离子;
R3选自未取代的C1-C20的烷基或取代的C1-C20的烷基;
R4选自氢原子或者C1-C6的烷基酰基;
L1、L2、L3独立的选自-CH2-或-CH2CH2-;
x,y,z为聚合度,10≤x+y+z≤5000,y>0,z>0;
n为聚合度,10≤n≤500。
优选的,所述缩合剂为2,4,6三氯苯甲酰氯,N,N-二异丙基碳二亚胺或二环己基碳二亚胺。
与现有技术相比,本发明提供的高分子CA4键合药具有式(I)所示结构,本发明提供的键合药通过将CA4接枝到特定的聚合物载体上,使得得到的键合药可以富集在肿瘤血管处并缓慢释放药物,从而在肿瘤部位长期发挥破坏肿瘤血管的功效,实现出色的肿瘤抑制效果。有效地解决了CA4P作用时间短而疗效欠佳的问题,在肿瘤治疗领域具有广阔的发展前景。而且,本发明提供的制备方法简单,原料来源广泛,可以实现批量生产,可以实现产业化。
附图说明
图1为实施例3制备得到的接枝聚乙二醇的聚L-谷氨酸的1HNMR;
图2为实例10制备的聚谷氨酸接枝聚乙二醇-CA4高分子键合药的1HNMR;
图3为小分子CA4和实施例10制备的高分子CA4键合药的HPLC图;
图4为实施例10制备的高分子CA4键合药以浓度0.2mg/mL在水中的动态光散射结果;
图5为实施例10制备的键合药在模拟体液中的释放结果;
图6为实施例23进行的高分子CA4键合药和CA4P给药后肿瘤组织中的CA4药物浓度;
图7为实施例24测定的CA4P和高分子CA4键合药单次给药后的肿瘤病理分析;
图8为实施例25测定的高分子CA4键合药和CA4P对肿瘤的治疗效果。
具体实施方式
本发明提供了一种高分子CA4键合药,具有式(I)所示结构,
其中,
R1选自C2-C10的直链烷基、C3-C10的支链烷基或C6~C20的芳基;
R2选自氢原子或者阳离子;
R3选自未取代的C1-C20的烷基或取代的C1-C20的烷基;
R4选自氢原子或者C1-C6的烷基酰基;
L1、L2、L3独立的选自-CH2-或-CH2CH2-;
x,y,z为聚合度,10≤x+y+z≤5000,y>0,z>0;
n为聚合度,10≤n≤500。
按照本发明,所述R1优选为C3-C8的直链烷基、C5-C8的支链烷基或C8~C15的芳基,更优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、苯基、萘基、联苯基或蒽。
所述R2优选为氢原子、金属阳离子或有机阳离子,更优选为氢原子、钠离子、钾离子、铵离子或者带正电荷的氨基酸离子。
所述R3优选为未取代的C2-C20的直连烷基、未取代的C3-C20的支连烷基、取代的C2-C20的直链烷基或取代的C3-C20的支链烷基,更优选为未取代的C4-C10的直连烷基、未取代的C5-C10的支连烷基、取代的C4-C10的直链烷基或取代的C5-C10的支链烷基,其中,,所述取代的C2-C20的直链烷基中的取代基为羟基、醛基、氨基、巯基和糖残基中的一种或几种;所述取代的C3-C20的支链烷基中的取代基为羟基、醛基、氨基、巯基和糖残基中的一种或几种。更具体的,所述R3为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、羟甲基或羟乙基。
所述R4优选为氢原子、甲酰基、乙酰基、丙酰基或丁酰基。
所述x,y,z,n为聚合度,x,y,z之间为无规形式;其中,y>0,z>0,x≥0,优选的,x>10;y>20;z>4;其中,所述x,y和z之和优选为30≤x+y+z≤300,更优选为50≤x+y+z≤250,最优选为75≤x+y+z≤200,最优选为100≤x+y+z≤150;所述n优选为20≤n≤400,更优选为30≤n≤300,最优选50≤n≤260,最优选为80≤n≤180。
本发明还提供了一种高分子CA4键合药的制备方法,包括:
将具有式(II)结构的共聚物与CA4在缩合剂的作用下反应得到式(I)结构的高分子CA4键合药。
其中,
R1选自C2-C10的直链烷基、C3-C10的支链烷基或C6~C20的芳基;
R2选自氢原子或者阳离子;
R3选自未取代的C1-C20的烷基或取代的C1-C20的烷基;
R4选自氢原子或者C1-C6的烷基酰基;
L1、L2、L3独立的选自-CH2-或-CH2CH2-;
x,y,z为聚合度,10≤x+y+z≤5000,y>0,z>0;
n为聚合度,10≤n≤500。
按照本发明,本发明将具有式(II)结构的共聚物与CA4在缩合剂的作用下反应得到式(I)结构的高分子CA4键合药;其中,本发明对所述式(II)结构的共聚物的来源没有特殊限定,本领域技术人员根据本领域技术人员的公知常识制备得到;所述式(II)结构的共聚物中,所述R1优选为C3-C8的直链烷基、C5-C8的支链烷基或C8~C15的芳基,更优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、苯基、萘基、联苯基或蒽。所述R2优选为氢原子、金属阳离子或有机阳离子,更优选为氢原子、钠离子、钾离子、铵离子或者带正电荷的氨基酸离子。所述R3优选为未取代的C2-C20的直连烷基、未取代的C3-C20的支连烷基、取代的C2-C20的直链烷基或取代的C3-C20的支链烷基,更优选为未取代的C4-C10的直连烷基、未取代的C5-C10的支连烷基、取代的C4-C10的直链烷基或取代的C5-C10的支链烷基,其中,,所述取代的C2-C20的直链烷基中的取代基为羟基、醛基、氨基、巯基和糖残基中的一种或几种;所述取代的C3-C20的支链烷基中的取代基为羟基、醛基、氨基、巯基和糖残基中的一种或几种。更具体的,所述R3为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基、羟甲基或羟乙基。所述R4优选为氢原子、甲酰基、乙酰基、丙酰基或丁酰基。所述x,y,z,n为聚合度,x,y,z之间为无规形式;其中,y>0,z>0,x≥0,优选的,x>10;y>20;z>4;其中,所述x,y和z之和优选为30≤x+y+z≤300,更优选为50≤x+y+z≤250,最优选为75≤x+y+z≤200,最优选为100≤x+y+z≤150;所述n优选为20≤n≤400,更优选为30≤n≤300,最优选50≤n≤260,最优选为80≤n≤180。所述缩合剂优选为2,4,6三氯苯甲酰氯,N,N-二异丙基碳二亚胺或二环己基碳二亚胺;所述反应的溶剂优选为N,N-二甲基甲酰胺、二甲基亚砜、氯仿和二氯甲烷中的一种或几种。所述反应的温度优选为10~60℃,更优选为20~40℃;所述反应的时间优选为2~60小时,更优选10~30小时。
本发明提供的高分子CA4键合药具有式(I)所示结构,本发明提供的键合药通过将CA4接枝到特定的聚合物载体上,使得得到的键合药可以富集在肿瘤血管处并缓慢释放药物,从而在肿瘤部位长期发挥破坏肿瘤血管的功效,实现出色的的肿瘤抑制效果。有效的解决了CA4P作用时间短而疗效欠佳的问题,在肿瘤治疗领域具有广阔的发展前景。而且,本发明提供的制备方法简单,原料来源广泛,可以实现批量生产,可以实现产业化。
下面将结合本发明实施例的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将42.1g(160.0mmol)的γ-苯甲基-L-谷氨酸酯-N-内羧酸酐单体(BLG-NCA)溶于270mL无水N,N-二甲基甲酰胺(DMF),搅拌溶解后加入1.0mL(1.0mmol/L DMF溶液)的正己胺(n-HA),密封,在温度为25℃的条件下,搅拌反应72h。反应结束后,将得到的反应液沉降到2.0L的乙醚中,依次经过滤和乙醚洗涤,在室温下真空干燥24h,得到中间产物聚(γ-苯甲基-L-谷氨酸酯)(PBLG)。
将10.0g上述制备的聚(γ-苯甲基-L-谷氨酸酯)用100mL二氯乙酸溶解,在搅拌的条件下,加入30mL质量含量为33%的溴化氢/冰醋酸溶液,在温度为30℃的条件下搅拌反应1h。之后,将得到的反应液沉降到1.0L的乙醚中,离心,所得沉淀用DMF复溶,再用去离子水透析,经冻干,得到聚(L-谷氨酸)均聚物(PLG)。
对制备的聚(L-谷氨酸)均聚物进行核磁共振分析,用氘代水为氘代试剂,结果表明,化学位移4.43ppm为主链上次甲基的信号峰,化学位移2.21ppm为侧基上与羰基相连的亚甲基的信号峰,化学位移1.91ppm和1.71ppm为侧基上与主链相连的亚甲基的信号峰。根据核磁计算,所得聚(L-谷氨酸)的聚合度为135,综合产率为81.2%。
实施例2
将42.1g(160.0mmol)的γ-苯甲基-L-谷氨酸酯-N-内羧酸酐单体(BLG-NCA)溶于270mL无水N,N-二甲基甲酰胺(DMF),搅拌溶解后加入1.0mL(1.0mmol/L DMF溶液)的正己胺(n-HA),密封,在温度为25℃的条件下,搅拌反应72h。之后,在上述反应体系中加入2.0g(20.0mmol)的乙酸酐,继续反应6h。反应结束后,将得到的反应液沉降到2.0L的乙醚中,依次经过滤和乙醚洗涤,在室温下真空干燥24h,得到中间产物聚(γ-苯甲基-L-谷氨酸酯)(PBLG)。
将10.0g上述制备的聚(γ-苯甲基-L-谷氨酸酯)用100mL二氯乙酸溶解,在搅拌的条件下,加入30mL质量含量为33%的溴化氢/冰醋酸溶液,在温度为30℃的条件下搅拌反应1h。之后,将得到的反应液沉降到1.0L的乙醚中,离心,所得沉淀用DMF复溶,再用去离子水透析,经冻干,得到乙酰基封端的聚(L-谷氨酸)均聚物(PLG)。
实施例3
向干燥的反应瓶中,加入实施例1制备的的聚(L-谷氨酸)(1.7g,13.2mmol谷氨酸单元)、3.5g(79.5mmol乙二醇单元)的聚乙二醇单甲醚(5000Da),再加入150mL的DMF溶解。之后,加入178mg(1.4mmol)的N,N-二异丙基碳二酰亚胺(DIC)和196mg(1.6mmol)的4-二甲氨基吡啶(DMAP),在温度为25℃的条件下密封反应,48小时后,将得到的反应液用1.0L的乙醚沉降,所得固体用DMF复溶,再用去离子水透析3天,经冻干,得到具有式(II)结构的接枝聚乙二醇的聚L-谷氨酸。
以氘代水为溶剂,对得到的接枝聚乙二醇的聚L-谷氨酸进行核磁共振分析,结果见图1,图1为实施例3制备得到的接枝聚乙二醇的聚L-谷氨酸的1HNMR,从图中可以看出,峰位置包括:δ4.25ppm(t,-CH<),3.63ppm(t,-CH2CH2O-),3.31ppm(s,-OCH3),2.18ppm(m,-CH2COOH),1.96and 1.83ppm(m,>CHCH2-),1.10–1.02ppm(m,-CH2CH2-),0.78ppm(t,-CH2-CH3)。可见,所述聚氨基酸接枝聚乙二醇原料具有式(II)结构。
实施例4
向干燥的反应瓶中,加入实施例2制备的的聚(L-谷氨酸)(1.7g,13.2mmol谷氨酸单元)、3.5g(79.5mmol乙二醇单元)的聚乙二醇单甲醚(2000Da),再加入150mL的DMF溶解。之后,加入178mg(1.4mmol)的N,N-二异丙基碳二酰亚胺(DIC)和196mg(1.6mmol)的4-二甲氨基吡啶(DMAP),在温度为25℃的条件下密封反应,48小时后,将得到的反应液用1.0L的乙醚沉降,所得固体用DMF复溶,再用去离子水透析3天,经冻干,得到接枝聚乙二醇的聚L-谷氨酸。
实施例5
将24.9g(100.0mmol)的γ-苯甲基-L-天冬氨酸酯-N-内羧酸酐单体(BLA-NCA)溶于270mL无水二氯甲烷,搅拌溶解后加入1.0mL(1.0mmol/LDMF溶液)的正己胺(n-HA),密封,在温度为25℃的条件下,搅拌反应72h。反应结束后,将得到的反应液沉降到2.0L的乙醚中,依次经过滤和乙醚洗涤,在室温下真空干燥24h,得到中间产物聚(γ-苯甲基-L-天冬氨酸酯)(PBLA)。
将10.0g上述制备的聚(γ-苯甲基-L-天冬氨酸酯)用100mL二氯乙酸溶解,在搅拌的条件下,加入30mL质量含量为33%的溴化氢/冰醋酸溶液,在温度为30℃的条件下搅拌反应1h。之后,将得到的反应液沉降到1.0L的乙醚中,离心,所得沉淀用DMF复溶,再用去离子水透析,经冻干,得到聚(L-天冬氨酸)均聚物(PLA)。
实施例6
将24.9g(100.0mmol)的γ-苯甲基-L-天冬氨酸酯-N-内羧酸酐单体(BLA-NCA)溶于270mL无水二氯甲烷,搅拌溶解后加入1.0mL(1.0mmol/L DMF溶液)的正己胺(n-HA),密封,在温度为25℃的条件下,搅拌反应72h。之后,在上述反应体系中加入2.0g的乙酸酐,继续反应6h。反应结束后,将得到的反应液沉降到2.0L的乙醚中,依次经过滤和乙醚洗涤,在室温下真空干燥24h,得到中间产物聚(γ-苯甲基-L-天冬氨酸酯)(PBLA)。
将10.0g上述制备的聚(γ-苯甲基-L-天冬氨酸酯)用100mL二氯乙酸溶解,在搅拌的条件下,加入30mL质量含量为33%的溴化氢/冰醋酸溶液,在温度为30℃的条件下搅拌反应1h。之后,将得到的反应液沉降到1.0L的乙醚中,离心,所得沉淀用DMF复溶,再用去离子水透析,经冻干,得到乙酰基封端的聚(L-天冬氨酸)均聚物(PLA)。
实施例7
向干燥的反应瓶中,加入实施例5制备的1.5g(13.2mmol天冬氨酸单元)的聚(L-天冬氨酸)、3.0g(68.1mmol乙二醇单元)的聚乙二醇单甲醚(10000Da),再加入150mL的二甲基亚砜/二氯甲烷的混合溶剂溶解。之后,加入178mg(1.4mmol)的N,N-二异丙基碳二酰亚胺(DIC)和196mg(1.6mmol)的4-二甲氨基吡啶(DMAP),在温度为25℃的条件下密封反应,48小时后,将得到的反应液用1.0L的乙醚沉降,所得固体用DMF复溶,再用去离子水透析3天,经冻干,得到接枝聚乙二醇的聚L-天冬氨酸。
实施例8
向干燥的反应瓶中,加入实施例6制备的1.5g(13.2mmol天冬氨酸单元)的聚(L-天冬氨酸)、3.0g(68.1mmol乙二醇单元)的聚乙二醇单甲醚(2000Da),再加入150mL的DMF溶解。之后,加入178mg(1.4mmol)的N,N-二异丙基碳二酰亚胺(DIC)和196mg(1.6mmol)的4-二甲氨基吡啶(DMAP),在温度为25℃的条件下密封反应,48小时后,将得到的反应液用1.0L的乙醚沉降,所得固体用DMF复溶,再用去离子水透析3天,经冻干,得到接枝聚乙二醇的聚L-天冬氨酸。
实施例9-11
聚谷氨酸接枝聚乙二醇-CA4高分子键合药的制备
分别向三个干燥的反应瓶内加入实施例3制备的聚谷氨酸接枝聚乙二醇(585mg),用20ml干燥的N,N-二甲基甲酰胺溶解,之后加入干燥的三乙胺(0.153mL)和2,4,6-三氯苯甲酰氯(0.172mL),置于60℃的油浴中,搅拌10min。之后在氮气氛围下分别加入316mg、253mg、190mg的CA4,以及135mg的4-二甲氨基吡啶,室温下继续反应12h。反应结束后,反应液用乙醚沉降,过滤,收集固体并在室温下真空干燥,DMF复溶固体,去离子水超滤,冻干,得到聚谷氨酸接枝聚乙二醇-CA4高分子键合药,称量,计算产率。
对得到的高分子CA4键合药进行核磁共振分析,以氘代水作为氘代试剂,结果参见图2。图2为实例10制备的聚谷氨酸接枝聚乙二醇-CA4高分子键合药的核磁共振氢谱图。通过与图1对比,可以发现明显的CA4特征峰(6.29ppm,6.44ppm,6.60ppm),表面CA4被成功地键合到高分子上。
利用紫外-可见光谱实施例9~实施例11得到的键合药中的CA4的键合含量,CA4的最大吸收峰在295nm,CA4的含量(%)计算公式为:键合药中的CA4质量/键合药的总质量)×100%。结果参见表1,表1为本发明实施例9~11提供的键合药的制备方法的收率以及得到的键合药中的CA4含量;
表1
实施例12~14
聚谷氨酸接枝聚乙二醇-CA4高分子键合药的制备
分别向干燥的反应瓶内加入585mg的实施例4制备的聚谷氨酸接枝聚乙二醇,316mg、252.8mg、190mg的CA4,用20ml干燥的N,N-二甲基甲酰胺溶解,之后加入25mg的4-二甲氨基吡啶和252.4mg N,N'-二异丙基碳二亚胺,室温、氮气氛围下搅拌反应48h。乙醚沉降,过滤,收集固体并在室温下真空干燥,N,N-二甲基甲酰胺复溶、去离子水超滤,冻干,得到聚谷氨酸接枝聚乙二醇-CA4高分子键合药。CA4含量和产率参见表2。表2为本发明实施例12~14提供的键合药的制备方法的收率以及得到的键合药中的CA4含量;
实施例15~17
聚天冬氨酸接枝聚乙二醇-CA4高分子键合药的制备
分别向干燥的反应瓶内加入552mg的实施例7制备的聚天冬氨酸接枝聚乙二醇,316mg、252.8mg、190mg的CA4,用20ml干燥的N,N-二甲基甲酰胺溶解,之后加入25mg的4-二甲氨基吡啶和252.4mg二环己基碳二亚胺,室温、氮气氛围下搅拌反应48h。过滤,乙醚沉降,收集固体并在室温下真空干燥,N,N-二甲基甲酰胺复溶、去离子水超滤,冻干,得到聚天冬氨酸接枝聚乙二醇-CA4高分子键合药。CA4含量和产率参见表3。表3为本发明实施例15~17提供的键合药的制备方法的收率以及得到的键合药中的CA4含量;
表3
实施例18-20
聚天冬氨酸接枝聚乙二醇-CA4高分子键合药的制备
分别向干燥的反应瓶内加入552mg的实施例8制备的聚天冬氨酸接枝聚乙二醇,用20ml干燥的N,N-二甲基甲酰胺溶解,之后加入0.191mL干燥的三乙胺和0.215mL 2,4,6-三氯苯甲酰氯,置于60℃油浴中搅拌10min,之后在氮气氛围下分别加入316mg、253mg、190mg的CA4,以及135mg的4-二甲氨基吡啶,室温下继续反应12h。反应结束后,反应液用乙醚沉降,过滤,收集固体并在室温下真空干燥,DMF复溶固体,去离子水超滤,冻干,得到聚谷氨酸接枝聚乙二醇-CA4高分子键合药,称量,计算产率。CA4含量和产率参见表4。表4为本发明实施例18~20提供的键合药的制备方法的收率以及得到的键合药中的CA4含量;
表4
实施例21
高分子CA4键合药的表征
利用HPLC分析确定无未键合的CA4存在于产物之中。HPLC的流动相为乙腈/水=4/1,小分子CA4出峰时间在3.5分钟。结果见图3,图3为小分子CA4和实施例10制备的高分子CA4键合药的HPLC图,从图中可以看出,实施例10制备的高分子CA4键合药中无游离的CA4存在。
对所得到的高分子CA4键合药进行动态光散射分析,测定在水中自组装形成的胶束的流体力学半径。图4为实施例10制备的高分子CA4键合药以浓度0.2mg/mL在水中的动态光散射结果,从图中可以看出,自组装胶束的流体力学半径在20~60nm之间,粒径分布均匀。
实施例22
高分子CA4键合药的体外模拟释放
准确称取3mg实施例10制备的高分子CA4键合药,溶于5mL的磷酸盐缓冲液(pH7.4),装于透析袋后置于45mL的磷酸盐释放液中,于37℃恒温振荡箱中振摇。在第2,4,8,12,24,36,48,72小时时间点,取出3mL释放液,紫外测定CA4含量。最后计算CA4在72小时内的累积释放量,结果见图5,图5为实施例10制备的键合药在模拟体液中的释放结果;从图5可以看出,CA4的高分子键合药在模拟体液中缓慢释放CA4,无暴释突释现象。
实施例23
高分子CA4键合药与CA4P对比的肿瘤分布
取Balb/C小鼠(5~6周,雌性,体重约为20g)24只,分别于右侧腋下种植C26鼠源结肠癌细胞2.0×106/只。待肿瘤体积长至200mm3左右时,将小鼠均分为2组,分别尾静脉注射CA4P、实施例10制备的高分子CA4键合药。给药剂量为:4.0mg CA4/kg体重。1,4,24小时后,处死小鼠,收集肿瘤,匀浆处理,HPLC测定其中的CA4浓度。所得2组样品的肿瘤内药物/kg重量如图6所示,图6为实施例23进行的高分子CA4键合药和CA4P给药后肿瘤组织中的CA4药物浓度。从图中可以看出,CA4高分子药物与小分子CA4P的瘤内CA4药物滞留和富集存在显著差别,CA4高分子药物能够维持肿瘤内在很长一段时间内的CA4药物含量,从而能够对肿瘤的生长起到持续抑制作用。这一结果显示了该CA4高分子药物在肿瘤治疗上的优越性。
实施例24
高分子CA4键合药单次给药的肿瘤治疗效果
取Balb/C小鼠(5~6周,雌性,体重约为20g)6只,分别于右侧腋下种植C26鼠源结肠癌细胞2.0×106/只。待肿瘤体积长至200mm3左右时,将小鼠均分为2组,分别尾静脉注射CA4P、实施例10制备的高分子CA4键合药。给药剂量为:50mg CA4/kg体重。72小时后,处死小鼠,收集肿瘤,进行病理H&E分析。结果如图7所示,图7为实施例24测定的CA4P和高分子CA4键合药单次给药后的肿瘤病理分析;从图中可以看出,在给药治疗72小时后,CA4P治疗组的肿瘤出现大面积复发,而CA4高分子药物则能够持续抑制肿瘤的生长。这充分证明了本发明所设计的CA4高分子药物在治疗上的优势。
实施例25
高分子CA4键合药的抑瘤效果
取Balb/C小鼠(5~6周,体重20g左右)18只,分别于右侧腋下种植2.0×106C26细胞,待肿瘤长至100mm3时,均分为3组(生理盐水组,CA4P组,实施例10所制备的CA4高分子药物组),记为第0天,之后分别于第1,5,9天给药3次。给药剂量为:50.0mg CA4/kg体重。每周量瘤三次,记录小鼠体重,直至第17天结束观察。肿瘤体积图分别如图8所示,图8为实施例25测定的高分子CA4键合药和CA4P对肿瘤的治疗效果,从结果可见,到结束观察时,CA4高分子药物组取得了73.6%的出色肿瘤抑制率,而CA4P组的肿瘤抑制率为24.0%。这一结果表明,本发明所提供的CA4高分子药物安全有效,并且优于同剂量下CA4P的治疗效果,在用于实体肿瘤治疗方面具备巨大潜力。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

1.一种高分子CA4键合药,具有式(I)所示结构,
其中,
R1选自C2-C10的直链烷基、C3-C10的支链烷基或C6~C20的芳基;
R2选自氢原子或者阳离子;
R3选自未取代的C1-C20的烷基或取代的C1-C20的烷基;
R4选自氢原子或者C1-C6的烷基酰基;
L1、L2、L3独立的选自-CH2-或-CH2CH2-;
x,y,z为聚合度,10≤x+y+z≤5000,y>0,z>0;
n为聚合度,10≤n≤500。
2.根据权利要求1所述的键合药,其特征在于,所述R1为C3-C8的直链烷基、C5-C8的支链烷基或C8~C15的芳基。
3.根据权利要求1所述的键合药,其特征在于,所述R2选自氢原子、金属阳离子或有机阳离子。
4.根据权利要求1所述的键合药,其特征在于,所述R2选自氢原子、钠离子、钾离子、铵离子或者带正电荷的氨基酸离子。
5.根据权利要求1所述的键合药,其特征在于,所述R3选自未取代的C2-C20的直连烷基、未取代的C3-C20的支连烷基、取代的C2-C20的直链烷基或取代的C3-C20的支链烷基。
6.根据权利要求5所述的键合药,其特征在于,所述取代的C2-C20的直链烷基中的取代基为羟基、醛基、氨基、巯基和糖残基中的一种或几种;
所述取代的C3-C20的支链烷基中的取代基为羟基、醛基、氨基、巯基和糖残基中的一种或几种。
7.根据权利要求1所述的键合药,其特征在于,所述R4选自氢原子、乙酰基或丙酰基。
8.根据权利要求1所述的键合药,其特征在于,所述x,y,z的取值范围为30≤x+y+z≤300。
9.一种高分子CA4键合药的制备方法,包括:
将具有式(II)结构的共聚物与CA4在缩合剂的作用下反应得到式(I)结构的高分子CA4键合药,
其中,
R1选自C2-C10的直链烷基、C3-C10的支链烷基或C6~C20的芳基;
R2选自氢原子或者阳离子;
R3选自未取代的C1-C20的烷基或取代的C1-C20的烷基;
R4选自氢原子或者C1-C6的烷基酰基;
L1、L2、L3独立的选自-CH2-或-CH2CH2-;
x,y,z为聚合度,10≤x+y+z≤5000,y>0,z>0;
n为聚合度,10≤n≤500。
10.根据权利要求9所述的制备方法,其特征在于,所述缩合剂为2,4,6三氯苯甲酰氯,N,N-二异丙基碳二亚胺或二环己基碳二亚胺。
CN201610379051.9A 2016-05-31 2016-05-31 一种高分子ca4键合药及其制备方法 Pending CN105963707A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201610379051.9A CN105963707A (zh) 2016-05-31 2016-05-31 一种高分子ca4键合药及其制备方法
US16/097,079 US20190142954A1 (en) 2016-05-31 2016-12-14 Polymer-bonded ca4 pharmaceutical compound and preparation method therefor
EP16903857.7A EP3466415A4 (en) 2016-05-31 2016-12-14 POLYMER-CA4-BINDING PHARMACEUTICAL COMPOUND AND PRODUCTION METHOD THEREFOR
PCT/CN2016/109812 WO2017206477A1 (zh) 2016-05-31 2016-12-14 一种高分子ca4键合药物化合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610379051.9A CN105963707A (zh) 2016-05-31 2016-05-31 一种高分子ca4键合药及其制备方法

Publications (1)

Publication Number Publication Date
CN105963707A true CN105963707A (zh) 2016-09-28

Family

ID=57009980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610379051.9A Pending CN105963707A (zh) 2016-05-31 2016-05-31 一种高分子ca4键合药及其制备方法

Country Status (4)

Country Link
US (1) US20190142954A1 (zh)
EP (1) EP3466415A4 (zh)
CN (1) CN105963707A (zh)
WO (1) WO2017206477A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017206477A1 (zh) * 2016-05-31 2017-12-07 中国科学院长春应用化学研究所 一种高分子ca4键合药物化合物及其制备方法
CN109675039A (zh) * 2018-12-21 2019-04-26 中国科学院长春应用化学研究所 药物组合、抗肿瘤的药物和应用
CN115252616A (zh) * 2022-08-09 2022-11-01 中国科学院长春应用化学研究所 一种自激活血管阻断剂前药及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559275B (zh) * 2021-09-24 2021-12-24 广东粤港澳大湾区国家纳米科技创新研究院 一种一锅法制备高分子/康普瑞汀a4/blz945纳米键合药的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875818A (zh) * 2012-10-16 2013-01-16 中国科学院长春应用化学研究所 一种聚氨基酸接枝共聚物及其制备方法
CN105001426A (zh) * 2015-08-18 2015-10-28 中国科学院长春应用化学研究所 一种具有肿瘤靶向性的聚氨基酸接枝共聚物及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020331A1 (de) * 2001-09-03 2003-03-13 Oxigene, Inc. Implantate mit combretastatin a-4
FR2840614B1 (fr) * 2002-06-07 2004-08-27 Flamel Tech Sa Polyaminoacides fonctionnalises par de l'alpha-tocopherol et leurs applications notamment therapeutiques
CA2658100A1 (en) * 2006-07-19 2008-01-24 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of combretastatins
JP5544357B2 (ja) * 2009-05-15 2014-07-09 日本化薬株式会社 水酸基を有する生理活性物質の高分子結合体
CN103156872B (zh) * 2013-01-04 2015-05-20 中国科学院长春应用化学研究所 阿霉素复合物及其制备方法
CN105963707A (zh) * 2016-05-31 2016-09-28 中国科学院长春应用化学研究所 一种高分子ca4键合药及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875818A (zh) * 2012-10-16 2013-01-16 中国科学院长春应用化学研究所 一种聚氨基酸接枝共聚物及其制备方法
CN105001426A (zh) * 2015-08-18 2015-10-28 中国科学院长春应用化学研究所 一种具有肿瘤靶向性的聚氨基酸接枝共聚物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANTONG SONG ET AL.: "Solid Tumor Therapy Using a Cannon and Pawn Combination Strategy", 《THERANOSTICS 》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017206477A1 (zh) * 2016-05-31 2017-12-07 中国科学院长春应用化学研究所 一种高分子ca4键合药物化合物及其制备方法
CN109675039A (zh) * 2018-12-21 2019-04-26 中国科学院长春应用化学研究所 药物组合、抗肿瘤的药物和应用
CN115252616A (zh) * 2022-08-09 2022-11-01 中国科学院长春应用化学研究所 一种自激活血管阻断剂前药及其制备方法和应用
CN115252616B (zh) * 2022-08-09 2024-05-17 中国科学院长春应用化学研究所 一种自激活血管阻断剂前药及其制备方法和应用

Also Published As

Publication number Publication date
EP3466415A1 (en) 2019-04-10
WO2017206477A1 (zh) 2017-12-07
EP3466415A4 (en) 2020-01-01
US20190142954A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
CN101791411A (zh) 两亲性多糖偶联物及其药物组合物的制备和应用
CN105963707A (zh) 一种高分子ca4键合药及其制备方法
CN104971353B (zh) 靶向肿瘤新生血管的两亲性多糖衍生物载体及其药学组合物的制备和应用
CN105963706B (zh) 一种支化hpma共聚物-dox偶联物及其制备方法和应用
CA2950458A1 (en) Carbonate polymer containing a functional group of disulfide five-membered ring in the side chain and application thereof
CN109966507A (zh) 一种肿瘤靶向的pH和氧化还原双重响应的大分子纳米前药及其制备方法与应用
CN103705534A (zh) 一种天然活性物质构建的高分子复合药物的制备及其在抑制血管生成中的应用
CN104116710A (zh) 靶向肿瘤的pH敏感聚合物胶束组合物
CN107266384B (zh) 基于2-氨基十六烷酸的n-羧基内酸酐单体和聚氨基酸及其制备方法
CN105999299A (zh) 一种小分子胶束纳米载药系统及其制备方法与应用
Yi et al. Synthesis, characterization, and formulation of poly-puerarin as a biodegradable and biosafe drug delivery platform for anti-cancer therapy
CN105001426B (zh) 一种具有肿瘤靶向性的聚氨基酸接枝共聚物及其制备方法
CN105860057A (zh) 基于疏水功能性小分子-亲水聚氨基酸的生物可降解聚合物及其制备方法和应用
CN107929279A (zh) 一种新型黄酮衍生聚合物纳米药物及其在肿瘤治疗中的应用
CN105854027A (zh) 一种基于低代pamam树状分子的两亲性纳米自组装胶束及其应用
Yao et al. An MRI-guided targeting dual-responsive drug delivery system for liver cancer therapy
CN108888774B (zh) 一种雷公藤红素-树状大分子缀合物及其制备方法与应用
CN105541762B (zh) 多西他赛-油酸前药及其纳米结构脂质载体和应用
CN101181225A (zh) 纳米聚合物胶束药物传递系统和制备方法及应用
CN109762099A (zh) 一种聚合物-抗肿瘤药物偶联物及其制备方法和用途
CN110772644B (zh) 聚乙二醇修饰的强心苷类化合物前药及其抗肿瘤用途
CN106344513A (zh) 一种线粒体靶向胶束材料以及用该材料制备的姜黄素胶束制剂
CN109966242A (zh) 一种纳米凝胶、其制备方法和抗肿瘤载药纳米凝胶
CN114904012B (zh) 一种活性氧自补充的两亲性嵌段共聚物-药物偶联物、其制备方法及其用途
CN106279582B (zh) 铜离子响应性的两亲性聚合物和作为抗肿瘤药物和载体的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160928

RJ01 Rejection of invention patent application after publication