CN105956281A - 固体火箭发动机装药设计方法 - Google Patents

固体火箭发动机装药设计方法 Download PDF

Info

Publication number
CN105956281A
CN105956281A CN201610293080.3A CN201610293080A CN105956281A CN 105956281 A CN105956281 A CN 105956281A CN 201610293080 A CN201610293080 A CN 201610293080A CN 105956281 A CN105956281 A CN 105956281A
Authority
CN
China
Prior art keywords
thrust
design
curve
point
discrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610293080.3A
Other languages
English (en)
Other versions
CN105956281B (zh
Inventor
王东辉
武泽平
张为华
胡凡
江振宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201610293080.3A priority Critical patent/CN105956281B/zh
Publication of CN105956281A publication Critical patent/CN105956281A/zh
Application granted granted Critical
Publication of CN105956281B publication Critical patent/CN105956281B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

本发明提供一种固体火箭发动机装药设计方法,以代理模型为基础,直接对推力曲线进行近似,通过构造推力曲线而不是推力曲线与设计指标之间的最小二乘偏差的代理模型,有效刻画出推力随时间的变化规律,从而明显减少了高精度燃面与内弹道仿真的次数。代理模型能够更好地刻画推力曲线的变化规律,在后续的设计中更有效指导后续搜索,能显著提高固体火箭发动机装药设计效率。

Description

固体火箭发动机装药设计方法
技术领域
本发明涉及飞行器发动机设计技术领域,具体的涉及一种固体火箭发动机装药设计方法。
背景技术
固体火箭发动机是导弹、火箭等航天运载器的重要动力系统之一。固体火箭发动机的装药设计,一般要求在满足发动机内弹道性能和相关约束条件下,选择药型并确定其几何参数,同时综合考虑燃烧室壳体内部绝热层、衬层和人工脱粘层的设计要求。装药设计是固体火箭发动机设计最核心的技术。航天飞机固体助推火箭发动机具有大长径比、较高轴向压降、侵蚀燃烧严重、复杂点火过程、装药制造过程驼峰效应不确定性和较小内弹道性能散布设计要求等特点,需要采用先进建模方法提高内弹道性。
装药设计的主要任务是通过调整装药的几何构型(即几何参数),使装药在燃烧过程中产生的推力满足发动机总体设计提出的推力需求。
参见图1,给定装药的几何构型后,通过运行几何建模、燃面计算和内弹道仿真可以得到对应的推力曲线,若推力曲线满足总体指标,则输出设计结果(发动机装药几何参数和推力曲线),否则,就要采用一定的调整策略寻找下一个几何参数。
目前常用的装药设计方法有:
(1)基于已有案例与经验,手动调整装药几何参数后,进行迭代搜索。此类方法在工业生产中用的最多,因为生产部门常年从事装药生产和设计,积累了大量实际操作经验与案例,因此可以较好地对迭代初始几何参数进行选择,从而提高设计后所得装药参数的准确性。此类方法仅限于有经验的工程师参与设计的情况下,才能使用,而且手工迭代效率较低;
(2)将优化设计方法用于装药设计,构造装药设计的优化问题,用优化方法来自动搜索。此类方法可以避免人工迭代,且不需要太多的工程经验。李晓斌,张为华,王中伟发表于《推进技术》2006年4月第27卷第2期中的《装药几何参数不确定性优化设计》的文章公开的优化设计方法,即是通过优化设计方法对装药几何参数进行优化的处理方法。例如此类方法实施步骤如下:
A、建立优化模型
首先,建立装药构型的参数化模型,确定设计变量、优化目标和约束变量。通常设计变量为装药的几何参数,通过这些参数可以唯一确定装药的几何构型,优化目标为仿真优化设计所得内弹道曲线与设计指标要求的内弹道曲线之间的偏差最小,约束变量为发动机的性能指标(例如:总冲、质量比、喉通比等指标均可)。
B、选择优化方法
在优化方法的选择上,通常采用智能优化方法与局部搜索方法相结合,此类方法无需大量的迭代计算,采用低精度的解析方法进行燃面退移规律仿真。或采用基于代理模型的优化方法与燃面仿真模型相结合进行优化,该模型的仿真结果精度较高,该优化方法的搜索效率更高。
此类方法可以避免依靠经验进行设计,使用人工迭代,但是由于所采用的各类优化算法均需进行大量的仿真计算,因此只能用解析的燃面计算方法,不能精确刻画燃面的退移规律。即使采用代理模型和高精度燃面退移规律的设计方法,仍然需要进行上百次的燃面和内弹道仿真,计算代价仍然较大。而且目前采用优化进行装药设计的方法将推力曲线转化为一个标量进行优化,很多种不同的推力曲线形式往往会得到一个相同的指标,给寻优带来了困难。
发明内容
本发明的目的在于提供一种固体火箭发动机装药设计方法,该发明解决了现有技术中固体火箭发动机装药设计过程效率低下,过于依赖经验的技术问题。
本发明提供了一种固体火箭发动机装药设计方法,包括以下步骤:
1)给定发动机装药几何构型设计指标要求的推力需求曲线F0(t);
2)建立发动机装药几何构型的参数化模型,根据所处理装药几何构型的类型确定所需处理的设计变量X及其范围;
3)根据设计变量X的个数m及其范围建立设计空间,在设计空间内采用最优拉丁超立方采样法采集2m个采样点,在每个采样点处建立性能仿真模型,并运行性能仿真模型,得到每个采样点对应的2m条推力曲线,所得设计变量X在第i个采样点处的值Xi和与不同采样点对应的仿真推力曲线fi(t)之间的对应关系,如式(1)所示;
其中,Xi为设计变量X在第i个采样点处的推力值,fi(t)为对不同采样点处各设计变量分别进行设计仿真得到的仿真推力曲线,将2m条仿真推力曲线在每个工作时间点t上分别均匀地离散为N个点,得到如式(2)所示的样本集,该样本集表示各离散时刻ti的推力值f2m(tN)与设计变量Xi之间的对应关系:
4)根据式(2)构造每个离散时刻推力的代理模型si(X),得到N个代理模型,同时si(X)满足式(3):
F(ti)=si(X) (3)
其中,F(ti)为离散时刻ti对应的推力,其中ti中的i满足1<i<N;
si(X)为根据样本数据[Xj,fj(ti)]其中j=1,2,…,2m+k,在每个离散点上构造得到的推力代理模型;
5)根据所得N个推力代理模型,求解公式(4)所示的优化问题,得到该优化问题对应的最优解为设计变量最优解Xk+2m
在所得设计变量最优解Xk+2m处运行性能仿真模型,得到对应的最优推力曲线,并将最优推力曲线在每个工作时间点上离散为N个点,添加到矩阵(2)中,则公式(2)中的样本点个数从N个变为2m+k个;
6)收敛判定:迭代初始时,令迭代次数k=0,指定搜索精度eps和最大搜索步数Kmax,按照公式(5)进行迭代计算得到任意两不同的离散时刻分别对应推力曲线的均方偏差:
其中,F2m+k-1(ti)为第2m+k-1个离散点处的推力曲线,F2m+k(ti)为第2m+k个离散点处的推力曲线,F0(ti)为设计指标要求的推力曲线,N为离散点个数;
若error(k)<eps或k=Kmax,则停止搜索,输出设计变量最优解Xk+2m及其对应的最优推力曲线f2m+k(t),[X2m+k,f2m+k(t)],否则,转步骤4)直至满足该条件时迭代停止。
进一步地,搜索精度eps指定为0.001。
进一步地,最大搜索步数Kmax指定为5m。
本发明的技术效果:
本发明提供固体火箭发动机装药设计方法
1、本发明提供固体火箭发动机装药设计方法,以代理模型为基础,直接对推力曲线进行近似,通过构造推力曲线而不是推力曲线与设计指标之间的最小二乘偏差的代理模型,有效刻画出推力随时间的变化规律,从而明显减少了高精度燃面与内弹道仿真的次数,为固体火箭发动机装药设计提供了快速、准确的设计方法。
2、本发明提供固体火箭发动机装药设计方法,由于对多个离散时刻的推力进行近似建模,因此对推力曲线的考虑更为精细,得到最优解需要的迭代次数比现有方法减少至少一个数量级仅需15~40次迭代即可得到优选值,从而实现了对装药的快速设计。
3、本发明提供固体火箭发动机装药设计方法提高了固体火箭发动机设计自动化程度,人为参与过程减少,使其不过分依赖于工程师的经验。
4、本发明提供固体火箭发动机装药设计方法执行效率高、设计速度快,使发动机设计中最耗时的装药设计能够进行自动迭代,大大减少设计耗时。
具体请参考根据本发明的固体火箭发动机装药设计方法提出的各种实施例的如下描述,将使得本发明的上述和其他方面显而易见。
附图说明
图1是现有技术中发动机装药几何构型设计方法流程示意图;
图2是本发明提供的固体火箭发动机装药设计方法流程示意图;
图3是本发明优选算例1和2中所用后翼柱型装药构型结构示意图,其中a)是后翼柱型装药构型的主视剖视示意图,b)是后翼柱型装药构型的侧视示意图;
图4是本发明优选算例1的最小二乘偏差监控结果示意图;
图5是本发明优选算例1单推力发动机设计结果示意图;
图6是本发明优选算例2最小二乘偏差监控结果示意图;
图7是本发明优选算例2双推力发动机设计结果示意图。
具体实施方式
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
为便于理解,对本发明所提供方法的简述如下:本发明提供的设计方法首先将总体要求对应的各推力曲线离散为若干个点,通过各离散点构造代理模型,刻画出推力随时间变化的过程。在搜索最优解的过程中,考虑每个离散点对设计指标的逼近程度,通过缩小每个离散点与设计指标之间的偏差来更新代理模型。从而减少获取最优解所需的迭代次数。提高迭代效率。
本发明提供的设计方法适于对各类输入的仿真进行处理,此处的输入包括:装药几何构型仿真模型,燃面推移仿真模型和内弹道仿真模型,本文中将设计过程中所需输入统称为性能仿真模型。
参见图2,本发明提供一种固体火箭发动机装药设计方法,包括以下步骤:
1)给定发动机装药几何构型设计指标要求的推力需求曲线F0(t)。
此处发动机推力曲线是发动机设计时预设的输入,是火箭总体设计对发动机提出的各项性能指标要求,推力曲线F0(t)为一已知曲线。
2)建立发动机装药几何构型的参数化模型,根据所处理装药几何构型的类型确定所需处理的设计变量X及其范围;
在现有发动机设计过程中,装药的几何构型有“车轮型”、“星孔型”、“翼柱型”等多种,每一种构型都有与之对应的外形控制参数指标,本发明提供的方法适用于现有各类构型的装药机构。
3)根据设计变量X的个数m及其范围建立设计空间,在设计空间内采用最优拉丁超立方采样法采集2m个采样点,在每个采样点处建立性能仿真模型,并运行性能仿真模型;
得到每个采样点对应的2m条推力曲线,所得设计变量X在第i个采样点处的值Xi和与不同采样点对应的仿真推力曲线fi(t)之间的对应关系,如式(1)所示;
其中,Xi为设计变量X在第i个采样点处的推力值,fi(t)为对不同采样点处各设计变量分别进行设计仿真得到的仿真推力曲线,将2m条仿真推力曲线在每个工作时间点t上分别均匀地离散为N个点,得到如式(2)所示的样本集,该样本集表示各离散时刻ti的推力值f2m(tN)与设计变量Xi之间的对应关系:
4)根据式(2)构造每个离散时刻推力的代理模型si(X),得到N个代理模型,同时si(X)满足式(3):
F(ti)=si(X) (3)
其中,F(ti)为离散时刻ti(1<i<N)对应的推力;
通过公式(3)可以预测离散时刻ti(1<i<N)的推力F(ti)与设计变量X之间的关系。si(X)为根据样本数据[Xj,fj(ti)](j=1,2,…,2m+k),在每个离散点上构造得到的推力代理模型,此处代理模型构造方法参见:南京航空航天大学2004年毕业硕士穆雪峰的毕业论文:《多学科设计优化代理模型技术的研究和应用》。
5)根据所得N个代理模型,求解公式(4)所示的优化问题,得到该优化问题最优解为设计变量最优解Xk+2m
在所得设计变量最优解Xk+2m处运行性能仿真模型,得到对应的最优推力曲线,并将最优推力曲线在每个工作时间点上离散为N个点,添加到矩阵(2)中,则公式(2)中的样本点个数从N个变为2m+k个;
6)收敛判定:迭代初始时,令迭代次数k=0,指定搜索精度eps和最大搜索步数Kmax,之后按照公式(5)进行迭代计算得到任意两不同的离散时刻分别对应推力曲线的均方偏差:
其中,F2m+k-1(ti)为第2m+k-1个离散点处的推力曲线,F2m+k(ti)为第2m+k个离散点处的推力曲线,F0(ti)为设计指标要求的推力曲线,N为离散点个数;
若error(k)<eps或k=Kmax,则停止搜索,输出设计变量最优解Xk+2m及其对应的最优推力曲线f2m+k(t),[X2m+k,f2m+k(t)],否则,转步骤4)直至满足该条件时迭代停止。
优选的,搜索精度eps指定为0.001。优选的,最大搜索步数Kmax指定为5m。按此取值时能有效降低迭代次数。
F(t)是推力曲线,将其离散后便成了N个时刻的推力值。公式(5)表示了任意两不同的离散点分别对应推力曲线的均方偏差,反映了这两条推力曲线的接近程度,其意义在于若两次迭代中得到的最优推力曲线相当接近(均方偏差小于预定的精度),则可判定计算收敛。从而结束迭代,同时输出设计变量最优解对应的推力曲线,得到所要结果,同时对迭代次数进行有效控制和减少。,通过反复多次的迭代计算,实现对通过代理模型计算得到的最优解推力曲线进行修正,直至修正后的该最优解推力曲线能满足终止条件时为止,从而实现了对代理模型计算得到的推力曲线的修正。
该方法中所用性能仿真模型的构建请参考【董师颜,张兆顺.《固体火箭发动机原理》.北京理工大学出版社】、【方丁酉,张为华,杨涛.《固体火箭发动机内弹道学》.国防科技大学 出版社】。
以下以后翼柱型发动机装药设计为例,对本发明提供方法进行说明:
算例1~2中设计参数为:单推力(常值推力)和双推力(分段常值推力)发动机在实际应用中最为广泛。本节以单推力和双推力发动机为例,给出两个实施案例,装药配方和基准构型采用同一种形式。
装药属性:
燃速系数0.0765,压强指数0.34,特征速度1550,密度1700,燃气比热比1.2
以下算例1~2中所用后翼柱型装药构型的基本形状多为采用8片翼的后翼柱装药,其几何构型以及所需设计变量均表示在图3中,以下算例1~2中所需设计变量及其取值范围如表1所示。
表1后翼柱型装药设计变量及其范围表
算例1~2中所用本发明提供的固体火箭发动机装药设计方法,包括以下步骤:
1)采用拉丁超立方设计法在设计空间(如表1中所列各变量取值范围构成)内任选10个样本点,这10个样本点可以为某一变量范围内的,也可以为多个变量范围内选取的。运行发动机装药几何仿真模型,得到多条推力曲线,并按下式分别计算各推力曲线与推力需求的均方偏差:
其中,T为发动机工作时间,F0(t)为推力需求曲线,f(t)为所得推力曲线,f0为平均推力;该公式是一种通用的均方偏差标识方法。此处的公式(6)尽在算例中使用,是为了直观地展示计算结果而对设计过程的中间参数进行监控时需用到。
2)将各推力曲线在工作时间T上分别均匀的离散为20个离散时间点(即N=20);
3)根据10个初始样本点,在20个离散时间点上分别构造推力代理模型;
4)采用自适应差分进化算法求解公式(4)所示的优化问题,得到设计变量最优解Xk+2m,在设计变量最优解Xk+2m处运行装药几何构型仿真模型,得到最优解对应的推力曲线,并根据公式(5)计算该推力曲线与推力需求的均方偏差;
6)终止判定:若满足终止条件,则输出代理模型计算得到的最优解推力曲线,对应的最优解推力曲线,否则,将最优解点的数据加入步骤1)中的样本集中,进行下一步迭代,通过反复多次的迭代计算,实现对通过代理模型计算得到的最优解推力曲线进行修正,直至修正后的该最优解推力曲线能满足终止条件时为止,从而实现了对代理模型计算得到的推力曲线的修正。
算例1:
试验对象:单推力发动机
设计指标:
推力60kN,工作时间5s,装药外径291mm,装药内径91mm,装填系数0.8,装药质量125kg
设计过程均方偏差如图4所示、最小均方偏差对应的推力曲线如图4所示,所需各设计变量及各变量采用本发明提供设计方法设计后得到的设计结果列于表2中。
按照上述步骤中求解均方偏差,每次得到均方偏差后对其进行记录,即为图4中所示曲线。设计结束后在所有计算得到的推力曲线中,选择均方偏差最小的推力曲线,即为图4中均方偏差对应的推力曲线,列于图5中。
表2算例1的设计结果表
算例2:
试验对象:双推力发动机
设计指标:
一级推力150kN,工作时间1s,过渡时间1s,二级推力60kN,工作时间3s,装药外径291.7mm,装药内径117mm
设计过程均方偏差如图5所示,最小均方偏差对应的推力曲线如图6所示,对应各设计变量及各变量采用本发明提供设计方法设计后得到的设计结果列于表3中。
按照上述步骤中求解均方偏差,每次得到均方偏差后对其进行记录,即为图6中所示的曲线。设计结束后在所有计算得到的推力曲线中,选择均方偏差最小的推力曲线,即为图6中均方偏差对应的推力曲线,列于图7中。
表3算例2的设计结果表
参见图4可知,本发明提供的方法仅需进行21次高精度仿真模型的调用即可得到迭代结 果,计算量得到大幅降低。同时参见图5,所得推力需求与设计所需要达到的结果吻合度较高,说明按照本发明提供的设计方法所得结果较好。
而采用现有的基于智能优化或代理模型优化设计方法,需要的计算次数远远大于本发明所需的次数。不同方法需要的迭代次数统计如表4所示。
表4算例1~2与现有设计方法求解设计结果所需仿真次数结果表
[1]武泽平.变推力固体火箭发动机装药设计方法.中国航空学会动力分会火箭发动机专业委员会2015年年会,湖北恩施,2015
[2]K.M.Albarado,R.J.Hartfield,B.W.Hurston,R.M.Jenkins,Solid Rocket Motor Performance Matching Using Pattern Search/Particle Swarm Optimization,47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,San Diego,California,2011.
由表4可知,本发明提供的设计方法在仿真模型的迭代调用次数上,至少比已有的设计方法少一个数量级,充分验证了本发明能有效性减少设计发动机构型参数过程中所需的迭代次数,有利于提高设计效率。
本领域技术人员将清楚本发明的范围不限制于以上讨论的示例,有可能对其进行若干改变和修改,而不脱离所附权利要求书限定的本发明的范围。尽管己经在附图和说明书中详细图示和描述了本发明,但这样的说明和描述仅是说明或示意性的,而非限制性的。本发明并不限于所公开的实施例。
通过对附图,说明书和权利要求书的研究,在实施本发明时本领域技术人员可以理解和实现所公开的实施例的变形。在权利要求书中,术语“包括”不排除其他步骤或元素,而不定冠词“一个”或“一种”不排除多个。在彼此不同的从属权利要求中引用的某些措施的事实不意味着这些措施的组合不能被有利地使用。权利要求书中的任何参考标记不构成对本发明的范围的限制。

Claims (3)

1.一种固体火箭发动机装药设计方法,其特征在于,包括以下步骤:
1)给定发动机装药几何构型设计指标要求的推力需求曲线F0(t);
2)建立发动机装药几何构型的参数化模型,根据所处理装药几何构型的类型确定所需处理的设计变量X及其范围;
3)根据设计变量X的个数m及其范围建立设计空间,在设计空间内采用最优拉丁超立方采样法采集2m个采样点,在每个采样点处建立性能仿真模型,并运行性能仿真模型,得到每个采样点对应的2m条推力曲线,所得设计变量X在第i个采样点处的值Xi和与不同采样点对应的仿真推力曲线fi(t)之间的对应关系,如式(1)所示;
X 1 , f 1 ( t ) X 2 , f 2 ( t ) . . . . . . X 2 m , f 2 m ( t ) - - - ( 1 )
其中,Xi为设计变量X在第i个采样点处的推力值,fi(t)为对不同采样点处各设计变量分别进行设计仿真得到的仿真推力曲线,将2m条仿真推力曲线在每个工作时间点t上分别均匀地离散为N个点,得到如式(2)所示的样本集,该样本集表示各离散时刻ti的推力值f2m(tN)与设计变量Xi之间的对应关系:
X 1 , f 1 ( t 1 ) f 1 ( t 2 ) ... f 1 ( t N ) X 2 , f 2 ( t 1 ) f 2 ( t 2 ) ... f 2 ( t N ) . . . . . . X 2 m , f 2 m ( t 1 ) f 2 m ( t 2 ) ... f 2 m ( t N ) - - - ( 2 )
4)根据式(2)构造每个离散时刻推力的代理模型si(X),得到N个代理模型,同时si(X)满足式(3):
F(ti)=si(X) (3)
其中,F(ti)为离散时刻ti对应的推力,其中ti中的i满足1<i<N;
si(X)为根据样本数据[Xj,fj(ti)]其中j=1,2,…,2m+k,在每个离散点上构造得到的推力代理模型;
5)根据所得N个推力代理模型,求解公式(4)所示的优化问题,得到该优化问题对应的最优解为设计变量最优解Xk+2m
m i n 1 N &Sigma; i = 0 N &lsqb; s i ( X ) - F 0 ( t i ) &rsqb; 2 - - - ( 4 )
在所得设计变量最优解Xk+2m处运行性能仿真模型,得到对应的最优推力曲线,并将最优推力曲线在每个工作时间点上离散为N个点,添加到矩阵(2)中,则公式(2)中的样本点个数从N个变为2m+k个;
6)收敛判定:迭代初始时,令迭代次数k=0,指定搜索精度eps和最大搜索步数Kmax,按照公式(5)进行迭代计算得到任意两不同的离散时刻分别对应推力曲线的均方偏差:
e r r o r ( k ) = 1 N &Sigma; i = 0 N &lsqb; F 2 m + k - 1 ( t i ) - F 2 m + k ( t i ) F 0 ( t i ) &rsqb; 2 - - - ( 5 )
其中,F2m+k-1(ti)为第2m+k-1个离散点处的推力曲线,F2m+k(ti)为第2m+k个离散点处的推力曲线,F0(ti)为设计指标要求的推力曲线,N为离散点个数;
若error(k)<eps或k=Kmax,则停止搜索,输出设计变量最优解Xk+2m及其对应的最优推力曲线f2m+k(t),[X2m+k,f2m+k(t)],否则,转步骤4)直至满足该条件时迭代停止。
2.根据权利要求1所述的固体火箭发动机装药设计方法,其特征在于,所述搜索精度eps指定为0.001。
3.根据权利要求1所述的固体火箭发动机装药设计方法,其特征在于,所述最大搜索步数Kmax指定为5m。
CN201610293080.3A 2016-05-05 2016-05-05 固体火箭发动机装药设计方法 Active CN105956281B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610293080.3A CN105956281B (zh) 2016-05-05 2016-05-05 固体火箭发动机装药设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610293080.3A CN105956281B (zh) 2016-05-05 2016-05-05 固体火箭发动机装药设计方法

Publications (2)

Publication Number Publication Date
CN105956281A true CN105956281A (zh) 2016-09-21
CN105956281B CN105956281B (zh) 2019-03-22

Family

ID=56914429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610293080.3A Active CN105956281B (zh) 2016-05-05 2016-05-05 固体火箭发动机装药设计方法

Country Status (1)

Country Link
CN (1) CN105956281B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443108A (zh) * 2018-12-10 2019-03-08 哈尔滨工业大学 一种用于导弹打击移动目标的序贯实验设计方法
CN109815621A (zh) * 2019-02-20 2019-05-28 西北工业大学 一种固体火箭发动机侵蚀燃烧快速参数辨识方法
CN110263483A (zh) * 2019-07-02 2019-09-20 四川农业大学 基于flac3d软件的抗滑桩设计推力曲线计算方法
CN110705084A (zh) * 2019-09-26 2020-01-17 内蒙动力机械研究所 一种复合材料壳体的快速设计软件系统
CN111105503A (zh) * 2019-12-19 2020-05-05 中国人民解放军国防科技大学 一种固体火箭发动机装药燃面确定方法
CN111783251A (zh) * 2020-07-16 2020-10-16 中国人民解放军国防科技大学 一种固体火箭发动机总体参数设计方法
CN111881614A (zh) * 2020-09-28 2020-11-03 中国人民解放军国防科技大学 一种固体火箭发动机装药表征方法
CN112052521A (zh) * 2020-09-18 2020-12-08 中国人民解放军国防科技大学 基于连续-离散混合优化的固体发动机装药构型设计方法
CN112149228A (zh) * 2020-09-25 2020-12-29 中国人民解放军国防科技大学 一种固体火箭发动机性能渐进匹配设计方法
CN112507469A (zh) * 2021-02-04 2021-03-16 中国人民解放军国防科技大学 固体火箭发动机燃烧室绝热层设计方法
CN112528441A (zh) * 2021-02-18 2021-03-19 中国人民解放军国防科技大学 喉栓式变推力发动机总体参数设计方法、装置和设备
CN113047981A (zh) * 2021-03-16 2021-06-29 西北工业大学 冲量法固体推进剂燃速测试原始实验数据有效性判定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100004769A1 (en) * 2008-07-01 2010-01-07 Airbus Operations Ltd Method of designing a structure
CN101944141A (zh) * 2010-08-18 2011-01-12 北京理工大学 一种高效的基于模糊聚类自适应径向基全局优化方法
CN102682173A (zh) * 2012-05-13 2012-09-19 北京理工大学 基于自适应径向基函数代理模型的飞行器优化设计方法
CN103955557A (zh) * 2014-03-31 2014-07-30 北京航空航天大学 一种运载火箭多学科综合设计优化方法与系统
CN105930562A (zh) * 2016-04-13 2016-09-07 浙江大学 一种非概率条件下的结构性能优化设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100004769A1 (en) * 2008-07-01 2010-01-07 Airbus Operations Ltd Method of designing a structure
CN101944141A (zh) * 2010-08-18 2011-01-12 北京理工大学 一种高效的基于模糊聚类自适应径向基全局优化方法
CN102682173A (zh) * 2012-05-13 2012-09-19 北京理工大学 基于自适应径向基函数代理模型的飞行器优化设计方法
CN103955557A (zh) * 2014-03-31 2014-07-30 北京航空航天大学 一种运载火箭多学科综合设计优化方法与系统
CN105930562A (zh) * 2016-04-13 2016-09-07 浙江大学 一种非概率条件下的结构性能优化设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
武泽平 等: "应用径向基代理模型实现序列自适应再采样优化策略", 《国防科技大学学报》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443108A (zh) * 2018-12-10 2019-03-08 哈尔滨工业大学 一种用于导弹打击移动目标的序贯实验设计方法
CN109815621A (zh) * 2019-02-20 2019-05-28 西北工业大学 一种固体火箭发动机侵蚀燃烧快速参数辨识方法
CN109815621B (zh) * 2019-02-20 2022-04-05 西北工业大学 一种固体火箭发动机侵蚀燃烧快速参数辨识方法
CN110263483A (zh) * 2019-07-02 2019-09-20 四川农业大学 基于flac3d软件的抗滑桩设计推力曲线计算方法
CN110263483B (zh) * 2019-07-02 2022-12-13 四川农业大学 基于flac3d软件的抗滑桩设计推力曲线计算方法
CN110705084A (zh) * 2019-09-26 2020-01-17 内蒙动力机械研究所 一种复合材料壳体的快速设计软件系统
CN111105503B (zh) * 2019-12-19 2021-07-02 中国人民解放军国防科技大学 一种固体火箭发动机装药燃面确定方法
CN111105503A (zh) * 2019-12-19 2020-05-05 中国人民解放军国防科技大学 一种固体火箭发动机装药燃面确定方法
CN111783251A (zh) * 2020-07-16 2020-10-16 中国人民解放军国防科技大学 一种固体火箭发动机总体参数设计方法
CN111783251B (zh) * 2020-07-16 2021-12-03 中国人民解放军国防科技大学 一种固体火箭发动机总体参数设计方法
CN112052521A (zh) * 2020-09-18 2020-12-08 中国人民解放军国防科技大学 基于连续-离散混合优化的固体发动机装药构型设计方法
CN112052521B (zh) * 2020-09-18 2021-07-02 中国人民解放军国防科技大学 基于连续-离散混合优化的固体发动机装药构型设计方法
CN112149228A (zh) * 2020-09-25 2020-12-29 中国人民解放军国防科技大学 一种固体火箭发动机性能渐进匹配设计方法
CN111881614B (zh) * 2020-09-28 2020-12-08 中国人民解放军国防科技大学 一种固体火箭发动机装药表征方法
CN111881614A (zh) * 2020-09-28 2020-11-03 中国人民解放军国防科技大学 一种固体火箭发动机装药表征方法
CN112507469A (zh) * 2021-02-04 2021-03-16 中国人民解放军国防科技大学 固体火箭发动机燃烧室绝热层设计方法
CN112528441A (zh) * 2021-02-18 2021-03-19 中国人民解放军国防科技大学 喉栓式变推力发动机总体参数设计方法、装置和设备
CN113047981A (zh) * 2021-03-16 2021-06-29 西北工业大学 冲量法固体推进剂燃速测试原始实验数据有效性判定方法
CN113047981B (zh) * 2021-03-16 2022-11-22 西北工业大学 冲量法固体推进剂燃速测试原始实验数据有效性判定方法

Also Published As

Publication number Publication date
CN105956281B (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
CN105956281A (zh) 固体火箭发动机装药设计方法
CN111783251B (zh) 一种固体火箭发动机总体参数设计方法
CN113297686B (zh) 固体火箭发动机数据融合设计方法、装置、设备及介质
CN105446167B (zh) 高超声速超燃冲压发动机实时模型、仿真方法
Atta et al. A grid interfacing zonal algorithm for three-dimensional transonic flows about aircraft configurations
CN112580274A (zh) 一种适用于组合动力高超声速飞机的轨迹优化方法
CN111967202B (zh) 一种基于人工智能的航空发动机极速性能数字孪生方法
CN104750948A (zh) 一种处理飞行器设计中多极值多约束问题的优化方法
CN110188378B (zh) 一种基于神经网络的气动数据融合方法
CN115906286A (zh) 内外弹道耦合的火箭设计方法及装置、电子设备、存储介质
CN117094090A (zh) 异构方案知识迁移的固体发动机总体性能快速计算方法
CN110414168B (zh) 基于与前机身耦合优化的高超声速隔离段设计方法及系统
CN109033487B (zh) 一种基于蒙特卡洛仿真的飞行器总体概率设计方法
CN109325288A (zh) 一种基于不确定性优化的固体运载器总体参数确定方法及系统
Yildirim et al. Coupled aeropropulsive design optimization of a podded electric propulsor
Lengyel-Kampmann et al. Generalized optimization of counter-rotating and single-rotating fans
Taheri et al. Performance comparison of smoothing functions for indirect optimization of minimum-fuel low-thrust trajectories
Zhao et al. Optimization of the aerodynamic configuration of a tubular projectile based on blind kriging
CN110220414B (zh) 一种末端制导炮弹射表编拟中的符合方法
Lamkin et al. Coupled aeropropulsive analysis and optimization of a high bypass turbofan engine
Luo et al. Numerical simulation of serial launch process of multiple projectiles considering the aftereffect period
Zhang et al. Optimization of cycle parameters of variable cycle engine based on response surface model
Rusyak et al. Numerical research of resistance of environment to accelerated motion of bodies with various forms in channel of constant section
Koc et al. Aerodynamic design of complex configurations with junctions
CN111191358B (zh) 一种吸气式超声速导弹轨迹优化设计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant