CN105817256B - 一种太阳能光解水制氢用氧化钛催化剂及其制备方法 - Google Patents

一种太阳能光解水制氢用氧化钛催化剂及其制备方法 Download PDF

Info

Publication number
CN105817256B
CN105817256B CN201610321627.6A CN201610321627A CN105817256B CN 105817256 B CN105817256 B CN 105817256B CN 201610321627 A CN201610321627 A CN 201610321627A CN 105817256 B CN105817256 B CN 105817256B
Authority
CN
China
Prior art keywords
titanium oxide
oxide catalyst
water hydrogen
photolysis water
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610321627.6A
Other languages
English (en)
Other versions
CN105817256A (zh
Inventor
赵学国
王艳香
黄丽群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingdezhen Ceramic Institute
Original Assignee
Jingdezhen Ceramic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingdezhen Ceramic Institute filed Critical Jingdezhen Ceramic Institute
Priority to CN201610321627.6A priority Critical patent/CN105817256B/zh
Publication of CN105817256A publication Critical patent/CN105817256A/zh
Application granted granted Critical
Publication of CN105817256B publication Critical patent/CN105817256B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种太阳能光解水制氢用氧化钛催化剂,所述氧化钛催化剂粉体材料的组成为:二氧化钛98.00~99.88wt%、三氧化钨0.1~1wt%、碳0.01~1wt%、氮0.01~1wt%。此外,还公开了上述太阳能光解水制氢用氧化钛催化剂的制备方法。本发明光催化剂为W‑N‑C三元共掺杂TiO2光催化剂材料,不但可以减小TiO2禁带宽度,而且可有效促进光生电子的迁移,提高TiO2量子效率,具有可见光响应、高效稳定的优异性能,能够有效提高并保证光解水制氢活性和制氢效率。本发明工艺简单,便于操作,有利于推广和应用,从而有助于促进光解水制氢技术的发展。

Description

一种太阳能光解水制氢用氧化钛催化剂及其制备方法
技术领域
本发明涉及光催化材料技术领域,尤其涉及一种太阳能光解水制氢用氧化钛催化剂及其制备方法。
背景技术
二氧化钛(TiO2)作为重要的新能源和环境保护材料,可应用于光催化、太阳能发电、太阳能集热等领域。然而,TiO2在太阳能利用方面面临巨大的挑战,主要原因在于其光吸收范围窄(~5%的紫外光)、电子-空穴对的分离效率低等。为提高对可见光的利用率,研制新型高效可见光响应的光解水制氢用TiO2催化剂材料具有重要意义。
目前,现有技术采用了多种方法发展TiO2光解水制氢技术,如半导体复合、有机染料敏化和离子掺杂等。尽管前两种方法均可提高TiO2可见光响应范围及其光解水制氢活性,但是其采用的窄带隙半导体和有机染料等存在着易氧化、使用寿命短、不稳定等缺陷。通过离子掺杂在TiO2禁带中产生杂质能级,使得宽禁带TiO2半导体具有可见光活性,但是过渡金属离子或非金属离子单掺杂,分别在TiO2导带下方或价带上方形成不连续的杂质能级,由于较高的电子空穴复合率,其光化学活性依然很低。为此,寻找高效稳定、环境友好的可见光响应的光解水制氢TiO2催化剂已成为当前研究的重要前沿方向。
发明内容
本发明的目的在于克服现有技术的不足,提供一种高效稳定的太阳能光解水制氢用氧化钛催化剂,以有效提高并保证光解水制氢活性和制氢效率,从而促进光解水制氢技术的发展。本发明的另一目的在于提供上述氧化钛催化剂的制备方法。
本发明的目的通过以下技术方案予以实现:
本发明提供的一种太阳能光解水制氢用氧化钛催化剂,所述氧化钛催化剂粉体材料的组成为:二氧化钛98.00~99.88wt%、三氧化钨0.1~1wt%、碳0.01~1wt%、氮0.01~1wt%。本发明为W-N-C三元共掺杂TiO2光催化剂粉体材料,具有可见光响应、高效稳定的优异性能。
上述方案中,本发明所述掺杂的三氧化钨、碳、氮均位于氧化钛粉体颗粒表面;所述碳、氮均以间隙形式掺入氧化钛晶格中,所述三氧化钨以置换形式掺入氧化钛中。本发明所述氧化钛为锐钛矿相,其粉体颗粒呈球形,粒度为10~20nm。
本发明的另一目的通过以下技术方案予以实现:
本发明提供的上述太阳能光解水制氢用氧化钛催化剂的制备方法,包括以下步骤:
(1)将0.05mol钛源加入10ml冰水溶液中,搅拌下加入12~15ml浓氨水溶液,形成沉淀,真空过滤、洗涤后,得到富含氨的钛酸Ti(OH)4
(2)向所述钛酸Ti(OH)4中加入三氧化钨掺杂源、碳掺杂源,所述三氧化钨掺杂源、碳掺杂源的用量分别为钛酸Ti(OH)4的0.1~1wt%、0.01~1wt%,然后加入纯水,经超声分散而形成悬浊液;
(3)将所述悬浊液移入马弗炉内焙烧至400~450℃,保温1~2h,即得到W-N-C共掺氧化钛催化剂粉体材料。
进一步地,本发明制备方法所述钛源为四氯化钛、钛酸丁酯或异丙醇钛。所述三氧化钨掺杂源为钨酸钠、钨酸铵或仲钨酸铵。所述碳掺杂源为二氰二胺或葡萄糖。
本发明具有以下有益效果:
本发明光催化剂为W-N-C三元共掺杂TiO2光催化剂材料。当N-C二元共掺杂TiO2时,C掺杂能有效促进N杂质能级与TiO2价带本征能级的交叠(价带上移),同时N-C共掺可在TiO2导带下方形成连续的杂质态,能有效促进电子的迁移;由于WO3与TiO2能级结构相似,且钨杂质能级位于TiO2导带下方,通过W-N-C三元共掺杂,不但可以减小TiO2禁带宽度(2.4eV),而且可有效促进光生电子的迁移,提高TiO2量子效率,具有可见光响应、高效稳定的优异性能,在400mW/cm2可见光照射下其光解水产氢速率达到10~12mmolg-1h-1。此外,本发明工艺简单,便于操作,有利于推广和应用。
附图说明
下面将结合实施例和附图对本发明作进一步的详细描述:
图1是本发明实施例所制得氧化钛催化剂粉体材料的X-射线晶体衍射图;
图2是本发明实施例所制得氧化钛催化剂粉体材料的扫描电镜图;
图3是图2相应的微区能谱图;
图4是本发明实施例所制得氧化钛催化剂粉体材料的透射电镜图;
图5是图4相应的微区能谱图;
图6是本发明实施例所制得氧化钛催化剂粉体材料和现有技术商用P25粉紫外可见吸收光谱对照图(W-N-C codoped TiO2:本发明实施例氧化钛催化剂粉体;undoped TiO2:现有技术商用P25粉);
图7是本发明实施例所制得氧化钛催化剂粉体材料的X射线光电子能谱图。
具体实施方式
实施例一:
本实施例一种太阳能光解水制氢用氧化钛催化剂,其步骤如下:
(1)将9.5克(0.05mol)TiCl4滴入10ml冰水溶液中,搅拌下加入15ml浓氨水溶液(含氨25~28%),形成沉淀,真空过滤、反复洗涤后,得到富含氨的钛酸Ti(OH)4
(2)向上述钛酸Ti(OH)4沉淀中加入0.0165克钨酸钠、0.05克二氰二胺,然后加100ml纯水,经超声分散10min而形成悬浊液;
(3)将上述悬浊液移入马弗炉内焙烧至400℃,保温1h,即得到氧化钛催化剂粉体材料。
本实施例制得的氧化钛催化剂粉体材料的组成为:二氧化钛99.53wt%、三氧化钨0.4wt%、碳0.03wt%、氮0.04wt%。
实施例二:
本实施例一种太阳能光解水制氢用氧化钛催化剂,其步骤如下:
(1)将9.5克(0.05mol)TiCl4滴入10ml冰水溶液中,搅拌下加入12ml浓氨水溶液(含氨25~28%),形成沉淀,真空过滤、反复洗涤后,得到富含氨的钛酸Ti(OH)4
(2)向上述钛酸Ti(OH)4沉淀中加入0.016克钨酸铵及0.04克二氰二胺,然后加入100ml纯水,经超声分散10min而形成悬浊液;
(3)将上述悬浊液移入马弗炉内焙烧至400℃,保温1h,即得到氧化钛催化剂粉体材料。
本实施例制得的氧化钛催化剂粉体材料的组成为:二氧化钛99.55wt%、三氧化钨0.4wt%、碳0.02wt%、氮0.03wt%。
实施例三:
本实施例一种太阳能光解水制氢用氧化钛催化剂,其步骤如下:
(1)将9.5克(0.05mol)TiCl4滴入10ml冰水溶液中,搅拌下加入15ml浓氨水溶液(含氨25~28%),形成沉淀,真空过滤、反复洗涤后,得到富含氨的钛酸Ti(OH)4
(2)向上述钛酸Ti(OH)4沉淀中加入0.02克钨酸铵及0.04克葡萄糖,然后加入100ml纯水,经超声分散10min而形成悬浊液;
(3)将上述悬浊液移入马弗炉内焙烧至450℃,保温1h,即得到氧化钛催化剂粉体材料。
本实施例制得的氧化钛催化剂粉体材料的组成为:二氧化钛99.45wt%、三氧化钨0.5wt%、碳0.02wt%、氮0.03wt%。
本发明实施例制备得到的氧化钛催化剂粉体材料,如图1所示,其晶相为锐钛矿相,不含有其它杂相;由10~20nm左右近球形颗粒组成(见图2、图4),由其相应的微区能谱图(图3、图5)可见,所掺杂元素均位于TiO2颗粒表面。
本发明实施例氧化钛催化剂粉体材料,如图6所示,在TiO2粉体表面掺入少量W-N-C后对400~600nm可见光均产生较为强烈的吸收现象。如图7所示,TiO2粉体表面含有少量W6 +、N3-、C4+,W4f5/2峰位于37.4eV,但其W4f7/2峰消失(位于35.4eV,见图7c),说明W6+置换了Ti4 +;N1s峰位于400eV,对应于间隙N掺杂(见图7a);C1s峰位于286.3eV、288.9eV(见图7b),分别对应于C-O和O-C=O键,说明碳以碳酸盐的形式对TiO2进行改性,属于间隙碳;位于529.193eV、531.9eV的O1s峰,分别对应于Ti-O-Ti和O-C=O键,进一步说明碳与氧原子间形成了化学键(见图7d)。
本发明实施例氧化钛催化剂光解水产氢速率的测定:
将0.1g催化剂(负载0.5%重量比纳米铂)加入100ml 20vol%甲醇水溶液中超声分散15min,通氩气10~30min后,在搅拌状态下使用250W氙灯照射(光密度约为400mW/cm2,照射截面积为28cm2),每照射1h后取样,以色谱分析并计算光解水产氢速率。测定结果如表1所示。
表1本发明实施例氧化钛催化剂光解水产氢速率
实施例 光解水产氢速率(mmolg-1h-1)
实施例一 10
实施例二 11
实施例三 12

Claims (6)

1.一种太阳能光解水制氢用氧化钛催化剂,其特征在于所述氧化钛催化剂粉体材料的组成为:二氧化钛98.00~99.88wt%、三氧化钨0.1~1wt%、碳0.01~1wt%、氮0.01~1wt%;所述掺杂的三氧化钨、碳、氮均位于氧化钛粉体颗粒表面;所述碳、氮均以间隙形式掺入氧化钛晶格中,所述三氧化钨以置换形式掺入氧化钛中。
2.根据权利要求1所述的太阳能光解水制氢用氧化钛催化剂,其特征在于:所述氧化钛为锐钛矿相,其粉体颗粒呈球形,粒度为10~20nm。
3.权利要求1或2所述太阳能光解水制氢用氧化钛催化剂的制备方法,其特征在于包括以下步骤:
(1)将0.05mol钛源加入10ml冰水溶液中,搅拌下加入12~15ml浓氨水溶液,形成沉淀,真空过滤、洗涤后,得到富含氨的钛酸Ti(OH)4
(2)向所述钛酸Ti(OH)4中加入三氧化钨掺杂源、碳掺杂源,所述三氧化钨掺杂源、碳掺杂源的用量分别为钛酸Ti(OH)4的0.1~1wt%、0.01~1wt%,然后加入纯水,经超声分散而形成悬浊液;
(3)将所述悬浊液移入马弗炉内焙烧至400~450℃,保温1~2h,即得到W-N-C共掺氧化钛催化剂粉体材料。
4.根据权利要求3所述的太阳能光解水制氢用氧化钛催化剂的制备方法,其特征在于:所述钛源为四氯化钛、钛酸丁酯或异丙醇钛。
5.根据权利要求3所述的太阳能光解水制氢用氧化钛催化剂的制备方法,其特征在于:所述三氧化钨掺杂源为钨酸钠、钨酸铵或仲钨酸铵。
6.根据权利要求3所述的太阳能光解水制氢用氧化钛催化剂的制备方法,其特征在于:所述碳掺杂源为二氰二胺或葡萄糖。
CN201610321627.6A 2016-05-16 2016-05-16 一种太阳能光解水制氢用氧化钛催化剂及其制备方法 Expired - Fee Related CN105817256B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610321627.6A CN105817256B (zh) 2016-05-16 2016-05-16 一种太阳能光解水制氢用氧化钛催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610321627.6A CN105817256B (zh) 2016-05-16 2016-05-16 一种太阳能光解水制氢用氧化钛催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN105817256A CN105817256A (zh) 2016-08-03
CN105817256B true CN105817256B (zh) 2018-04-20

Family

ID=56529634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610321627.6A Expired - Fee Related CN105817256B (zh) 2016-05-16 2016-05-16 一种太阳能光解水制氢用氧化钛催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN105817256B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6541895B1 (ja) * 2017-08-22 2019-07-10 三菱電機株式会社 光触媒、光触媒担持体、光触媒の製造方法及び光触媒担持体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188711A1 (en) * 2000-09-15 2002-03-20 The Hydrogen Solar Production Company Limited Photocatalyst for use in the production of hydrogen from water or aqueous solutions of organic compounds
WO2006054954A1 (en) * 2004-11-22 2006-05-26 Water And Environmental Technologies Pte. Ltd Fabrication of a densely packed nano-structured photocatalyst for environmental applications
CN101301619A (zh) * 2008-07-03 2008-11-12 南开大学 高效率金属、非金属离子共掺杂纳米TiO2可见光催化剂的制备方法
CN102091644A (zh) * 2010-12-27 2011-06-15 湖北工业大学 一种碳-氮-氯共掺杂纳米二氧化钛光催化剂的制备方法
CN102527409A (zh) * 2010-12-31 2012-07-04 中国科学院金属研究所 钨氮二元共掺杂纳米TiO2光催化剂及其制备方法
CN103801353A (zh) * 2012-11-14 2014-05-21 上海纳米技术及应用国家工程研究中心有限公司 一种碳氮共掺杂的二氧化钛可见光催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188711A1 (en) * 2000-09-15 2002-03-20 The Hydrogen Solar Production Company Limited Photocatalyst for use in the production of hydrogen from water or aqueous solutions of organic compounds
WO2006054954A1 (en) * 2004-11-22 2006-05-26 Water And Environmental Technologies Pte. Ltd Fabrication of a densely packed nano-structured photocatalyst for environmental applications
CN101301619A (zh) * 2008-07-03 2008-11-12 南开大学 高效率金属、非金属离子共掺杂纳米TiO2可见光催化剂的制备方法
CN102091644A (zh) * 2010-12-27 2011-06-15 湖北工业大学 一种碳-氮-氯共掺杂纳米二氧化钛光催化剂的制备方法
CN102527409A (zh) * 2010-12-31 2012-07-04 中国科学院金属研究所 钨氮二元共掺杂纳米TiO2光催化剂及其制备方法
CN103801353A (zh) * 2012-11-14 2014-05-21 上海纳米技术及应用国家工程研究中心有限公司 一种碳氮共掺杂的二氧化钛可见光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Enhanced photocatalytic degradation of rhodamine B under visible light irradiation on mesoporous anatase TiO2 microspheres by codoping with W and N";Jian Zheng等;《Solid State Sciences》;20151019;第54卷;49-53 *
"碳氮共掺杂二氧化钛的合成与制氢性能研究";沈少华;《2004"全国太阳能光化学与光催化学术会议专辑》;20040901;157-158 *

Also Published As

Publication number Publication date
CN105817256A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
Andronic et al. Black TiO2 synthesis by chemical reduction methods for photocatalysis applications
Lai et al. Incorporation of WO3 species into TiO2 nanotubes via wet impregnation and their water-splitting performance
Luo et al. Nonmetal element doped g-C3N4 with enhanced H2 evolution under visible light irradiation
CN107442150B (zh) 一种二维锐钛矿TiO2/g-C3N4复合材料及其制备方法和应用
CN103990485B (zh) 氮化碳纳米粒子修饰钒酸铋复合光催化剂及其制备方法
CN102350369B (zh) 氮氟掺杂二氧化钛光催化剂及其在可见光降解有机污染物中的应用
CN110227453B (zh) 一种AgCl/ZnO/GO复合可见光催化剂的制备方法
CN103962159B (zh) 一种光催化剂及其制备方法和应用
CN105664979A (zh) 一种纳米介孔微球状Ln-Bi5O7I光催化剂及其制备方法
Yi et al. Preparation of Bi2Ti2O7/TiO2 nanocomposites and their photocatalytic performance under visible light irradiation
CN101116808A (zh) 一种具有负离子释放功能的光催化粉体及其制备方法
CN105664995A (zh) 一种多元素共掺杂纳米二氧化钛光催化材料
CN102500405B (zh) 铈氮氟共掺杂二氧化钛光催化剂及在可见光降解有机污染物中的应用
Zheng et al. Solar-light induced photoreduction of CO2 using nonthermal plasma sulfurized MoO3@ MoS2-CuS composites
CN105688972A (zh) 介孔-α-三氧化二铁/掺氮还原石墨烯高效复合光催化剂的制备方法
CN106622293A (zh) 一种H‑TiO2/CdS/Cu2‑xS纳米带的制备方法
Wang et al. Construction of electron transport channels in type-I heterostructures of Bi2MoO6/BiVO4/g-C3N4 for improved charge carriers separation efficiency
CN102553562B (zh) 多重改性复合光催化剂及其制备方法
Ding et al. In-situ growth of N–TiO2 on delaminated N–Ti3C2 with highly strengthened photocatalytic activity
CN105771953A (zh) 一种钛酸锌/二氧化钛复合纳米材料的制备方法
CN105817256B (zh) 一种太阳能光解水制氢用氧化钛催化剂及其制备方法
CN102500406B (zh) 铁氮氟共掺杂TiO2光催化剂及在可见光降解有机污染物中的应用
CN104511280A (zh) 一种可见光催化剂及其制备方法
CN104549202A (zh) 一种锐钛矿相碳掺杂二氧化钛光催化剂的制造方法
Wei et al. Upconversion boosting pollutants degradation efficiency in wide-spectrum responsive photocatalysts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180420

Termination date: 20210516

CF01 Termination of patent right due to non-payment of annual fee