CN105814688A - 在嵌入式外延刻面上形成硅化物和接触 - Google Patents

在嵌入式外延刻面上形成硅化物和接触 Download PDF

Info

Publication number
CN105814688A
CN105814688A CN201480067520.2A CN201480067520A CN105814688A CN 105814688 A CN105814688 A CN 105814688A CN 201480067520 A CN201480067520 A CN 201480067520A CN 105814688 A CN105814688 A CN 105814688A
Authority
CN
China
Prior art keywords
drain
territory
mos transistor
grid
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480067520.2A
Other languages
English (en)
Other versions
CN105814688B (zh
Inventor
K-Y·利姆
J·W·布拉奇福德
S·S·艾博特
Y·崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN105814688A publication Critical patent/CN105814688A/zh
Application granted granted Critical
Publication of CN105814688B publication Critical patent/CN105814688B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/535Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including internal interconnections, e.g. cross-under constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/4175Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

在描述的示例中,形成一种具有邻接场氧化物(106)的MOS晶体管(108)和场氧化物(106)上的邻近MOS晶体管(108)的栅极结构(110)的集成电路(100)。外延源极/漏极(124)与场氧化物(106)之间的间隙(146)被形成为具有间隙(146)中的基于二氧化硅的填隙料(148)形成。金属硅化物(150)在被暴露的外延源极/漏极区域(124)上形成。保形接触刻蚀停止层即CESL(152)在集成电路(100)上形成,以及前金属介电层即PMD层(154)在CESL(152)上形成。形成通过PMD层(154)和CESL(152)的接触(156)以电气连接到外延源极/漏极区域(124)上的金属硅化物(150)。

Description

在嵌入式外延刻面上形成硅化物和接触
背景技术
本申请通常涉及集成电路,以及特别地涉及集成电路中MOS晶体管的外延区域。
集成电路可包括具有外延源极/漏极区域的金属氧化物半导体(MOS)晶体管。例如,p沟道金属氧化物半导体(PMOS)晶体管可具有锗化硅外延源极/漏极区域。n沟道金属氧化物半导体(NMOS)晶体管可具有磷掺杂的硅外延源极/漏极区域。外延源极/漏极区域的一个实例可邻接通过浅沟槽隔离(STI)过程形成的场氧化物。外延源极/漏极区域可具有急转角度的表面刻面以及在场氧化物的外延材料和介电材料之间的空腔。
栅极结构可位于邻近外延源极/漏极区域的场氧化物上,以便栅极结构的侧表面上的介电间隔材料可延伸进入空腔并向下到达外延材料,从而减小外延源极/漏极区域上金属硅化物的面积。由于硅化物面积减小以及可能与到源极/漏极区域的接触的定位公差结合,配置在外延源极/漏极区域上的接触可不合期望地提供高电阻连接至MOS晶体管。
发明内容
在描述的示例中,集成电路包括邻接场氧化物的MOS晶体管和在邻近MOS晶体管的源极/漏极区域的场氧化物上的栅极结构,该集成电路通过在MOS晶体管和场氧化物的栅极结构上形成有图案的外延硬掩模层形成,该外延硬掩膜层暴露场氧化物和MOS晶体管的栅极结构之间的源极/漏极。半导体材料外延地形成于源极/漏极区域,以便邻接场氧化物的MOS晶体管的外延源极/漏极区域可具有急转角度的表面刻面,以及间隙可存在于外延半导体材料和场氧化物的介电材料之间。基于二氧化硅的填隙料形成于外延半导体材料和场氧化物的介电材料之间的间隙中。源极/漏极间隔区随后邻近MOS栅极结构和场氧化物上的栅极结构的侧表面形成。金属硅化物形成于被暴露的外延半导体材料上。保形接触刻蚀停止衬垫形成于MOS晶体管和场氧化物上的栅极结构上。到金属硅化物的接触形成于邻接场氧化物的外延源极/漏极区域上。
附图说明
图1为一种包括填隙料的示例集成电路的横截面。
图2A到图2H为描述图1集成电路在连续制造过程中的横截面。
图3A到图3G为描述另一个示例集成电路在连续制造过程中的横截面。
具体实施方式
一种集成电路包括邻接场氧化物的MOS晶体管和在邻近MOS晶体管的源极/漏极区域的场氧化物上的栅极结构,其通过在MOS晶体管和场氧化物上的栅极结构上形成图案化的外延硬掩模层形成,其暴露场氧化物和MOS晶体管的栅极结构之间的源极/漏极。半导体材料外延地形成于源极/漏极区域中,以便邻接场氧化物的MOS晶体管的外延源极/漏极区域可具有急转角度的表面刻面,以及间隙可存在于外延半导体材料和场氧化物的介电材料之间。基于二氧化硅的填隙料形成于外延半导体材料和场氧化物的介电材料之间的间隙中。
在一种示例制造工艺步骤中,基于二氧化硅的介电材料的保形层形成于集成电路上,延伸进入外延半导体材料和场氧化物之间的间隙。随后各向同性回蚀过程将基于二氧化硅的介电材料从MOS晶体管和场氧化物上的栅极结构上移除,留下填隙料。主要为非二氧化硅的源极/漏极间隔区邻近MOS晶体管的栅极结构和场氧化物上的栅极结构形成,其有利地留下至少一半的MOS晶体管的外延源极/漏极区域邻接被暴露的场氧化物。
在另一个示例制造工艺步骤中,源极/漏极间隔区基于二氧化硅的第一子层共形地形成于集成电路上,延伸进入外延半导体材料和场氧化物之间的间隙。随后各向异性回蚀过程将第一子层从MOS晶体管的顶面和场氧化物上的栅极结构上移除,留下邻近MOS晶体管的栅极结构和场氧化物上的栅极结构的第一源极/漏极间隔区。场氧化物上的栅极结构上的第一间隔区延伸进入外延半导体材料和场氧化物之间的间隙,提供填隙料。源极/漏极间隔区的基于氮化硅的第二子层共形地形成于集成电路上。各向异性回蚀移除第二子层以留下基于氮化硅的第二间隔区。邻接场氧化物的MOS晶体管的外延源极/漏极区域的至少三分之一被暴露。
在形成填隙料之后,例如通过上述示例制造工艺步骤之一,金属硅化物形成于被暴露的外延源极/漏极区域上。保形接触刻蚀停止层(CESL)形成于集成电路上,以及前金属介电(PMD)层形成于CESL上。形成通过PMD层和CESL的接触,以电气连接至外延源极/漏极区域上的金属硅化物。
图1为一张包括填隙料的示例集成电路的横截面。集成电路100形成于衬底102中和衬底102上,其包括半导体材料104,例如延伸到衬底102顶面的单晶硅。场氧化物106形成于衬底102中,例如使用STI过程。
集成电路100包括邻近场氧化物106具有第一极性的第一MOS晶体管108,邻近第一MOS晶体管108的场氧化物106上的栅极结构110,以及具有第二,相反,极性的第二MOS晶体管112。场氧化物106的顶面114与第一MOS晶体管108下的半导体材料104的顶面116在20纳米内共面。
第一MOS晶体管108包括半导体材料104的顶面处的栅极介电层118。栅极介电层118可包括通过半导体材料104的热氧化形成的二氧化硅。栅极介电层118可包括沉积的具有高介电常数的介电材料,例如氧化铪、氧化锆和/或氧化钽。第一MOS晶体管108包括栅极介电层118上的栅极120。栅极120可包括多晶的硅,通常被称为多晶硅。第一MOS晶体管108可包括栅极120侧表面上的栅极偏移间隔区122。栅极偏移间隔区122可包括一层或更多层的热氧化物、沉积的二氧化硅和/或沉积的氮化硅。第一MOS晶体管108包括衬底102中的第一外延源极/漏极区域124,其在栅极120和场氧化物106之间,以便第一外延源极/漏极区域124邻接场氧化物106。第一MOS晶体管108还包括衬底102中的第二外延源极/漏极区域126,其邻近栅极120,与第一外延源极/漏极区域124相对。第一MOS晶体管108包括源极/漏极间隔区128,其侧面地邻近栅极120并邻接栅极偏移间隔区122,如果存在。源极/漏极间隔区128包括一层或更多层的氮化硅和/或氧氮化硅或其他非二氧化硅介电材料。第一MOS晶体管108可包括源极/漏极间隔区128下的基于二氧化硅的介电材料的可选的间隔区衬垫130。间隔区衬垫130可为3纳米到10纳米厚。
如果栅极介电层118为同时沉积在半导体材料104和场氧化物106上的沉积介电层,栅极结构110可能具有与栅极介电层118材料相同的栅极介电层。另一方面,如果栅极介电层118为热生长氧化层,其不在场氧化物106上形成,栅极结构110可不含栅极介电层,如图1中所述。栅极结构110包括场氧化物106和栅极结构110的栅极介电层上的栅极132,如果存在。在当前示例中,栅极132不与邻近第一MOS晶体管108的场氧化物106的边缘重叠。栅极132可具有与第一MOS晶体管108的栅极120相同的成分和结构。如果第一MOS晶体管108包括栅极偏移间隔区122,栅极结构110可包括栅极132的侧表面上的栅极偏移间隔区134。栅极偏移间隔区134可具有与第一MOS晶体管108的栅极偏移间隔区122相似的成分和结构。栅极结构110包括源极/漏极间隔区136,其侧面地邻近栅极132并邻接栅极偏移间隔区134,如果存在。源极/漏极间隔区136具有与第一MOS晶体管108的源极/漏极间隔区128相同的结构和成分。如果第一MOS晶体管108中存在,栅极结构110可包括间隔区衬垫130。
第二MOS晶体管112包括半导体材料104顶面上的栅极介电层138。栅极介电层138可能具有与第一MOS晶体管108的栅极介电层118相同的成分和结构。第二MOS晶体管112包括栅极介电层138上的栅极140。栅极140可能具有与第一MOS晶体管108的栅极120相似的成分和结构。第二MOS晶体管112可包括栅极140的侧表面上的栅极偏移间隔区142。栅极偏移间隔区142可包括一层或更多层的热氧化物、沉积的二氧化硅和/或沉积的氮化硅,以及可能具有与第一MOS晶体管108的栅极偏移间隔区122相似的结构和成分。第二MOS晶体管112包括源极/漏极间隔区144,其侧面地邻近栅极140并邻接栅极偏移间隔区142,如果存在。源极/漏极间隔区144可能具有与第一MOS晶体管108的源极/漏极间隔区128相同的结构和成分。如果第一MOS晶体管108中存在,第二MOS晶体管112可包括间隔区衬垫130。
第一外延源极/漏极区域124具有面向场氧化物106的成角度的刻面,其因此在场氧化物的顶面114处与场氧化物106侧面地分开,在第一外延源极/漏极区域124和场氧化物106之间形成间隙146,其距离顶面114向下延伸至少20纳米。基于二氧化硅的填隙料148配置在间隙146中,填隙料148邻接场氧化物106并且向下延伸至第一外延源极/漏极区域124并在间隙146的底部接触第一外延源极/漏极区域124。在当前的示例中,填隙料148向上延伸至栅极结构110的源极/漏极间隔区136,接触间隔区衬垫130,如果存在,或者接触源极/漏极间隔区136,如果间隔区衬垫130不存在。
金属硅化物150配置在第一外延源极/漏极区域124和第二外延源极/漏极区域126上。附加的金属硅化物150可配置在第二MOS晶体管112的源极/漏极区域上,在第一MOS晶体管108的栅极120上,在栅极结构110的栅极132上以及在第二MOS晶体管112的栅极140上。第一外延源极/漏极区域124上的金属硅化物150延伸进入成角度的刻面上的间隙146并覆盖至少一半的第一外延源极/漏极区域124。金属硅化物150可包括,例如,硅化镍。
CESL152配置在第一MOS晶体管108、栅极结构110和第二MOS晶体管112上。CESL152主要为基于非二氧化硅的介电材料,例如氮化硅,10纳米到30纳米厚。PMD层154配置在CESL152上。PMD层154可为基于二氧化硅的介电材料,例如硼磷硅玻璃(BPSG)。PMD层154可被平面化,如图1所述,并且可为,例如,在第一MOS晶体管108、栅极结构110和第一MOS晶体管112上50纳米到150纳米厚。
接触156配置为通过PMD层154和CESL152,以与第一外延源极/漏极区域124上的金属硅化物150直接连接。接触156可包括钛和氮化钛的金属衬垫158,以及钨的填充金属160。填隙料148可阻止间隙146被源极/漏极间隔区136和CESL152填充,因此有利地允许金属硅化物150占据第一外延源极/漏极区域124的成角度的刻面的更大一部分,并提供接触156和第一外延源极/漏极区域124之间更低的电阻连接。
在现有示例的一个版本中,第一MOS晶体管108可为PMOS晶体管108,以及第一外延源极/漏极区域124和第二外延源极/漏极区域126可为锗化硅,以及第二MOS晶体管112可为NMOS晶体管112。在一个替换版本中,第一MOS晶体管108可为NMOS晶体管108,以及第一外延源极/漏极区域124和第二外延源极/漏极区域126可为掺杂磷的硅,以及第二MOS晶体管112可为PMOS晶体管112。
图2A到图2H为描述图1集成电路在连续制造过程中的横截面。参考图2A,集成电路100具有完整形成的外延源极/漏极区域用于具有第一极性的晶体管。第一MOS晶体管108在适当的位置具有栅极介电层118、栅极120、栅极偏移间隔区122和第一外延源极/漏极区域124以及第二外延源极/漏极区域126。栅极结构110在适当的位置具有栅极132和栅极偏移间隔区134。第二MOS晶体管112在适当的位置具有栅极介电层138、栅极140以及栅极偏移间隔区142。
栅极硬掩模材料162可通过栅极刻蚀操作配置在栅极120、栅极132和栅极142上。外延硬掩模164邻近第一MOS晶体管108的栅极120的侧表面,邻近栅极结构110的栅极132的侧表面,并覆盖第二MOS晶体管112。外延硬掩模164可包括,例如,15纳米到25纳米厚的氮化硅。外延硬掩模164被用于限定第一外延源极/漏极区域124和第二外延源极/漏极区域126的横向范围。第一外延源极/漏极区域124和场氧化物106之间的间隙146基本上没有材料。
参考图2B,基于二氧化硅的介电材料的间隙填充层166形成于集成电路100现有的顶面上,延伸进入并充分地填充间隙146。间隙填充层166可包括,例如,15纳米到25纳米的二氧化硅,其通过等离子体增强化学气相沉积(PECVD)过程,使用原硅酸四乙酯,又称四乙氧基硅烷或TEOS形成。间隙填充层166的厚度足够高以充分地填充间隙146以及足够低以避免完全地填充第一MOS晶体管108的栅极120和栅极结构110的栅极132之间的间隙。
参考图2C,图2B的间隙填充层166从第一MOS晶体管108、栅极结构110和第二MOS晶体管112上移除,以留下填隙料148充分地填充间隙146。间隙填充层166可被移除,例如,使用各向同性等离子体刻蚀,其对外延硬掩模164是选择性的,或者可能在稀释的氢氟酸水溶液中使用时控湿刻蚀。
参考图2D,图2C的外延硬掩模164被移除,留下填隙料148充分地填充间隙146。外延硬掩模164可被移除,例如,使用各向同性等离子体刻蚀,其对二氧化硅是选择性的。图2C的栅极硬掩模材料162,如果存在,也被移除,可能与外延硬掩模164同时,或者可能在单独的刻蚀步骤中被移除。如果栅极硬掩模材料162包括非晶碳,其可通过灰化(ashing)被移除。
参考图2E,可选的间隔区衬垫130可能形成于集成电路100现有的顶面上。可形成间隔区衬垫168,例如,通过PECVD过程使用TEOS。
间隔区材料168的保形层形成于集成电路100现有的顶面上,间隔区衬垫130上,如果存在。间隔区材料168层主要为非二氧化硅材料,例如氮化硅和/或氧氮化硅。间隔区材料168层可通过PECVD过程使用双(叔-丁胺)硅烷(BTBAS)、PECVD过程使用BTBAS和TEOS的结合、或者PECVD过程使用二氯甲硅烷和氨气形成。间隔区材料168层可为,例如,15纳米到30纳米厚。
参考图2F,各向异性的反应离子刻蚀(RIE)过程将图2E的间隔区材料168层从填隙料148和第一外延源极/漏极区域124以及第二外延源极/漏极126上移除,以及从栅极120、132和140的顶端移除,以形成侧面地邻近第一MOS晶体管108的栅极120的源极/漏极间隔区128,形成侧面地邻近栅极结构110的栅极132的源极/漏极间隔区136,以及形成侧面地邻近第二MOS晶体管112的栅极140的源极/漏极间隔区144。RIE过程留下充分完整的填隙料148。
参考图2G,二氧化硅刻蚀移除被源极/漏极间隔区128、136和144暴露的间隔区衬垫130,以及移除一部分的填隙料148,以便暴露至少一半的第一外延源极/漏极区域124。二氧化硅刻蚀可包括RIE过程或者可包括在稀释的氢氟酸水溶液中的时控刻蚀。完成二氧化硅的刻蚀后,填隙料148邻接场氧化物106并且向下延伸到达第一外延源极/漏极至并在间隙146的底部接触第一外延源极/漏极区域124,并向上延伸到达间隔区衬垫130。
参考图2H,金属硅化物150在暴露的半导体材料上形成,包括第一外延源极/漏极区域124和第二外延源极/漏极区域126,以及可能包括第二MOS晶体管112的源极/漏极区域。金属硅化物150也可形成于栅极120、132和140上。第一外延源极/漏极区域124上的金属硅化物150延伸进入成角度的刻面上的间隙146并覆盖至少一半的第一外延源极/漏极区域124。可形成金属硅化物150,例如,通过在集成电路100的顶面上沉积金属(例如镍或钴)层,加热集成电路100以使一部分金属与被暴露的半导体材料发生反应,并且通过将集成电路100在包括酸和过氧化氢的混合物的液体刻蚀剂中暴露,有选择地移除不发生反应的金属。
在形成金属硅化物150之后,形成CESL152、PMD层154和接触156,以提供图1的结构。可形成CESL152,例如,通过PECVD过程使用二氯甲硅烷和氨气。可形成PMD层154,例如,通过PECVD过程使用硅烷、乙硼烷、磷化氢和一氧化二氮,或者通过高深宽比过程(HARP)使用硅烷、乙硼烷、磷化氢和臭氧。
接触156可通过刻蚀穿过PMD层154和CESL152的接触孔形成,以暴露金属硅化物150。钛和氮化钛的金属衬垫158可分别地通过溅射过程和原子层沉积(ALD)过程形成。钨的填充金属160可通过金属有机化学气相沉积(MOCVD)过程形成。填充金属160和金属衬垫158可通过回蚀或者化学机械抛光(CMP)过程从PMD层154的顶面移除。
图3A到图3G为描述另一个示例集成电路在连续制造过程中的横截面。参考图3A,集成电路300形成于衬底302中和衬底302上,其包括延伸至衬底302的顶面的半导体材料304,例如单晶硅。场氧化物306形成于衬底302中。集成电路300包括邻近场氧化物306的具有第一极性的第一MOS晶体管308,场氧化物306上邻近第一MOS晶体管308的栅极结构310,以及具有第二、相反、极性的第二MOS晶体管312。场氧化物306的顶面314与第一MOS晶体管308下的半导体材料304的顶面316在20纳米内共面。集成电路300有完整形成的外延源极/漏极区域用于具有第一极性的晶体管。外延硬掩模和任何栅极硬掩模材料已被移除。
第一MOS晶体管308包括在半导体材料304的顶面处的栅极介电层318。栅极介电层318可包括二氧化硅,其通过半导体材料304的热氧化形成,或者可包括沉积的具有高介电常数的介电材料。第一MOS晶体管308包括栅极介电层318上的栅极320,其可能为多晶硅。栅极偏移隔离区322可配置在栅极320的侧表面上。第一MOS晶体管308包括衬底302中的栅极320和场氧化物306之间的第一外延源极/漏极区域324,以便第一外延源极/漏极区域324邻接场氧化物306,以及衬底302中的邻近栅极320的与第一外延源极/漏极区域324相对的第二外延源极/漏极区域326。第一外延源极/漏极324具有面向场氧化物306的成角度的刻面,并且因此在场氧化物306的顶面314处与场氧化物306侧面地分开,形成第一外延源极/漏极区域324和场氧化物306之间的间隙346,其距离顶面314向下延伸至少20纳米。
栅极结构310可能具有栅极介电层,其与关于图1所说明的栅极介电层318的材料相同。栅极结构310包括场氧化物306上的栅极332;在当前的示例中,栅极332不与邻近第一MOS晶体管308的场氧化物306的边缘重叠。栅极332可具有与第一MOS晶体管308的栅极320相同的成分和结构。栅极偏移间隔区334可配置在栅极332的侧面上。
第二MOS晶体管312包括半导体材料304的顶面处的栅极介电层338,栅极介电层338可能具有与第一MOS晶体管308的栅极介电层318相同的成分和结构。第二MOS晶体管312包括栅极介电层338上的栅极340,栅极340可能具有与第一MOS晶体管308的栅极320相似的成分和结构。栅极偏移间隔区342可配置在栅极340的侧表面上。栅极偏移间隔区342可能具有与第一MOS晶体管308的栅极偏移间隔区322相似的结构和成分。
随后形成的源极/漏极间隔区的基于二氧化硅的间隔区层370共形地形成于集成电路300现有的顶面上,延伸进入,并且充分地填充间隙346。间隔区层370可包括,例如15纳米到30纳米的二氧化硅,其通过PECVD过程使用TEOS形成。间隔区层370的厚度足够高以充分地填充间隙346,以及足够低以避免在栅极320和332之间完全地填充。
参考图3B,各向异性的RIE过程将图3A的间隔区层370从第一外延源极/漏极区域324上移除,以及从第二外延源极/漏极区域326上,以及从栅极320、332和340的顶部上移除,以形成侧面地邻近第一MOS晶体管308的栅极320的源极/漏极间隔区328,侧面地邻近栅极结构310的栅极332的源极/漏极间隔区336,以及侧面地邻近第二MOS晶体管312的栅极340的源极/漏极间隔区344。执行RIE过程以便源极/漏极隔离区328延伸进入间隙346,邻接场氧化物306并且向下延伸到达第一外延源极/漏极区域324并在间隙346的底部接触第一外延源极/漏极区域324,从而提供填隙料348。
参考图3C,基于非二氧化硅的牺牲层372共形地形成于集成电路300现有的顶面上。牺牲层372可为,例如,10纳米到30纳米厚,并且可通过PECVD过程使用BTBAS、PECVD过程使用BTBAS和TEOS的结合、或者PECVD过程使用二氯甲硅烷和氨气形成。
参考图3D,各向异性RIE过程将图3C的牺牲层372从第一外延源极/漏极区域324的一部分和第二外延源极/漏极区域326的一部分上移除,以及从栅极320、332和340的顶部上移除,以在第一MOS晶体管308的源极/漏极间隔区328上形成牺牲间隔区374,在栅极结构310的源极/漏极间隔区328上形成牺牲间隔区376,以及在第二MOS晶体管312的源极/漏极间隔区328上形成牺牲间隔区378。在栅极结构310上形成源极/漏极间隔区336,以便延伸进入间隙346,提供填隙料348,可减小第一外延源极/漏极区域324上的牺牲间隔区376的厚度,从而为随后金属硅化物的形成提供暴露足够的面积。
参考图3E,金属硅化物350形成于被暴露的半导体材料上,包括第一外延源极/漏极区域324和第二外延源极/漏极区域326,以及可能地包括第二MOS晶体管312的源极/漏极区域。金属硅化物350也可形成于栅极320、332和340上。第一外延源极/漏极区域324上的金属硅化物350延伸进入成角度的刻面上的间隙346并且覆盖至少三分之一的第一外延源极/漏极区域324。可形成金属硅化物350,例如,参考图2H所述。
参考图3F,图3E的牺牲间隔区374、376和378被移除,例如使用各向同性等离子体刻蚀,其对源极/漏极间隔区328、336和344的基于二氧化硅的介电材料是选择性的。牺牲间隔区374、376和378被移除后,填隙料348是充分完整的。
参考图3G,CESL352的第一子层380形成于集成电路300现有的顶面上。第一子层380包括2纳米到10纳米的基于二氧化硅的介电材料,其通过PECVD过程形成。CESL352的第二子层382形成于第一子层380上。第二子层382主要为基于非二氧化硅的介电材料,例如氮化硅,10纳米到30纳米厚,通过PECVD过程形成。PMD层354形成于CESL352上,例如,参考图1和图2H所述。接触356形成为穿过PMD层354和CESL352,以与第一外延源极/漏极区域324上的金属硅化物350直接连接。接触356可参考图2H所述形成。
在权利要求的范围内,在所述的实施例中修改是可能的,并且其他实施例是可能的。

Claims (19)

1.一种集成电路,包括:
衬底,其包括延伸至所述衬底的顶面的半导体材料;
配置在所述衬底中的场氧化物;
第一极性的第一金属氧化物半导体晶体管即第一MOS晶体管,其包括:
所述半导体材料的所述顶面处的栅极介电层;
所述第一MOS晶体管的所述栅极介电层上的栅极;
在所述衬底中的所述第一MOS晶体管的所述栅极和所述场氧化物之间的第一外延源极/漏极区域,其邻接所述场氧化物,具有面向所述场氧化物的成角度的刻面,以便所述第一外延源极/漏极区域通过间隙在所述场氧化物的所述顶面处与所述场氧化物侧面地分开,所述间隙距离所述场氧化物的所述顶面向下延伸至少20纳米;
在所述衬底中的邻近所述第一MOS晶体管的所述栅极的第二外延源极/漏极区域,其与所述第一外延源极/漏极区域相对;以及
源极/漏极间隔区,其侧面地邻近所述第一MOS晶体管的所述栅极;
所述场氧化物上的栅极结构,其包括:
所述场氧化物上的栅极,以便所述栅极结构的所述栅极不与所述场氧化物的边缘重合;以及
源极/漏极间隔区,其侧面地邻近所述栅极结构的所述栅极;
所述间隙中的基于二氧化硅介电材料的填隙料,其邻接所述场氧化物并且向下延伸至所述第一外延源极/漏极区域并在所述间隙的底部接触所述第一外延源极/漏极区域;
所述第一外延源极/漏极区域的所述成角度的刻面上的金属硅化物;以及
所述第一外延源极/漏极区域的所述成角度的刻面上的所述金属硅化物上的接触。
2.根据权利要求1所述的集成电路,其中所述场氧化物的顶面与在所述栅极介电层下的所述衬底的所述顶面在20纳米内共面。
3.根据权利要求1所述的集成电路,其中所述栅极结构的所述源极/漏极间隔区主要为非二氧化硅介电材料,以及所述金属硅化物覆盖至少一半的所述第一外延源极/漏极区域。
4.根据权利要求3所述的集成电路,进一步包括所述第一MOS晶体管的所述源极/漏极间隔区和所述栅极结构的所述源极/漏极间隔区下的基于二氧化硅介电材料的间隔区衬垫。
5.根据权利要求1所述的集成电路,其中所述栅极结构的所述源极/漏极间隔区主要为基于二氧化硅的介电材料,所述填隙料为所述栅极结构的所述源极/漏极间隔区的一部分,以及所述金属硅化物覆盖至少三分之一的所述第一外延源极/漏极区域。
6.根据权利要求1所述的集成电路,其中所述金属硅化物主要为硅化镍。
7.根据权利要求1所述的集成电路,进一步包括第二、相反、极性的第二MOS晶体管。
8.根据权利要求1所述的集成电路,其中:所述第一MOS晶体管为p沟道金属氧化物半导体晶体管即PMOS晶体管;以及所述第一外延源极/漏极区域和所述第二外延源极/漏极区域包括锗化硅。
9.根据权利要求1所述的集成电路,其中:所述第一MOS晶体管为n沟道金属氧化物半导体晶体管即NMOS晶体管;以及所述第一外延极/漏极区域和所述第二外延源极/漏极区域包括硼掺杂的硅。
10.一种形成集成电路的方法,包括:
提供衬底,所述衬底包括延伸至所述衬底的顶面的半导体材料;
在所述衬底中形成场氧化物;
在所述衬底中的第一MOS晶体管的栅极和所述场氧化物之间形成所述第一MOS晶体管的第一外延源极/漏极区域,以便所述第一外延源极/漏极区域具有面向所述场氧化物的成角度的刻面并邻接所述场氧化物,以及以便所述第一外延源极/漏极区域通过间隙在所述场氧化物的所述顶面与所述场氧化物侧面地分开,所述间隙距离所述场氧化物的所述顶面向下延伸至少20纳米,以及在所述衬底中同时形成所述第一MOS晶体管的第二外延源极/漏极区域,其邻近所述第一MOS晶体管的所述栅极并且与所述第一外延源极/漏极区域相对,所述第一MOS晶体管为第一极性;
在所述第一MOS晶体管上以及位于所述场氧化物上的邻近所述第一外延源极/漏极区域的栅极结构上形成基于二氧化硅的介电材料层,其中所述栅极结构的栅极不与所述场氧化物的边缘重合,所述基于二氧化硅的介电材料层延伸进入所述间隙;
从所述第一外延源极/漏极区域上移除所述基于二氧化硅的介电材料层的一部分,在所述间隙中留下所述基于二氧化硅的介电层的一部分以形成填隙料,所述填隙料邻接所述场氧化物并且向下延伸至所述第一外延源极/漏极区域并在所述间隙底部接触所述第一外延源极/漏极区域;
在所述第一外延源极/漏极区域的所述成角度的刻面上形成金属硅化物;以及
在所述第一外延源极/漏极区域的所述成角度的刻面上的所述金属硅化物上形成接触。
11.根据权利要求10所述的方法,其中所述场氧化物的顶面与在所述第一MOS晶体管的栅极介电层下的所述衬底的所述顶面在20纳米内共面。
12.根据权利要求10所述的方法,进一步包括:
在所述第一MOS晶体管、所述栅极结构和所述填隙料上形成间隔区材料的保形层,间隔区材料的所述保形层主要为非二氧化硅材料;以及
从所述填隙料和所述第一外延源极/漏极区域以及所述第二外延源极/漏极区域上,以及从所述第一MOS晶体管的所述栅极和所述栅极结构的所述栅极的顶部移除间隔区材料的所述保形层,以形成侧面地邻近所述第一MOS晶体管的所述栅极的源极/漏极间隔区,以及侧面地邻近所述栅极结构的所述栅极的源极/漏极间隔区,以便所述金属硅化物覆盖至少一半的所述第一外延源极/漏极区域。
13.根据权利要求12所述的方法,其中间隔区材料的所述保形层主要为氮化硅。
14.根据权利要求12所述的方法,进一步包括:
在形成间隔区材料的所述保形层之前,在所述第一MOS晶体管、所述栅极结构和所述填隙料上形成基于二氧化硅的介电材料的间隔区衬垫;以及
在移除间隔区材料的所述保形层之后,移除通过以下区域暴露的所述间隔区衬垫:侧面地邻近所述第一MOS晶体管的所述栅极的所述源极/漏极间隔区,以及侧面地邻近所述栅极结构的所述栅极的所述源极/漏极间隔区。
15.根据权利要求10所述的方法,其中:所述基于二氧化硅的介电材料层为间隔区层;以及通过各向异性刻蚀过程执行移除所述基于二氧化硅的介电材料层的一部分,从而留下侧面地邻近所述第一MOS晶体管的所述栅极的源极/漏极间隔区,以及侧面地邻近所述栅极结构的所述栅极的源极/漏极间隔区,使得所述填隙料为侧面地邻近所述栅极结构的所述栅极的所述源极/漏极隔离区的一部分,以及使得所述金属硅化物覆盖至少三分之一的所述第一外延源极/漏极区域。
16.根据权利要求15所述的方法,进一步包括:
在所述第一MOS晶体管、所述栅极结构、所述填隙料,侧面地邻近所述第一MOS晶体管的所述栅极的所述源极/漏极间隔区,以及侧面地邻近所述栅极结构的所述栅极的所述栅极/漏极间隔区上形成基于非二氧化硅的牺牲层;
在形成所述金属硅化物前,通过各向异性刻蚀过程从所述第一外延源极/漏极区域的一部分和所述第二外延源极/漏极区域的一部分上,以及从所述第一MOS晶体管的栅极和所述栅极结构的栅极的顶面上移除所述基于非二氧化硅的牺牲层,以在所述第一MOS晶体管的所述源极/漏极间隔区上形成牺牲间隔区以及在所述栅极结构的所述源极/漏极间隔区上形成牺牲间隔区;以及
在形成所述金属硅化物后,移除所述第一MOS晶体管的所述源极/漏极间隔区上的所述牺牲间隔区以及所述栅极结构的所述源极/漏极间隔区上的牺牲间隔区。
17.根据权利要求10所述的方法,其中所述集成电路包括第二、相反、极性的第二MOS晶体管。
18.根据权利要求10所述的方法,其中:所述第一MOS晶体管为PMOS晶体管;以及所述第一外延源极/漏极区域和所述第二外延源极/漏极区域包括锗化硅。
19.根据权利要求10所述的方法,其中:所述第一MOS晶体管为NMOS晶体管;以及所述第一外延源极/漏极区域和所述第二外延源极/漏极区域包括硼掺杂的硅。
CN201480067520.2A 2013-12-12 2014-12-12 在嵌入式外延刻面上形成硅化物和接触 Active CN105814688B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361914995P 2013-12-12 2013-12-12
US61/914,995 2013-12-12
US14/563,062 US9508601B2 (en) 2013-12-12 2014-12-08 Method to form silicide and contact at embedded epitaxial facet
US14/563,062 2014-12-08
PCT/US2014/070111 WO2015089450A1 (en) 2013-12-12 2014-12-12 Forming silicide and contact at embedded epitaxial facet

Publications (2)

Publication Number Publication Date
CN105814688A true CN105814688A (zh) 2016-07-27
CN105814688B CN105814688B (zh) 2019-05-17

Family

ID=53369395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480067520.2A Active CN105814688B (zh) 2013-12-12 2014-12-12 在嵌入式外延刻面上形成硅化物和接触

Country Status (5)

Country Link
US (3) US9508601B2 (zh)
EP (1) EP3080844B1 (zh)
JP (2) JP6503359B2 (zh)
CN (1) CN105814688B (zh)
WO (1) WO2015089450A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9508601B2 (en) * 2013-12-12 2016-11-29 Texas Instruments Incorporated Method to form silicide and contact at embedded epitaxial facet
US20160064286A1 (en) * 2014-09-03 2016-03-03 GlobalFoundries, Inc. Integrated circuits and methods for fabricating integrated circuits
US9947753B2 (en) * 2015-05-15 2018-04-17 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure and manufacturing method thereof
US10297602B2 (en) * 2017-05-18 2019-05-21 Taiwan Semiconductor Manufacturing Company, Ltd. Implantations for forming source/drain regions of different transistors
US20220336614A1 (en) * 2021-04-15 2022-10-20 Taiwan Semiconductor Manufacturing Company, Ltd. Source/Drain Silicide for Multigate Device Performance and Method of Fabricating Thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998150A (en) * 1988-12-22 1991-03-05 Texas Instruments Incorporated Raised source/drain transistor
CN1606150A (zh) * 2003-10-08 2005-04-13 台湾积体电路制造股份有限公司 单一晶体管型随机存取存储器的制造方法及其电容器结构
US20090166755A1 (en) * 2007-12-27 2009-07-02 Texas Instruments Incorporated Growth of unfaceted sige along a semiconductor device width
US20120091539A1 (en) * 2010-10-15 2012-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Facet-free semiconductor device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2661561B2 (ja) * 1994-10-27 1997-10-08 日本電気株式会社 薄膜トランジスタおよびその製造方法
US5571733A (en) * 1995-05-12 1996-11-05 Micron Technology, Inc. Method of forming CMOS integrated circuitry
KR100233832B1 (ko) * 1996-12-14 1999-12-01 정선종 반도체 소자의 트랜지스터 및 그 제조방법
US5960291A (en) * 1997-08-08 1999-09-28 Advanced Micro Devices, Inc. Asymmetric channel transistor and method for making same
US6107157A (en) * 1998-02-27 2000-08-22 Micron Technology, Inc. Method and apparatus for trench isolation process with pad gate and trench edge spacer elimination
US6169011B1 (en) * 1998-03-24 2001-01-02 Sharp Laboratories Of America, Inc. Trench isolation structure and method for same
US6150212A (en) * 1999-07-22 2000-11-21 International Business Machines Corporation Shallow trench isolation method utilizing combination of spacer and fill
US6140232A (en) * 1999-08-31 2000-10-31 United Microelectronics Corp. Method for reducing silicide resistance
US6268255B1 (en) * 2000-01-06 2001-07-31 Advanced Micro Devices, Inc. Method of forming a semiconductor device with metal silicide regions
US6448129B1 (en) * 2000-01-24 2002-09-10 Micron Technology, Inc. Applying epitaxial silicon in disposable spacer flow
US6376885B1 (en) * 2000-09-25 2002-04-23 Vanguard International Semiconductor Corp. Semiconductor structure with metal silicide and method for fabricated the structure
US7265425B2 (en) * 2004-11-15 2007-09-04 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device employing an extension spacer and a method of forming the same
JP4945910B2 (ja) * 2005-03-09 2012-06-06 ソニー株式会社 半導体装置およびその製造方法
JP2008071890A (ja) * 2006-09-13 2008-03-27 Toshiba Corp 半導体装置及びその製造方法
DE102008011814B4 (de) * 2008-02-29 2012-04-26 Advanced Micro Devices, Inc. CMOS-Bauelement mit vergrabener isolierender Schicht und verformten Kanalgebieten sowie Verfahren zum Herstellen derselben
JP5329835B2 (ja) * 2008-04-10 2013-10-30 株式会社東芝 半導体装置の製造方法
JP5588121B2 (ja) * 2009-04-27 2014-09-10 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2011009412A (ja) * 2009-06-25 2011-01-13 Toshiba Corp 半導体装置およびその製造方法
US8502316B2 (en) * 2010-02-11 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned two-step STI formation through dummy poly removal
JP2013243307A (ja) * 2012-05-22 2013-12-05 Toshiba Corp 半導体製造装置および半導体装置の製造方法
KR101952119B1 (ko) * 2012-05-24 2019-02-28 삼성전자 주식회사 메탈 실리사이드를 포함하는 반도체 장치 및 이의 제조 방법
US9508601B2 (en) * 2013-12-12 2016-11-29 Texas Instruments Incorporated Method to form silicide and contact at embedded epitaxial facet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998150A (en) * 1988-12-22 1991-03-05 Texas Instruments Incorporated Raised source/drain transistor
CN1606150A (zh) * 2003-10-08 2005-04-13 台湾积体电路制造股份有限公司 单一晶体管型随机存取存储器的制造方法及其电容器结构
US20090166755A1 (en) * 2007-12-27 2009-07-02 Texas Instruments Incorporated Growth of unfaceted sige along a semiconductor device width
US20120091539A1 (en) * 2010-10-15 2012-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Facet-free semiconductor device

Also Published As

Publication number Publication date
JP6503359B2 (ja) 2019-04-17
JP6685442B2 (ja) 2020-04-22
US20170047329A1 (en) 2017-02-16
EP3080844B1 (en) 2022-08-03
EP3080844A4 (en) 2017-07-12
WO2015089450A1 (en) 2015-06-18
US10008499B2 (en) 2018-06-26
JP2017504192A (ja) 2017-02-02
EP3080844A1 (en) 2016-10-19
US20150170972A1 (en) 2015-06-18
US20180047728A1 (en) 2018-02-15
CN105814688B (zh) 2019-05-17
US9812452B2 (en) 2017-11-07
JP2019091951A (ja) 2019-06-13
US9508601B2 (en) 2016-11-29

Similar Documents

Publication Publication Date Title
TWI701830B (zh) 半導體裝置及其形成方法
US9362355B1 (en) Nanosheet MOSFET with full-height air-gap spacer
US8759920B2 (en) Semiconductor device and method of forming the same
US9773786B2 (en) FETs and methods of forming FETs
US8697539B2 (en) Method of making lower parasitic capacitance FinFET
US8557666B2 (en) Methods for fabricating integrated circuits
US9882025B1 (en) Methods of simultaneously forming bottom and top spacers on a vertical transistor device
US20170154900A1 (en) Integrated tensile strained silicon nfet and compressive strained silicon-germanium pfet implemented in finfet technology
JP6685442B2 (ja) 埋め込みエピタキシャルファセットにおけるシリサイド及びコンタクトの形成
US20190131171A1 (en) Semiconductor devices including contact plugs
US20130140639A1 (en) High gate density devices and methods
CN103000572A (zh) 高k金属栅极器件的接触件
US10199392B2 (en) FinFET device having a partially dielectric isolated fin structure
US9230851B2 (en) Reduction of polysilicon residue in a trench for polysilicon trench filling processes
TWI697985B (zh) 半導體裝置及其製造方法
US20080272410A1 (en) Self-Aligned Spacer Contact
US8987110B2 (en) Semiconductor device fabrication method for improved isolation regions and defect-free active semiconductor material
US9761691B2 (en) Integrated circuits including replacement gate structures and methods for fabricating the same
US9240325B2 (en) Method for making an integrated circuit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant