CN105814009A - 用于将含氧化合物选择性转化成芳香族化合物的催化剂 - Google Patents

用于将含氧化合物选择性转化成芳香族化合物的催化剂 Download PDF

Info

Publication number
CN105814009A
CN105814009A CN201480066896.1A CN201480066896A CN105814009A CN 105814009 A CN105814009 A CN 105814009A CN 201480066896 A CN201480066896 A CN 201480066896A CN 105814009 A CN105814009 A CN 105814009A
Authority
CN
China
Prior art keywords
catalyst
carbon monoxide
zeolite
olefin polymeric
aforementioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480066896.1A
Other languages
English (en)
Other versions
CN105814009B (zh
Inventor
斯蒂芬·J·麦卡锡
布莱特·洛夫莱斯
罗希特·维贾伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
ExxonMobil Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Research and Engineering Co filed Critical ExxonMobil Research and Engineering Co
Publication of CN105814009A publication Critical patent/CN105814009A/zh
Application granted granted Critical
Publication of CN105814009B publication Critical patent/CN105814009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/54Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed
    • C10G3/55Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed with moving solid particles, e.g. moving beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Nanotechnology (AREA)

Abstract

本发明提供了一种催化剂组合物,其包含自粘合沸石和选自Zn、Cd或其组合的第12族过渡金属,所述沸石具有至少约10的硅与铝的比率,所述催化剂组合物具有至少约340m2/g的微孔表面积、约0.1至约1.3的第12族过渡金属与铝的摩尔比以及至少一种下述特性:(a)大于约20m2/g的中孔率;以及(b)当在约120℃的温度和约60托(约8kPa)的2,2?二甲基丁烷压力下测量时,大于约1x 10?2sec?1的2,2?二甲基丁烷扩散率。

Description

用于将含氧化合物选择性转化成芳香族化合物的催化剂
技术领域
本发明涉及用于将含氧化合物(oxygenate)转化成芳香族化合物的催化剂以及使用这类催化剂的方法。
背景技术
用于将低沸含碳化合物转化成较高价值产品的各种不同工业过程是已知的。例如,甲醇制汽油过程(MTG)是一种使用ZSM-5催化剂从甲醇生产汽油的商业化过程。在MTG过程中,首先将甲醇脱水成二甲醚。然后将甲醇和/或二甲醚在一系列反应中反应,导致芳香族、链烷族和烯族化合物的形成。得到的产物由液化石油气(LPG)和包含芳香族化合物、链烷烃和烯烃的高品质汽油构成。典型的MTG烃类产物由约40-50%的芳香族化合物加烯烃和约50-60%的链烷烃构成。
美国专利号6,423,879和6,504,072公开了选择性生产对二甲苯的方法,所述方法包括将甲苯与甲醇在包含多孔结晶材料的催化剂存在下进行反应,所述多孔结晶材料当在约120℃的温度和60托(约8kPa)的2,2-二甲基丁烷压力下测量时,具有小于约10-4sec-1的2,2-二甲基丁烷扩散率。所述多孔结晶材料优选为中孔沸石,特别是ZSM-5,其已在至少约950℃的温度下用蒸汽严格处理,并且已与约0.05至约20重量%的至少一种氧化物改性剂、优选为磷的氧化物合并,以在蒸汽处理步骤期间控制所述材料的微孔体积的减小。所述多孔结晶材料通常与粘合剂或基质材料、优选为二氧化硅或高岭土合并。
美国专利号4,088,706描述了一种用于将甲醇转化成对二甲苯的方法。所述方法包括将进料暴露于被改良以包括硼和/或镁的沸石催化剂。
美国专利号4,584,423描述了一种使用含有第2族或第12族金属的优选用氧化铝粘合的沸石催化剂的二甲苯异构化方法。将含有芳香族化合物包括乙基苯的混合物的进料暴露于所述催化剂以将乙基苯转化成其他化合物,同时减少或最小化二甲苯转化的量。
美国专利号3,894,104描述了一种使用过渡金属浸渍的沸石催化剂将含氧化合物转化成芳香族化合物的方法。据报道,芳香族化合物相对于总烃类产物的得率高达约58%,并且相应的总C5+得率高达约73%。
美国专利申请公布号2013/0281753描述了一种磷改性的沸石催化剂。所述磷改性降低了在将所述催化剂暴露于含有水蒸气的环境之后催化剂的α值的变化。所述磷改性的催化剂被描述为适合于例如将甲醇转化成汽油沸程化合物。
发明概述
一方面,提供了一种催化剂组合物,其包含自粘合沸石和选自Zn、Cd或其组合的第12族过渡金属,所述沸石具有至少约10的硅与铝的比率,所述催化剂组合物具有至少约340m2/g的微孔表面积、约0.1至约1.3的第12族过渡金属与铝的摩尔比以及至少一种下述特性:(a)大于约20m2/g的中孔率(mesoporosity);(b)当在约120℃的温度和约60托(约8kPa)的2,2-二甲基丁烷压力下测量时,大于约1x 10-2sec-1的2,2-二甲基丁烷扩散率。
另一方面,提供了一种催化剂组合物,其包含自粘合沸石和选自Zn、Cd或其组合的第12族过渡金属,所述沸石具有至少约20的硅与铝的比率,并且所述催化剂组合物具有至少约340m2/g的微孔表面积、约0.1至约1.3的第12族过渡金属与铝的摩尔比、大于约20m2/g的中孔率和在约120℃的温度和约60托(约8kPa)的2,2-二甲基丁烷压力下测量时大于1x 10-2sec-1的2,2-二甲基丁烷扩散率。
优选实施方式的详细描述
芳香族化合物和烯烃是有价值的化学产品。尽管用于将甲醇转化成汽油的方法是已知的,但这类方法可能不提高或最大化有价值的芳香族化合物和/或烯烃的生产。因此,可以进一步提高从甲醇或其他含氧化合物的转化产生的芳香族和/或烯烃产物的量,并在同时最小化链烷烃形成的催化剂或方法,在商业上是有吸引力的。
在各种不同情况下,本文中描述的催化剂可用于将含氧化合物进料转化成芳香族化合物和/或烯烃,并且在所述转化反应中一种或多种所需组分相对于产生的总烃类产物的得率提高。来自于含氧化合物转化反应的总烃类产物被定义为烃类或含烃类产物的得率。因此,诸如水、焦或其他非烃类产物的化合物的得率从总烃类得率中排除。提高的得率可以被鉴定为相对于总烃类产物来说芳香族化合物的得率提高,相对于总烃类产物来说芳香族化合物和烯烃的合并得率提高,相对于总烃类产物中C5+(液体)产物的得率来说芳香族化合物的得率提高,或其组合。
在使用常规催化剂将含氧化合物例如甲醇转变成汽油(MTG)中的难点的一个实例,是在液体烃类产物中显著量的链烷烃的形成。C5+链烷烃例如C5-C8链烷烃,是常规的石脑油或汽油产品中可接受的组分。然而,尽管这类链烷烃是可接受的,但C5-C8链烷烃是相对低价值的产品。从催化合成过程产生较低价值的产品,降低了所述过程的总体价值。
与常规方法相反,使用本文中描述的催化剂转化含氧化合物可以提高在转化期间产生的芳香族化合物和烯烃的相对量。换句话说,可以降低在总烃类产物中产生的链烷烃的量,和/或可以降低所述烃类产物的液体部分(C5+)中链烷烃的量。
所需产物得率的提高可以以几种方式鉴定。鉴定所需产物得率提高的一种方式是考虑产生的芳香族化合物相对于总烃类产物的量,或者考虑总烃类产物中产生的芳香族化合物加上烯烃。基于各种不同芳香族化合物对于作为燃料之外的应用的价值,提高产生的芳香族化合物的量可以表明生产了较高价值的组分。通常,芳香族化合物被生产作为具有各种不同的碳原子数目的芳香族化合物的混合物。对芳香族化合物的混合物进行分离,可以允许回收所述混合物中较高价值的芳香族化合物。
提高芳香族化合物和烯烃的合并量,也可以表明从反应产生的产物的价值提高。所述总烃类产物中产生的至少一部分烯烃可以对应于C2-C4烯烃。这些烯烃可以适合作为原材料用于各种聚合物合成反应。因此,尽管C2-C4烯烃相对于初始的甲醇进料来说链长的增加小,但这种C2-C4烯烃仍然可以代表比通过甲醇(或另一种含氧化合物)的转化产生的链烷烃具有更高价值的产品。
作为使用芳香族化合物加烯烃的合并量的一种可替选方式,产生的芳香族化合物相对于总烃类产物的液体产量的量,也可以指示较高价值的产物混合物的产生。烃类产物的液体部分或产量通常是指含有至少5个碳的烃类产物(C5+化合物)的部分。总烃类产物中芳香族化合物的重量百分数与总烃类产物中液体产物的重量百分数之间的差异,通常对应于链烷族化合物。因此,降低和/或最小化所述液体产物得率与芳香族产物得率之间的差异量,可以对应于较高价值的烃类产物混合物的生产。
用于含氧化合物向芳香族化合物的转化的催化剂
在各种不同情况下,提供了过渡金属增强的沸石催化剂组合物,以及使用所述过渡金属增强的催化剂以提高的总得率和/或提高的芳香族化合物得率将含氧化合物进料转化成芳香族化合物和烯烃的方法。在某些情况下,本发明的催化剂组合物可替选地被称为是自粘合的。术语“未粘合的”和“自粘合的”旨在同义,并意味着本发明的催化剂组合物不含通常与沸石催化剂合并以提高它们的物理性能的任何无机氧化物粘合剂例如氧化铝或二氧化硅。
在本发明的催化剂组合物中使用的沸石通常包含至少一种约束指数(Constraint Index)为1-12(如美国专利号4,016,218中所定义)的中孔铝硅酸盐沸石。适合的沸石包括具有MFI或MEL构架的沸石,例如ZSM-5或ZSM-11。ZSM-5被详细描述在美国专利号3,702,886和RE 29,948中。ZSM-11被详细描述在美国专利号3,709,979中。优选地,所述沸石可以是ZSM-5。
一般来说,具有所需活性的沸石可以具有约10至约300,例如约15至约100或约20至约40的硅与铝的摩尔比。例如,所述硅与铝的比率可以为至少约10,例如至少约20或至少约30或至少约40或至少约50或至少约60。此外或可替选地,所述硅与铝的比率可以为约300或更低,例如约200或更低或约100或更低或约80或更低或约60或更低或约50或更低。
在某些优选情况下,所述硅与铝的比率可以为至少约20,例如至少约30或至少约40。在这些实施方式中,所述硅与铝的比率可以任选为约80或更低,例如约60或更低或约50或更低或约40或更低。通常,降低沸石中的硅与铝的比率可以引起沸石具有更高的酸度,因此引起对烃类或含烃进料例如石油进料的裂化的更高活性。然而,对于含氧化合物向芳香族化合物的转化来说,这种提高的裂化活性可能不是有益的,并且相反可能引起转化反应期间残留的碳或焦的形成增加。这种残留的碳可以沉积在沸石催化剂上,导致催化剂随时间失活。具有至少约40,例如至少约50或至少约60的硅与铝的比率,可以减少和/或最小化由于催化剂的酸性或裂化活性而形成的额外残留碳的量。
应该指出,这里描述的摩尔比是硅与铝的比率。如果描述二氧化硅与氧化铝的相应比率,由于在每个氧化铝化学计量单元中存在两个铝原子,因此二氧化硅(SiO2)与氧化铝(Al2O3)的相应比率将是两倍大。因此,硅与铝的比率为10对应于二氧化硅与氧化铝的比率为20。
当在本发明的催化剂组合物中使用时,沸石可以至少部分地以氢(酸)形式存在。取决于用来合成沸石的条件,这可能对应于从例如钠形式转化所述沸石。这可以例如通过如下步骤容易地实现:通过离子交换将沸石转变成铵形式,然后在空气或惰性气氛中在约400℃至约700℃的温度下煅烧,以将铵形式转变成有活性的氢形式。
此外或可替选地,所述催化剂组合物可以包含过渡金属和/或用过渡金属增强。优选地,所述过渡金属是来自于IUPAC周期表的第12族金属(有时被称为IIB族),例如Zn和/或Cd。所述过渡金属可以通过任何方便的方法并入到沸石中,例如通过浸渍或通过离子交换。在浸渍或离子交换后,可以将所述过渡金属增强的催化剂在氧化环境(空气)或惰性气氛中,在约400℃至约700℃的温度下处理。过渡金属的量可以与沸石中存在的铝的摩尔量相关联。优选地,所述过渡金属的摩尔量可以对应于沸石中铝的摩尔量的约0.1至约1.3倍。例如,过渡金属的摩尔量可以为沸石中铝的摩尔量的约0.1倍,例如至少约0.2倍、至少约0.3倍或至少约0.4倍。此外或可替选地,过渡金属的摩尔量相对于沸石中铝的摩尔量可以为约1.3倍或更低,例如约1.2倍或更低、约1.0倍或更低或约0.8倍或更低。此外或可替选地,过渡金属的量可以表示成自粘合或未粘合的沸石的重量百分率,例如具有至少约0.1重量%、至少约0.25重量%、至少约0.5重量%、至少约0.75重量%或至少约1.0重量%的过渡金属。此外或可替选地,过渡金属的量可以为约20重量%或更低,例如约10重量%或更低、约5重量%或更低、约2.0重量%或更低、约1.5重量%或更低、约1.2重量%或更低、约1.1重量%或更低或约1.0重量%或更低。
此外或可替选地,所述催化剂组合物可以基本上不含磷。基本上不含磷的催化剂组合物可以含有约0.01重量%或更低的磷,例如低于约0.005重量%或低于约0.001重量%的磷。基本上不含磷的催化剂组合物可以基本上不含有意添加的磷或基本上不含有意添加的磷以及作为杂质存在于用于形成催化剂组合物的试剂中的磷两者。此外或可替选地,所述催化剂组合物可以不含添加的磷,例如不含有意添加的磷和/或不含在用于表征试剂和/或得到的沸石的标准方法的检测极限内的磷杂质。
所述催化剂组合物可以使用处于原始的结晶形式或例如通过挤出配制成催化剂粒子后的过渡金属增强的沸石。在不存在粘合剂的情况下生产沸石挤出物的方法公开在例如美国专利号4,582,815中,其全部内容通过参考并入本文。优选地,所述过渡金属可以在配制沸石(例如通过挤出)以形成自粘合催化剂粒子后并入。任选地,在挤出后可以对自粘合催化剂进行蒸汽处理。
本文中使用的过渡金属增强的沸石催化剂组合物可以用至少一种、优选地至少两种、更优选地所有下述特性进一步表征:(a)大于约20m2/g,例如大于约30m2/g的中孔率(即中孔表面积或沸石外的表面积);(b)至少约340m2/g,例如至少约350m2/g或至少约370m2/g的微孔表面积;以及(c)当在约120℃的温度和约60托(约8kPa)的2,2-二甲基丁烷压力下测量时,大于约1.0x 10-2sec-1,例如大于约1.25x 10-2sec-1的2,2-二甲基丁烷扩散率。
在这些特性中,对于给定沸石来说,中孔率和2,2-二甲基丁烷扩散率由多种因素决定,包括沸石的晶体尺寸。微孔表面积由沸石的孔眼尺寸和沸石孔眼在催化剂粒子表面处的可利用性决定。生产具有所需的低(极小)中孔率、微孔表面积和2,2-二甲基丁烷扩散率的沸石催化剂,完全在沸石化学领域的普通技术人员的专长范围之内。应该指出,中孔表面积和微孔表面积可以例如使用在本领域技术人员的专长范围之内的等温吸附-解吸技术例如BET(Brunauer Emmet Teller)方法来表征。
应该指出,可以对沸石晶体或从沸石晶体形成的催化剂进行所述微孔表面积的表征。在各种不同情况下,自粘合催化剂或用独立的粘合剂配制的催化剂的微孔表面积可以为至少约340m2/g,例如至少约350m2/g、至少约370m2/g或至少约380m2/g。通常,将沸石晶体配制成催化剂粒子(自粘合或使用独立的粘合剂)可以引起微孔表面积相对于沸石晶体的微孔表面积有些损失。因此,为了提供具有所需微孔表面积的催化剂,沸石晶体也可以具有至少约340m2/g,例如至少约350m2/g、至少约360m2/g、至少约370m2/g或至少约380m2/g的微孔表面积。在实际情况下,沸石晶体和/或本文中描述的相应的自粘合或粘合的催化剂的微孔表面积可以小于约1000m2/g,并且通常小于约750m2/g。此外或可替选地,催化剂(自粘合或使用独立的粘合剂)的微孔表面积可以为催化剂中沸石晶体的微孔表面积的约105%或更低,并且通常为催化剂中沸石晶体的微孔表面积的约100%或更低,例如催化剂中沸石晶体的微孔表面积的约80%至约100%。例如,催化剂的微孔表面积可以为催化剂中沸石晶体的微孔表面积的至少约80%,例如至少约85%、至少约90%、至少约95%、至少约97%或至少约98%,和/或约100%或更低、约99%或更低、约98%或更低、约97%或更低或约95%或更低。
此外或可替选地,催化剂(自粘合或使用独立的粘合剂)的2,2-二甲基丁烷扩散率可以为催化剂中沸石晶体的2,2-二甲基丁烷扩散率的约105%或更低,并且通常为催化剂中沸石晶体的2,2-二甲基丁烷扩散率的约100%或更低,例如催化剂中沸石晶体的2,2-二甲基丁烷扩散率的约80%至约100%。例如,催化剂的2,2-二甲基丁烷扩散率可以为催化剂中沸石晶体的2,2-二甲基丁烷扩散率的至少约80%,例如至少约85%、至少约90%、至少约95%、至少约97%或至少约98%,和/或约100%或更低、约99%或更低、约98%或更低、约97%或更低或约95%或更低。
在某些情况下,所述沸石催化剂可以具有至少约10,例如至少约20或至少约50的α值。α值是与标准的二氧化硅-氧化铝催化剂相比沸石催化剂的酸活性的度量。α试验描述在美国专利号3,354,078,Journalof Catalysis的vol.4,p.527(1965),vol.6,p.278(1966)和vol.61,p.395(1980)中,其各自将该描述通过参考并入本文。本文中使用的试验的实验条件包括约538℃的恒定温度和在Journal of Catalysis的vol.61,p.395中详细描述的可变流速。较高的α值对应于活性更高的裂化催化剂。
作为形成自粘合催化剂的可替选方式,可以将沸石晶体与粘合剂合并,以形成含有相对少量粘合剂的粘合的催化剂。适用于基于沸石的催化剂的粘合剂可以包括各种不同的无机氧化物,例如二氧化硅、氧化铝、氧化锆、二氧化钛、二氧化硅-氧化铝、二氧化铈、氧化镁或其组合。一般来说,粘合剂可以以约5重量%或更低例如约1重量%或更低的量存在。通常,沸石和粘合剂的合并可以通过例如研磨沸石与粘合剂的水性混合物,然后将所述混合物挤出成催化剂球粒,来实现。使用二氧化硅粘合剂生产沸石挤出物的方法公开在例如美国专利号4,582,815中。任选地,粘合的催化剂可以在挤出后进行蒸汽处理。
在某些情况下,可以使用基本上不含氧化铝的粘合剂,例如本质上不含氧化铝的粘合剂。在本说明书中,基本上不含氧化铝的粘合剂被定义为含有约10重量%或更低,例如约7重量%或更低、约5重量%或更低、或约3重量%或更低的氧化铝的粘合剂。实质上不含氧化铝的粘合剂被定义为含有约1重量%或更低,例如约0.5重量%或更低或约0.1重量%或更低的氧化铝的粘合剂。此外或可替选地,可以使用不含有意添加的氧化铝和/或不含在测定粘合剂的组成和/或用于形成粘合剂的试剂的常规检测限度之内的氧化铝的粘合剂。尽管部分由于氧化铝粘合的催化剂容易配制而将氧化铝通常作为粘合剂用于沸石催化剂,但在某些情况下,粘合剂中氧化铝的存在可以降低和/或抑制过渡金属增强的沸石将甲醇转化成芳香族化合物的活性。例如,对于在配制粘合催化剂(例如通过挤出)后将过渡金属并入到催化剂中的催化剂来说,所述过渡金属可能相对于暴露的沸石表面而言对暴露的氧化铝表面具有亲和性,导致过渡金属向粘合催化剂的具有氧化铝表面的区域的初始沉积和/或迁移增加而超过具有沸石表面的区域。此外或可替选地,氧化铝粘合的催化剂可能倾向于具有低的微孔表面积,意味着可用于接收过渡金属的可利用的沸石表面的量可能不合需要地低。
在某些情况下,可以选择用于配制催化剂的粘合剂,以使得到的粘合催化剂具有至少约340m2/g,例如至少约350m2/g或至少约370m2/g的微孔表面积。适用于形成具有所需微孔表面积的粘合催化剂的粘合剂的实例是二氧化硅粘合剂。任选但优选地,适合的粘合剂可以是表面积为约200m2/g或更低,例如约175m2/g或更低或约150m2/g或更低的粘合剂。不受任何特定理论限制,据信使用高表面积粘合剂(例如高表面积氧化铝粘合剂)形成的催化剂可以具有使沉积的过渡金属向粘合剂迁移而不是仍然与沸石结合的增加的倾向性。除非另有指明,否则粘合剂的表面积在本文中被定义为粘合剂的合并的微孔表面积和中孔表面积。
进料和产物
在各种不同情况下,本文中描述的催化剂可用于将含氧化合物进料转化成芳香族化合物和/或烯烃产物,例如含有至少一个C1-C4烷基的含氧化合物(例如含有至少一个C1-C3烷基的含氧化合物)。适合的含氧化合物的实例包括含有甲醇、二甲醚、C1-C4醇类、具有C1-C4烷基链的醚类,包括含有C1-C4烷基链的不对称醚类(例如甲乙醚、丙基丁基醚或甲基丙基醚)和对称醚类(例如二乙醚、二丙醚或二丁醚)两者或其组合的进料。应该指出,含有至少一个C1-C4烷基的含氧化合物旨在明确指明具有含有约4个或更少碳的烷基的含氧化合物。优选地,所述含氧化合物进料可以包含至少约50重量%的一种或多种适合的含氧化合物,例如至少约75重量%、至少约90重量%或至少约95重量%。此外或可替选地,所述含氧化合物进料可以包含至少约50重量%的甲醇,例如至少约75重量%的甲醇、至少约90重量%的甲醇或至少约95重量%的甲醇。所述含氧化合物进料可以源自于任何方便的来源。例如,所述含氧化合物进料可以如下形成:将天然气进料中的烃类重整以形成合成气体(H2、CO、CO2),然后使用所述合成气体来形成醇类。
在各种不同情况下,芳香族化合物相对于总烃类产物的得率可以为至少约53重量%,例如至少约55重量%、至少约57重量%或至少约59重量%。在某些情况下,总的C5+(液体)产物得率可以比芳香族化合物得率高出约10重量%或更低,例如比芳香族化合物得率高出约8重量%或更低或约6重量%或更低。例如,在芳香族化合物相对于总烃类产物的得率为约60重量%的情况下,总液体产物的得率可以为约65重量%。在某些情况下,总烃类产物中芳香族化合物和烯烃的合并得率可以为至少约70重量%,例如至少约75重量%或至少约80重量%。应该指出,烃类产物中的烯烃可以包括(气态)C2-C4烯烃,因此总烃类产物中芳香族化合物加上烯烃的量可能不必定与总烃类产物中的C5+(液体)得率直接相关。
在其他情况下,在本文中所描述的催化剂存在下将含氧化合物转化成芳香族化合物和/或烯烃,对于生产具有所需组成的芳香族化合物的混合物来说可能是有益的。例如,在某些情况下,如本文中所述将含氧化合物转化成芳香族化合物,可以导致相对于产生的总芳香族化合物来说C9和C10芳香族化合物的百分率提高的芳香族化合物的生产。在其他或可替选情况下,可以提高C6和C7芳香族化合物的生产。
在其他情况下,在本文中描述的催化剂存在下将含氧化合物进料转化成芳香族化合物,可以减少和/或最小化在转化期间发生的焦形成的量。
进行转化反应的适合和/或有效的条件可以包括约150℃至约550℃之间的温度,约0.1psia(约0.7kPaa)至约500psia(约3.5MPaa)之间的总压力,和以相对于催化剂重量的含氧化合物的重量计,约0.1h-1至约20h-1之间的含氧化合物空间速度。例如,温度可以为至少约375℃,例如至少约400℃、至少约450℃或至少约460℃。此外或可替选地,温度可以为约550℃或更低,例如约525℃或更低或约500℃或更低。
应该指出,含氧化合物进料和/或转化反应环境可以包括各种不同比例的水。含氧化合物向芳香族化合物和烯烃的转化导致作为产物的水的产生,因此含氧化合物(例如甲醇或二甲醚)与水的相对量在反应环境内可以改变。基于甲醇转化期间存在的温度,反应环境中的水可以引起催化剂的“蒸汽处理”。因此,用于将含氧化合物转化成芳香族化合物的催化剂优选地是当蒸汽处理时能够基本上保留活性的催化剂。在接触沸石催化剂之前,水也可以存在于进料中。例如,在商业化处理甲醇以形成汽油的过程中,为了控制反应器内的热释放,可以使用初始催化剂阶段以将进料中的一部分甲醇转变成二甲醚和水,然后接触沸石催化剂用于形成汽油。
其他实施方式
实施方式1.一种催化剂组合物,其包含自粘合沸石和选自Zn、Cd或其组合的第12族过渡金属,所述沸石具有至少约10,例如至少约20或至少约30或至少约40的硅与铝的比率,所述催化剂组合物具有至少约340m2/g的微孔表面积、约0.1至约1.3的第12族过渡金属与铝的摩尔比以及至少一种下述特性:(a)大于约20m2/g的中孔率;以及(b)当在约120℃的温度和约60托(约8kPa)的2,2-二甲基丁烷压力下测量时,大于约1x 10-2sec-1的2,2-二甲基丁烷扩散率。
实施方式2.实施方式1的催化剂组合物,其中所述催化剂组合物具有至少约10,例如至少约20或至少约50的α值。
实施方式3.上述实施方式任一项的催化剂组合物,其中所述催化剂组合物具有大于约30m2/g的中孔率。
实施方式4.上述实施方式任一项的催化剂组合物,其中所述催化剂组合物具有至少约350m2/g,例如至少约370m2/g或至少约380m2/g的微孔表面积。
实施方式5.上述实施方式任一项的催化剂组合物,其中当在约120℃的温度和约60托(8kPa)的2,2-二甲基丁烷压力下测量时,所述催化剂组合物具有大于约1.25x 10-2sec-1,例如大于约1.5x 10-2sec-1的2,2-二甲基丁烷扩散率。
实施方式6.上述实施方式任一项的催化剂组合物,其中所述沸石具有约1至约12的约束指数。
实施方式7.上述实施方式任一项的催化剂组合物,其中所述沸石包含ZSM-5、ZSM-11、具有MFI构架的沸石、具有MEL构架的沸石或其组合。
实施方式8.上述实施方式任一项的催化剂组合物,其中所述沸石是ZSM-5。
实施方式9.上述实施方式任一项的催化剂组合物,其中所述沸石是ZSM-11。
实施方式10.上述实施方式任一项的催化剂组合物,其中所述沸石的硅与铝的摩尔比为约20至约100,例如至少约30或至少约40,和/或约80或更低、约60或更低、或者约50或更低。
实施方式11.上述实施方式任一项的催化剂组合物,其中第12族过渡金属的量为总催化剂组合物的约0.1重量%至约2重量%。
实施方式12.上述实施方式任一项的催化剂组合物,其中所述催化剂组合物具有大于约20m2/g的中孔率和在约120℃的温度和约60托(约8kPa)的2,2-二甲基丁烷压力下测量时大于约1x 10-2sec-1的2,2-二甲基丁烷扩散率两者。
实施方式13.一种用于有机化合物转化的方法,所述方法使用实施方式1-12任一项的催化剂组合物。
实施方式14.实施方式13的方法,其中所述有机化合物转化包含含有至少一个C1-C4烷基的含氧化合物向芳香族化合物的转化,所述含有至少一个C1-C4烷基的含氧化合物优选包含以下至少一种:甲醇、二甲醚、含有C1-C4烷基的对称醚、含有C1-C4烷基的不对称醚、C1-C4醇或其组合。
实施例
下面的实施例示出了来自于用于进行甲醇到芳香族化合物反应的各种不同的ZSM-5自粘合催化剂的试验和分析的数据。在形成具有所需微孔表面积的ZSM-5之后,使用与下述相似的程序将所述催化剂造型成自粘合催化剂粒子。应该指出,下面提供的以克为单位的绝对值应该被当作使用适合比率的各种不同组分的代表。
将ZSM-5晶体(以固体计约1,400克)添加到混合机并进行干法研磨。然后,在研磨期间加入约190克去离子水。在约10分钟后,向所述混合物加入与约450克去离子水混合的约28克约50重量%的苛性碱溶液,并继续研磨5分钟。然后将混合物挤出成~1/10”的四叶形。将挤出物在约250℉(约121℃)干燥过夜,然后在氮气中在约1000℉(约538℃)煅烧约3小时。然后将挤出物用1N硝酸铵溶液交换两次。将交换过的晶体在约250℉(约121℃)干燥过夜,然后在空气中在约1000℉(约538℃)煅烧约3小时。
在下面的实施例中,一些ZSM-5催化剂包括过渡金属例如Zn或Cd。为了形成下面描述的过渡金属增强的催化剂,通过初湿含浸法用含有所需金属的浸渍溶液浸渍如上所述的自粘合催化剂。然后将浸渍过的晶体在约250℉(约121℃)干燥过夜,然后在空气中在约1000℉(约538℃)煅烧约3小时。
在下面的讨论中,对催化剂的微孔表面积的指称对应于自粘合催化剂的微孔表面积。自粘合过程可能造成催化剂的微孔表面积相对于相应沸石晶体在自粘合之前的微孔表面积有所减小。
实施例1–微孔表面积相对于芳香族化合物得率
在各种不同情况下,适合的甲醇转化催化剂可以具有足够的微孔表面积,例如至少约340m2/g或至少约350m2/g的微孔表面积。表1中示出了均具有约0.85–1重量%Zn的6种示例性ZSM-5催化剂的微孔表面积。在约450℃、约15psig(约110kPag)的入口进料压力和约20WHSV(g-CH3OH g-催化剂-1h-1)下的甲醇转化期间芳香族化合物的含量(烃类产物的重量%)也示出在表1中。入口进料是甲醇与水的混合物,以提供约13.5psig(约95kPag)的CH3OH和约1.5psig(约11kPag)的H2O。用于表1中的甲醇转化的反应条件似乎导致进料中的甲醇基本上完全转化。除非另有指明,否则甲醇转化反应在管式不锈钢反应器中进行。注意,在表1(以及其他实施例中的表)中,ZSM-5根据Si与Al2的比率来描述。相应的硅与铝的比率为Si与Al2的比率值的一半。
对于表1中的催化剂来说,所有催化剂对应于自粘合催化剂。如表1中所示,总烃类产物中得到的芳香族化合物的重量百分数似乎与微孔表面积强烈相关,尽管其他因素也可以影响烃类产物中芳香族化合物的最终量。
表1–微孔表面积相对于芳香族化合物得率
实施例2–微孔表面积相对于芳香族化合物得率
实施例1证实了对于各种不同的Zn/H-ZSM-5催化剂来说,微孔表面积对芳香族化合物生产的影响。在本实施例中,证实了包含Zn作为过渡金属的影响。表2示出了添加和未添加Zn的情况下,不同微孔表面积的ZSM-5催化剂的甲醇制芳香族化合物的选择性。如表2中所示,对于不含其他过渡金属的ZSM-5催化剂来说,芳香族化合物选择性似乎仅仅随着微孔表面积轻微增加。对于低微孔表面积的ZSM-5催化剂来说,过渡金属的添加在芳香族化合物选择性方面似乎不提供明显益处。然而,对于符合本发明的包含高的微孔表面积和过渡金属(在本实施例中为Zn)两者的催化剂来说,似乎实现了芳香族化合物选择性的显著提高。应该指出,对于H-ZSM-5和Zn/H-ZSM-5催化剂来说,在小的ZSM-5晶体上获得了最高芳香族化合物得率。
对于表2中的数据来说,示出了对于对应于自粘合的H-ZSM-5和Zn改良的H-ZSM-5催化剂的催化剂来说,微孔表面积对从甲醇转化的芳香族化合物得率的影响。用于产生表2中的结果的甲醇转化反应在
约500℃、约13.5psig(约95kPag)CH3OH、约1.5psig(约11kPag)
H2O(入口压力)和约20WHSV(g-CH3OH g-催化剂-1h-1)下进行。
这些条件似乎导致进料中的甲醇基本上完全转化。
表2-微孔表面积和金属含量相对于芳香族化合物得率
实施例3–合并的芳香族化合物和烯烃得率和残留碳
在甲醇转化中,芳香族化合物和烯烃两者通常被当作比链烷烃价值更高的产物。表3示出了对于各种不同的H-ZSM-5和Zn/H-ZSM-5催化剂来说,合并的芳香族化合物和烯烃(A+O)选择性以及沉积在催化剂上的残留碳(在反应后通过热重测量法离位测量)。在表3中,焦或残留碳的重量%被表示成相对于催化剂重量的重量%。在进行甲醇转化后存在于ZSM-5催化剂上的残留碳,可以是这些催化剂在长期甲醇转化期间失活(通过焦化)的速率的指示物。
对于不含其他过渡金属的催化剂来说,在给定Si/Al2比率下微孔表面积大于约250m2/g的催化剂的A+O选择性显得相近。然而,对于微孔表面积小于约340m2/g的H-ZSM-5催化剂来说,焦化似乎恶化。对于Si与Al2的比率为约30或更低的H-ZSM-5催化剂来说,焦化的量也似乎增加。对于本发明的催化剂来说,对于包含过渡金属但具有小于约340m2/g的微孔表面积的催化剂来说,增加的焦化可能与用于形成芳香族化合物的反应位点相对于可以例如引起裂化的酸性反应位点的可利用性低有关。同样地,对于包含过渡金属但具有低扩散率的催化剂来说,低的扩散率可以指示化合物试图离开催化剂孔眼的扩散时间增加(潜在地等同于扩散长度增加)。化合物在沸石催化剂中的扩散长度和/或扩散时间的增加,可以引起在缺氢物质可以逃离沸石孔眼之前这些物质的进一步不饱和(和焦化)。
在微孔表面积大于约350m2/g的H-ZSM-5催化剂上Zn的存在,似乎将A+O选择性提高到约81%,与此相比没有过渡金属的H-ZSM-5的A+O选择性为约49%。应该指出,具有较低微孔表面积的在H-ZSM-5上具有Zn的催化剂的A+O选择性似乎为约71%。尽管如前面在实施例2中所示,合并的A+O得率似乎高,但合并的A+O得率的芳香族化合物部分仅为约30重量%,意味着大部分A+O选择性可能是由烯烃的生产造成的。尽管相对于链烷烃来说烯烃通常是理想产物,但芳香族化合物通常是更加理想的产物。
表3示出了在H-ZSM-5和Zn改良的H-ZSM-5催化剂存在下,在甲醇进料反应后的芳香族化合物加烯烃(A+O)的选择性和剩余在催化剂上的残留碳。用于产生表3中的结果的反应条件包括约500℃的温度,约13.5psig(约95kPag)的甲醇分压(入口),约1.5psig(约11kPag)的水分压(入口)和约20WHSV(g-CH3OH g-催化剂-1h-1)的空间速度。所述反应条件似乎足以使进料中的甲醇基本上完全转化。
表3–芳香族化合物加烯烃的得率和残留碳
如表3中所示,各种不同因素可以引起催化剂上焦形成的增加。为了避免焦形成,中等的硅与铝的比率、足够高的微孔表面积和足够高的2,2-DMB扩散率的组合可以引起催化剂上焦形成的减少。注意,对于对应于表3中第3行的过程运行来说,没有获得扩散率数据。
实施例4–第12族(IIB族)过渡金属的比较
表4演示了与没有通过包含过渡金属进行改良的等同的自粘合ZSM-5相比,向自粘合ZSM-5催化剂添加Zn或Cd的优点。未改良和过渡金属改良的催化剂的甲醇转化在约500℃的温度、约15psig(约110kPag)(约13.5psig/95kPag的CH3OH,约1.5psig/11kPag的H2O)的总入口压力和约20WHSV(g-CH3OH g-催化剂-1h-1)的空间速度下进行试验。所述反应条件似乎引起进料中的甲醇基本上完全转化。
表4–第12族过渡金属的比较
实施例5–芳香族化合物产物的分布
对表4中示出的甲醇转化结果进行进一步表征,以确定芳香族化合物产量中芳香族化合物类型的分布。表5示出了对表4中示出的每个甲醇转化运行来说,作为总芳香族化合物产物的重量百分数的C6-C10芳香族物质的分布。
表5–芳香族化合物产物的分布
如表5中所示,包含在催化剂上的过渡金属似乎影响在甲醇转化期间形成的芳香族化合物产物的分布。使用Zn作为添加的过渡金属似乎导致产生更大百分率的较重的C9和C10+芳香族化合物,代价是C6和C7化合物的生产减少。相反,使用Cd作为添加的过渡金属似乎导致产生额外的C6和C7化合物。
实施例6–相对于液体产物得率的芳香族化合物得率
表1-5中示出的甲醇转化实例对应于相对于催化剂的量来说具有高的甲醇进料空间速度的反应条件。在商业化背景中,较低的空间速度可能是优选的,例如约0.1至约5.0g-CH3OH g-催化剂-1h-1之间的空间速度(WHSV)。表6示出了对于H-ZSM-5催化剂和相应的Zn/H-ZSM-5催化剂来说,在代表了反应器的更典型的商业化操作条件的约2的WHSV下,烃类产物液体得率以及这种得率的芳香族化合物分数的实例。所述液体得率对应于C5+化合物的得率。表6中的结果在约450℃的温度和约15psig(约110kPag)的总压力下产生。应该指出,对于本实施例来说,进料基本上由甲醇构成(可能存在痕量的水)。所述催化剂对应于具有大于约350m2/g的微孔表面积的催化剂。
表6–芳香族化合物得率相对于液体得率
如表6中所示,在低于约5的WHSV下,含有和不含附加的过渡金属的两种催化剂的芳香族化合物得率似乎都与液体得率相差约10重量%或更少,表明产生的链烷烃的重量百分率相对低。如表6中所示,附加的过渡金属的添加不仅显得将芳香族化合物得率提高到超过约60重量%,而且芳香族化合物得率与液体得率之间的差值似乎小于5重量%。因此,所述附加的过渡金属不仅显得提高芳香族化合物得率,而且明显降低了不太想要的C5+链烷烃类型的化合物的得率。
实施例7–催化剂的再生
在甲醇转化期间,ZSM-5催化剂可以分别通过焦化和蒸汽处理遭受可逆和不可逆失活两者。在Zn/H-ZSM-5催化剂上对芳香族化合物产物的提高的选择性可以促进多核芳烃物质的形成,所述多核芳烃物质是已知的焦化前体。Zn/H-ZSM-5催化剂的再生通过将废旧催化剂在空气中在约850℉(约454℃)下处理来进行。表7示出了新鲜和再生的Zn/H-ZSM-5样品的Zn含量和芳香族化合物选择性。再生的Zn/H-ZSM-5样品与新鲜样品相比显得重新获得了~90+%的对芳香族化合物的选择性。将所述催化剂在约500℃的温度、约15psig(约110kPag)的总压力(约13.5psig/95kPag的CH3OH,约1.5psig/11kPag的H2O)和约20WHSV(g-CH3OH g-催化剂-1h-1)的空间速度下试验甲醇转化。所述反应条件似乎引起进料中的甲醇基本上完全转化。
表7–再生后的催化剂活性
尽管已参考特定实施方式对本发明进行了描述和说明,但本领域普通技术人员将会认识到,本发明本身可以做出未必在本文中说明的变化。因此,出于确定本发明的真正范围的目的,应该只参考权利要求书。

Claims (14)

1.一种催化剂组合物,其包含自粘合沸石和选自Zn、Cd或其组合的第12族过渡金属,
所述沸石具有至少约10,例如至少约20或至少约30或至少约40的硅与铝的比率,
所述催化剂组合物具有至少约340m2/g的微孔表面积、约0.1至约1.3的第12族过渡金属与铝的摩尔比以及至少一种下述特性:
(a)大于约20m2/g的中孔率;以及
(b)当在约120℃的温度和约60托(约8kPa)的2,2-二甲基丁烷压力下测量时,大于约1x10-2sec-1的2,2-二甲基丁烷扩散率。
2.权利要求1的催化剂组合物,其中所述催化剂组合物具有至少约10,例如至少约20或至少约50的α值。
3.前述权利要求任一项的催化剂组合物,其中所述催化剂组合物具有大于约30m2/g的中孔率。
4.前述权利要求任一项的催化剂组合物,其中所述催化剂组合物具有至少约350m2/g,例如至少约370m2/g或至少约380m2/g的微孔表面积。
5.前述权利要求任一项的催化剂组合物,其中当在约120℃的温度和约60托(8kPa)的2,2-二甲基丁烷压力下测量时,所述催化剂组合物具有大于约1.25x10-2sec-1,例如大于约1.5x10-2sec-1的2,2-二甲基丁烷扩散率。
6.前述权利要求任一项的催化剂组合物,其中所述沸石具有约1至约12的约束指数。
7.前述权利要求任一项的催化剂组合物,其中所述沸石包含ZSM-5、ZSM-11、具有MFI构架的沸石、具有MEL构架的沸石或其组合。
8.前述权利要求任一项的催化剂组合物,其中所述沸石是ZSM-5。
9.前述权利要求任一项的催化剂组合物,其中所述沸石是ZSM-11。
10.前述权利要求任一项的催化剂组合物,其中所述沸石的硅与铝的摩尔比为约20至约100,例如至少约30或至少约40,和/或约80或更低、约60或更低、或者约50或更低。
11.前述权利要求任一项的催化剂组合物,其中第12族过渡金属的量为总催化剂组合物的约0.1重量%至约2重量%。
12.前述权利要求任一项的催化剂组合物,其中所述催化剂组合物具有大于约20m2/g的中孔率和在约120℃的温度和约60托(约8kPa)的2,2-二甲基丁烷压力下测量时大于约1x10-2sec-1的2,2-二甲基丁烷扩散率两者。
13.一种用于有机化合物转化的方法,所述方法包括将包含有机化合物的进料暴露于前述权利要求任一项的催化剂组合物,以将所述有机化合物转化成产物。
14.权利要求13的方法,其中所述进料包含含有至少一个C1-C4烷基的含氧化合物至芳香族化合物的转化,所述含有至少一个C1-C4烷基的含氧化合物优选包含以下至少一种:甲醇、二甲醚、含有C1-C4烷基的对称醚、含有C1-C4烷基的不对称醚、C1-C4醇或其组合。
CN201480066896.1A 2013-12-20 2014-12-04 用于将含氧化合物选择性转化成芳香族化合物的催化剂 Active CN105814009B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201361918984P 2013-12-20 2013-12-20
US201361919013P 2013-12-20 2013-12-20
US201361918994P 2013-12-20 2013-12-20
US61/918,994 2013-12-20
US61/919,013 2013-12-20
US61/918,984 2013-12-20
PCT/US2014/068503 WO2015094679A1 (en) 2013-12-20 2014-12-04 Catalyst for selective conversion of oxygenates to aromatics

Publications (2)

Publication Number Publication Date
CN105814009A true CN105814009A (zh) 2016-07-27
CN105814009B CN105814009B (zh) 2021-11-12

Family

ID=52134438

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201480065522.8A Pending CN105793218A (zh) 2013-12-20 2014-12-04 用于选择性转化氧合物为芳族化合物的氧化铝粘结型催化剂
CN201480065519.6A Pending CN105992752A (zh) 2013-12-20 2014-12-04 用于选择性转化氧合物为芳族化合物的粘结型催化剂
CN201480067947.2A Expired - Fee Related CN105814010B (zh) 2013-12-20 2014-12-04 用于将含氧化合物转化成芳香族化合物的催化剂
CN201480066896.1A Active CN105814009B (zh) 2013-12-20 2014-12-04 用于将含氧化合物选择性转化成芳香族化合物的催化剂

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CN201480065522.8A Pending CN105793218A (zh) 2013-12-20 2014-12-04 用于选择性转化氧合物为芳族化合物的氧化铝粘结型催化剂
CN201480065519.6A Pending CN105992752A (zh) 2013-12-20 2014-12-04 用于选择性转化氧合物为芳族化合物的粘结型催化剂
CN201480067947.2A Expired - Fee Related CN105814010B (zh) 2013-12-20 2014-12-04 用于将含氧化合物转化成芳香族化合物的催化剂

Country Status (5)

Country Link
US (6) US10105690B2 (zh)
EP (6) EP3114100A1 (zh)
CN (4) CN105793218A (zh)
CA (6) CA2943612A1 (zh)
WO (6) WO2015094685A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113557288A (zh) * 2019-03-14 2021-10-26 埃克森美孚研究工程公司 用于甲醇转化催化剂的催化剂配制

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10173169B2 (en) 2010-03-26 2019-01-08 Dioxide Materials, Inc Devices for electrocatalytic conversion of carbon dioxide
US9945040B2 (en) 2010-07-04 2018-04-17 Dioxide Materials, Inc. Catalyst layers and electrolyzers
US10724142B2 (en) 2014-10-21 2020-07-28 Dioxide Materials, Inc. Water electrolyzers employing anion exchange membranes
US10774431B2 (en) 2014-10-21 2020-09-15 Dioxide Materials, Inc. Ion-conducting membranes
CA2964307A1 (en) * 2014-12-22 2016-06-30 Exxonmobil Research And Engineering Company Conversion of oxygenates to aromatics
US10280378B2 (en) * 2015-05-05 2019-05-07 Dioxide Materials, Inc System and process for the production of renewable fuels and chemicals
CN108290801B (zh) 2015-11-30 2021-04-09 托普索公司 包含磷的双功能催化剂
EP3448558A1 (en) * 2016-04-25 2019-03-06 ExxonMobil Chemical Patents Inc. Catalytic aromatization
WO2018007488A1 (en) * 2016-07-08 2018-01-11 Haldor Topsøe A/S Removal of hydrogen in a side stream
WO2018022699A1 (en) * 2016-07-28 2018-02-01 Shell Oil Company Production of aromatics-rich higher hydrocarbons from solid biomass
EP3504359A1 (en) * 2016-08-29 2019-07-03 Dioxide Materials, Inc. System and process for the production of renewable fuels and chemicals
US10590353B2 (en) 2016-12-07 2020-03-17 Exxonmobil Research And Engineering Company Integrated oxygenate conversion and olefin oligomerization
CN110023458A (zh) * 2016-12-07 2019-07-16 埃克森美孚研究工程公司 用于生产芳烃的组合烯烃和氧合物转化
WO2018118416A1 (en) 2016-12-20 2018-06-28 Exxonmobil Research And Engineering Company Catalyst for fuel upgrading by reforming, methanation and dehydrocracking
CN106866330B (zh) * 2017-01-17 2020-08-07 安徽理工大学 一种由碳酸二甲酯制备芳烃的方法
KR102500247B1 (ko) 2017-01-19 2023-02-15 엑손모빌 테크놀로지 앤드 엔지니어링 컴퍼니 가변 촉매 조성물에 의한 산소화물의 탄화수소로의 전환
US10147974B2 (en) 2017-05-01 2018-12-04 Dioxide Materials, Inc Battery separator membrane and battery employing same
CN107312577A (zh) * 2017-06-30 2017-11-03 马鞍山昊阳新能源科技有限公司 一种新能源燃料及其配方
CN108435171B (zh) * 2018-05-07 2020-11-27 岭南师范学院 一种双金属Pt-Bi催化剂的制备方法及一种选择性催化氧化甘油制DHA的方法
WO2020150053A1 (en) * 2019-01-18 2020-07-23 Exxonmobil Research And Engineering Company Conversion of methanol to gasoline with integrated paraffin conversion
US11084983B2 (en) 2019-01-24 2021-08-10 Exxonmobil Research And Engineering Company Fluidized bed conversion of oxygenates with increased aromatic selectivity
US20200239785A1 (en) * 2019-01-24 2020-07-30 Exxonmobil Research And Engineering Company Organic acid removal from liquid hydrocarbon product streams
EP3932547A4 (en) * 2019-02-26 2022-12-07 Tsubame BHB Co., Ltd. SINTERED CERAMIC BODY AND METHOD FOR MANUFACTURING THE SINTERED CERAMIC BODY
US11130915B2 (en) 2019-06-18 2021-09-28 Exxonmobil Research And Engineering Company Methods for methanol-to-gasoline conversion with forwarding methanol processing
US11118115B2 (en) 2019-06-18 2021-09-14 Exxonmobil Research And Engineering Company Methods for methanol-to-gasoline conversion with methanol recycling
US11603340B2 (en) 2019-09-17 2023-03-14 ExxonMobil Technology and Engineering Company Methods for methanol-to-gasoline conversion with post-processing of heavy gasoline hydrocarbons
US11674089B2 (en) * 2019-09-24 2023-06-13 ExxonMobil Technology and Engineering Company Olefin methylation for production of low aromatic gasoline
EP4182077A1 (en) * 2020-07-17 2023-05-24 Chevron Phillips Chemical Company Lp Aromatization catalyst activity and selectivity improvement with alcohol addition during catalyst preparation
EP4185664A1 (en) 2020-07-21 2023-05-31 ExxonMobil Technology and Engineering Company Methods of co-processing petroleum distillates and bio-based material through a reaction series

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894104A (en) * 1973-08-09 1975-07-08 Mobil Oil Corp Aromatization of hetero-atom substituted hydrocarbons
US20130158323A1 (en) * 2011-12-20 2013-06-20 Saudi Basic Industries Corporation PERFORMANCE OF Ga- AND Zn-EXCHANGED ZSM-5 ZEOLITE CATALYST FOR CONVERSION OF OXYGENATES TO AROMATICS
US20130303814A1 (en) * 2012-05-14 2013-11-14 Saudi Basic Industries Corporation Process for conversion of lower aliphatic ethers to aromatics and lower olefins

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354078A (en) 1965-02-04 1967-11-21 Mobil Oil Corp Catalytic conversion with a crystalline aluminosilicate activated with a metallic halide
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3709979A (en) 1970-04-23 1973-01-09 Mobil Oil Corp Crystalline zeolite zsm-11
US3832449A (en) 1971-03-18 1974-08-27 Mobil Oil Corp Crystalline zeolite zsm{14 12
US3760024A (en) 1971-06-16 1973-09-18 Mobil Oil Corp Preparation of aromatics
US4128504A (en) 1973-02-05 1978-12-05 Mobil Oil Corporation Stabilized zinc-containing zeolites
US4046685A (en) 1973-07-26 1977-09-06 Desalination Systems, Inc. Simultaneous production of multiple grades of purified water by reverse osmosis
US3894102A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Conversion of synthesis gas to gasoline
US3894107A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Conversion of alcohols, mercaptans, sulfides, halides and/or amines
US3894103A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Aromatization reactions
US3941871A (en) 1973-11-02 1976-03-02 Mobil Oil Corporation Crystalline silicates and method of preparing the same
US4012245A (en) 1974-05-31 1977-03-15 The United States Of America As Represented By The Secretary Of The Army Cast TNT explosive containing polyurethane elastomer which is free from oily exudation and voids and uniformly remeltable
US4058576A (en) 1974-08-09 1977-11-15 Mobil Oil Corporation Conversion of methanol to gasoline components
US3960978A (en) 1974-09-05 1976-06-01 Mobil Oil Corporation Converting low molecular weight olefins over zeolites
US3928483A (en) 1974-09-23 1975-12-23 Mobil Oil Corp Production of gasoline hydrocarbons
US4021502A (en) 1975-02-24 1977-05-03 Mobil Oil Corporation Converting low molecular weight olefins over zeolites
US4016218A (en) 1975-05-29 1977-04-05 Mobil Oil Corporation Alkylation in presence of thermally modified crystalline aluminosilicate catalyst
CA1064890A (en) 1975-06-10 1979-10-23 Mae K. Rubin Crystalline zeolite, synthesis and use thereof
US4049573A (en) 1976-02-05 1977-09-20 Mobil Oil Corporation Zeolite catalyst containing oxide of boron or magnesium
US4025571A (en) 1976-05-12 1977-05-24 Mobil Oil Corporation Manufacture of hydrocarbons
US4035430A (en) 1976-07-26 1977-07-12 Mobil Oil Corporation Conversion of methanol to gasoline product
US4079095A (en) 1976-11-04 1978-03-14 Mobil Oil Corporation Manufacture of light olefins
US4150062A (en) 1976-12-20 1979-04-17 Mobil Oil Corporation Light olefin processing
US4120910A (en) * 1976-12-27 1978-10-17 Mobil Oil Corporation Aromatization of ethane
NL190157C (nl) 1979-03-14 1993-11-16 Shell Int Research Werkwijze voor de bereiding van aromatische koolwaterstoffen en waterstof.
NL190066C (nl) 1979-03-14 1993-10-18 Shell Int Research Werkwijze voor de bereiding van aromatische koolwaterstoffen en waterstof.
US4229424A (en) * 1979-04-09 1980-10-21 Mobil Oil Corporation Crystalline zeolite product constituting ZSM-5/ZSM-11 intermediates
US4211640A (en) 1979-05-24 1980-07-08 Mobil Oil Corporation Process for the treatment of olefinic gasoline
US4227992A (en) 1979-05-24 1980-10-14 Mobil Oil Corporation Process for separating ethylene from light olefin mixtures while producing both gasoline and fuel oil
US4397827A (en) 1979-07-12 1983-08-09 Mobil Oil Corporation Silico-crystal method of preparing same and catalytic conversion therewith
US4326994A (en) 1980-02-14 1982-04-27 Mobil Oil Corporation Enhancement of zeolite catalytic activity
NL8001342A (nl) 1980-03-06 1980-07-31 Shell Int Research Werkwijze voor het uitvoeren van katalytische omzettingen.
US4417780A (en) 1980-04-30 1983-11-29 Thomas & Betts Corporation Pitch transition connector
US4423274A (en) 1980-10-03 1983-12-27 Mobil Oil Corporation Method for converting alcohols to hydrocarbons
US4433189A (en) 1982-03-18 1984-02-21 Mobil Oil Corporation Catalytic conversion of methanol to light olefins
US4481173A (en) * 1982-11-22 1984-11-06 Mobil Oil Corporation Manufacture of low sodium zeolite
US4433185A (en) 1983-04-04 1984-02-21 Mobil Oil Corporation Two stage system for catalytic conversion of olefins with distillate and gasoline modes
NZ207523A (en) 1983-04-22 1986-03-14 Mobil Oil Corp Catalytic production of olefin mixtures from alcohols and/or ethers
US4456779A (en) 1983-04-26 1984-06-26 Mobil Oil Corporation Catalytic conversion of olefins to higher hydrocarbons
US4450311A (en) 1983-06-29 1984-05-22 Mobil Oil Corporation Heat exchange technique for olefin fractionation and catalytic conversion system
US4594146A (en) * 1983-10-06 1986-06-10 Mobil Oil Corporation Conversion with zeolite catalysts prepared by steam treatment
US4621161A (en) 1984-01-23 1986-11-04 Mobil Oil Corporation Oxygenate conversion over activated zeolite catalyst
US4556477A (en) 1984-03-07 1985-12-03 Mobil Oil Corporation Highly siliceous porous crystalline material ZSM-22 and its use in catalytic dewaxing of petroleum stocks
US4582815A (en) 1984-07-06 1986-04-15 Mobil Oil Corporation Extrusion of silica-rich solids
US4584423A (en) 1984-07-30 1986-04-22 Chevron Research Company Xylene isomerization using a zeolite with a group II metal
US4538017A (en) 1984-08-01 1985-08-27 Cosden Technology, Inc. Conversion of paraffins to aromatics
US4579993A (en) 1984-08-22 1986-04-01 Mobil Oil Corporation Catalyst for methanol conversion by a combination of steaming and acid-extraction
US4665251A (en) 1985-06-12 1987-05-12 Mobil Oil Corporation Aromatization reactions with zeolites containing phosphorus oxide
US4590321A (en) 1985-06-12 1986-05-20 Mobil Oil Corporation Aromatization reactions with zeolites containing phosphorus oxide
US4628135A (en) 1985-09-23 1986-12-09 Mobil Oil Corporation Integrated process for converting oxygenates to liquid hydrocarbons
US4788369A (en) 1985-12-31 1988-11-29 Mobil Oil Corporation Conversion of methanol to gasoline
US4822939A (en) * 1986-07-11 1989-04-18 Mobil Oil Corporation Process for the conversion of lower aliphatic oxygenates to olefins and aromatics with gallium containing ZSM-5 catalyst
US4720602A (en) 1986-09-08 1988-01-19 Mobil Oil Corporation Process for converting C2 to C12 aliphatics to aromatics over a zinc-activated zeolite
US4808763A (en) 1987-08-05 1989-02-28 Amoco Corporation Process for upgrading light paraffins
US4992611A (en) * 1989-12-13 1991-02-12 Mobil Oil Corp. Direct conversion of C1 -C4 oxygenates to low aromatic distillate range hydrocarbons
US5110572A (en) * 1990-01-25 1992-05-05 Mobil Oil Corp. Synthesis of mesoporous crystalline material using organometallic reactants
US5367099A (en) 1993-05-28 1994-11-22 Mobil Oil Corp. Selective toluene disproportionation process (STDP) with ex situ selectivated zeolite catalyst
US5365004A (en) 1993-05-28 1994-11-15 Mobil Oil Corp. Selective toluene disproportionation process (STDP) with ex situ selectivated zeolite catalysts
US5476823A (en) 1993-05-28 1995-12-19 Mobil Oil Corp. Method of preparation of ex situ selectivated zeolite catalysts for enhanced shape selective applications and method to increase the activity thereof
US5877368A (en) 1994-10-03 1999-03-02 Sanyo Petrochemical Co., Ltd. Method for producing aromatic hydrocarbons
US5705726A (en) 1994-11-18 1998-01-06 Mobil Oil Corporation Xylene isomerization on separate reactors
US5625103A (en) 1995-05-15 1997-04-29 Mobil Oil Corporation Continuous toluene disproportionation process
US6048816A (en) 1996-10-02 2000-04-11 Mobil Oil Corporation Catalyst and process for converting methanol to hydrocarbons
US6177374B1 (en) 1997-01-17 2001-01-23 Council Of Scientific & Industrial Research Catalyst comprising oxides of silicon, zinc and aluminium used for the preparation of LPG and high octane aromatics and a process for preparing the same
US5883034A (en) * 1997-07-09 1999-03-16 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
US5898089A (en) * 1997-07-09 1999-04-27 Phillips Petroleum Company Hydrocarbon aromatization process using a zeolite
AU7710598A (en) 1997-07-15 1999-02-10 Phillips Petroleum Company High stability zeolite catalyst composition and hydrocarbon conversion process
US5932777A (en) * 1997-07-23 1999-08-03 Phillips Petroleum Company Hydrocarbon conversion
US6423879B1 (en) 1997-10-02 2002-07-23 Exxonmobil Oil Corporation Selective para-xylene production by toluene methylation
US6156689A (en) 1997-10-23 2000-12-05 Phillips Petroleum Company Catalyst composition comprising zinc compound or boron compound and hydrocarbon conversion process
US6346498B1 (en) * 1997-12-19 2002-02-12 Exxonmobil Oil Corporation Zeolite catalysts having stabilized hydrogenation-dehydrogenation function
US6417421B1 (en) * 1998-03-03 2002-07-09 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and process therefor and therewith
US6028238A (en) 1998-04-14 2000-02-22 Mobil Oil Corporation Xylene isomerization
US5998688A (en) 1998-08-25 1999-12-07 Mobil Oil Corporation Xylene isomerization process using toluene co-feed
US6372680B1 (en) 1999-07-27 2002-04-16 Phillips Petroleum Company Catalyst system for converting oxygenated hydrocarbons to aromatics
US6187982B1 (en) 1999-10-15 2001-02-13 Mobil Oil Corporation Process for converting dienes and oxygenates to para-xylene and light olefins
US6372949B1 (en) 1999-10-15 2002-04-16 Mobil Oil Corporation Single stage process for converting oxygenates to gasoline and distillate in the presence of undimensional ten member ring zeolite
US6506954B1 (en) * 2000-04-11 2003-01-14 Exxon Mobil Chemical Patents, Inc. Process for producing chemicals from oxygenate
CN1257769C (zh) * 2003-10-31 2006-05-31 中国石油化工股份有限公司 一种含磷和金属组分的mfi结构分子筛及其应用
CN1902147B (zh) 2003-12-31 2010-08-25 埃克森美孚化学专利公司 芳族化合物的烷基化方法
US7285511B2 (en) 2004-04-23 2007-10-23 Saudi Basic Industries Corporation Method of modifying zeolite catalyst
US7371915B1 (en) 2004-06-25 2008-05-13 Uop Llc Conversion of oxygenate to propylene using moving bed technology
US7408092B2 (en) * 2004-11-12 2008-08-05 Uop Llc Selective conversion of oxygenate to propylene using moving bed technology and a hydrothermally stabilized dual-function catalyst
US7414167B2 (en) * 2005-01-14 2008-08-19 Uop Llc Conversion of oxygenate to propylene using moving bed technology and a separate heavy olefin interconversion step
US7304194B2 (en) 2005-05-05 2007-12-04 Saudi Basic Industries Corporation Hydrothermal treatment of phosphorus-modified zeolite catalysts
US7722825B1 (en) 2006-07-31 2010-05-25 Uop Llc Preparing a light-olefin containing product stream from an oxygenate-containing feed stream using reactors directing a flow of a fluidized dual-function catalyst system
CN101778808B (zh) 2007-08-13 2014-01-08 沙特基础工业公司 用于将脂族含氧化合物转化成芳族化合物的催化剂组合物和方法
CN101602648B (zh) 2009-07-24 2013-04-17 中国海洋石油总公司 一种甲醇/二甲醚转化制备对二甲苯的方法
CN101602643B (zh) 2009-07-24 2013-07-24 中国海洋石油总公司 一种甲醇/二甲醚转化制取乙烯丙烯联产对二甲苯的方法
CN101607864B (zh) 2009-07-24 2013-05-22 中国海洋石油总公司 一种甲醇/二甲醚转化高产率制备对二甲苯的方法
CN101780417B (zh) 2010-02-10 2012-04-18 中国海洋石油总公司 一种甲醇转化制备对二甲苯和低碳烯烃的催化剂及其制备方法与应用
CN101823929B (zh) 2010-04-14 2013-05-22 清华大学 一种甲醇或二甲醚转化制取芳烃的系统与工艺
EP2593044B1 (en) 2010-07-15 2017-12-27 Spine Wave, Inc. A plastically deformable inter-osseous device
BR112014002530B1 (pt) 2011-08-03 2024-01-09 Total Research & Technology Feluy Método para fazer um catalisador compreendendo uma zeólita modificada por fósforo e uso da referida zeólita
US20130060070A1 (en) * 2011-09-01 2013-03-07 University Of Massachusetts Method for producing fluid hydrocarbons
CN103889574A (zh) 2011-10-17 2014-06-25 埃克森美孚研究工程公司 磷改性的沸石催化剂
US20130165725A1 (en) 2011-12-27 2013-06-27 Shell Oil Company Process for the preparation of an aromatic product
US9133077B2 (en) * 2011-12-27 2015-09-15 Shell Oil Company Process for the preparation of a lower olefin product
CN103372456A (zh) * 2012-04-13 2013-10-30 上海中科高等研究院 一种分子筛催化剂及其制备与应用
CN103537315B (zh) 2012-07-12 2015-11-25 中国石油化工股份有限公司 甲醇制芳烃催化剂及其制备方法
CN103007985B (zh) * 2012-12-20 2014-09-24 清华大学 一种将醇、醚转化为芳烃的催化剂及其制备、使用方法
CN103394366B (zh) * 2013-08-09 2015-01-21 清华大学 将醇醚与c3~c8烷烃转化为芳烃的催化剂及其制备与应用方法
US9714386B2 (en) * 2014-07-24 2017-07-25 Exxonmobil Chemical Patents Inc. Production of xylenes from syngas
BR112017010285A2 (pt) * 2014-11-20 2018-02-14 Anellotech Inc processo aprimorado de pirólise catalítica rápida

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894104A (en) * 1973-08-09 1975-07-08 Mobil Oil Corp Aromatization of hetero-atom substituted hydrocarbons
US20130158323A1 (en) * 2011-12-20 2013-06-20 Saudi Basic Industries Corporation PERFORMANCE OF Ga- AND Zn-EXCHANGED ZSM-5 ZEOLITE CATALYST FOR CONVERSION OF OXYGENATES TO AROMATICS
US20130303814A1 (en) * 2012-05-14 2013-11-14 Saudi Basic Industries Corporation Process for conversion of lower aliphatic ethers to aromatics and lower olefins

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113557288A (zh) * 2019-03-14 2021-10-26 埃克森美孚研究工程公司 用于甲醇转化催化剂的催化剂配制
US11673127B2 (en) 2019-03-14 2023-06-13 ExxonMobil Technology and Engineering Company Catalyst formulation for methanol conversion catalysts
CN113557288B (zh) * 2019-03-14 2024-02-20 埃克森美孚技术与工程公司 用于甲醇转化催化剂的催化剂配制

Also Published As

Publication number Publication date
WO2015094681A1 (en) 2015-06-25
US20150174563A1 (en) 2015-06-25
WO2015094679A1 (en) 2015-06-25
CA2926152A1 (en) 2015-06-25
US10159963B2 (en) 2018-12-25
CA2925992A1 (en) 2015-06-25
CN105814010A (zh) 2016-07-27
US20150174562A1 (en) 2015-06-25
US20150175898A1 (en) 2015-06-25
US10105690B2 (en) 2018-10-23
CA2943612A1 (en) 2015-06-25
EP3102552A1 (en) 2016-12-14
WO2015094683A1 (en) 2015-06-25
CA2943606A1 (en) 2015-06-25
CN105793218A (zh) 2016-07-20
CN105814009B (zh) 2021-11-12
CN105992752A (zh) 2016-10-05
CN105814010B (zh) 2020-04-03
CA2926155A1 (en) 2015-06-25
WO2015094687A1 (en) 2015-06-25
US20150174570A1 (en) 2015-06-25
EP3083533A1 (en) 2016-10-26
US20150174561A1 (en) 2015-06-25
CA2926152C (en) 2020-08-18
EP3083532A1 (en) 2016-10-26
WO2015094685A1 (en) 2015-06-25
CA2925996A1 (en) 2015-06-25
US10099209B2 (en) 2018-10-16
WO2015094682A1 (en) 2015-06-25
CA2925992C (en) 2020-08-11
EP3114100A1 (en) 2017-01-11
EP3083535A1 (en) 2016-10-26
US20150175897A1 (en) 2015-06-25
US9895682B2 (en) 2018-02-20
EP3083534A1 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
CN105814009A (zh) 用于将含氧化合物选择性转化成芳香族化合物的催化剂
CN106068323B (zh) 乙烯成液体的系统和方法
AU2009211658B2 (en) Hydroisomerization catalyst, process for producing the same, method of dewaxing hydrocarbon oil, and process for producing lube base oil
AU2011232989A1 (en) Hydroisomerization catalyst, method for producing same, method for dewaxing hydrocarbon oil, method for producing hydrocarbon, and method for producing lubricant base oil
JP2007533807A5 (zh)
CN107001943B (zh) 有机含氧化合物至烃的转化
CN110036094A (zh) 综合氧合物转化和烯烃低聚
CN110023458A (zh) 用于生产芳烃的组合烯烃和氧合物转化
AU2016208485A1 (en) Hydrogen rejection in methanol to hydrocarbon process
CN110225959A (zh) 用可变催化剂组合物将含氧化合物转化为烃
US9562200B2 (en) Method for producing lubricant base oil
CN108203102A (zh) 一种复合改性的sapo-34分子筛及其制备方法
CN107109244A (zh) 含氧化合物向芳族化合物的转化
US9267081B2 (en) Catalyst and process for the conversion of bio-ethanol into gasoline
CN108114738A (zh) 一种Zn改性的ZSM-11催化剂及其制备方法和应用
CN105038844A (zh) 液体燃料的制造方法
Kuznetsov et al. Catalytic isomerisation of alkanes on anion-modified forms of zirconium dioxide
US20150094505A1 (en) Method for producing lubricant base oil
AU2007232013A1 (en) Reduction catalyst for carbon monoxide, process for preparing the catalyst and process for producing hydrocarbon
CN109569714A (zh) 一种费托合成石脑油转化催化剂及其制备方法
JP2008169356A (ja) 液体燃料の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant