CN105801886B - 一种疏水纳米多孔纤维素微球的制备方法 - Google Patents

一种疏水纳米多孔纤维素微球的制备方法 Download PDF

Info

Publication number
CN105801886B
CN105801886B CN201610205381.6A CN201610205381A CN105801886B CN 105801886 B CN105801886 B CN 105801886B CN 201610205381 A CN201610205381 A CN 201610205381A CN 105801886 B CN105801886 B CN 105801886B
Authority
CN
China
Prior art keywords
micro crystal
nano
added
cellulose
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610205381.6A
Other languages
English (en)
Other versions
CN105801886A (zh
Inventor
刘云晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiantao Sanding Technology Development Co.,Ltd.
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610205381.6A priority Critical patent/CN105801886B/zh
Publication of CN105801886A publication Critical patent/CN105801886A/zh
Application granted granted Critical
Publication of CN105801886B publication Critical patent/CN105801886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/549Silicon-containing compounds containing silicon in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2461/22Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08J2461/24Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds with urea or thiourea

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种疏水纳米多孔纤维素微球的制备方法,主要采用纳米微晶纤维素为骨架单元,低表面张力溶剂为置换溶剂,通过加入表面活性剂形成乳液体系进行化学反应,其中以有机硅烷化合物为疏水改性剂制备而成。本发明所采用的疏水纳米多孔纤维素微球制备工艺流程简单,设备要求低;另外,生产原料价格低廉,溶剂易回收,生产成本低,产率高。本发明所制备的疏水纳米多孔纤维素微球为规则球形颗粒,平均粒径可在1~1000μm范围内调控,且具有典型的纳米多孔结构,可应用于隔热、色谱分离、催化、生物载药和血液净化等领域。

Description

一种疏水纳米多孔纤维素微球的制备方法
技术领域
本发明涉及材料制备领域,具体涉及一种疏水纳米多孔纤维素微球的制备方法。
背景技术
纳米多孔轻质材料可称为气凝胶材料,气凝胶是一种以纳米量级粒子相互聚集构成纳米多孔网络结构,并在孔隙中充满气态分散介质的一种高分散固态材料,因其具有纳米多孔结构、低密度、低介电常数、低导热系数、高孔隙率、高比表面积等特点,在力学、声学、热学、光学等诸方面显示出独特性质,在航天、军事、石油、化工、矿产、通讯、医用、建材、电子、冶金等众多领域有着广泛而巨大的应用价值,被称为“改变世界的神奇材料”。
纤维素气凝胶是近年发展起来的一类新型气凝胶材料。纤维素是地球上储量丰富的绿色可再生资源,纤维素气凝胶除了具有传统气凝胶材料的诸多优点外,还具有韧性好、易加工、制备过程简单、结构可控、来源丰富可再生、良好的生物相容性和可降解性等无机气凝胶无法比拟的特性,因此纤维素气凝胶成为一类应用前景广阔、极具开发价值的新材料。球形纤维素微球微颗粒具有规则的形状,有其组成的粉体气凝胶材料具有较低的表观密度和较好的流动性,有利于其在隔热,色谱分离和催化等方面的应用。另外,球形纤维素气凝胶微颗粒在药物的可控释放和血液净化领域方面也得到了重要的应用。因此,开发球形纤维素气凝胶微颗粒的制备新方法具有重要的现实意义。
在球形纤维素气凝胶微颗粒的制备方法研究方面,人们开展了大量的研究工作,希望能够开发出成本低、工艺简单、耗时短、且可实现规模化生产的制备方法。目前,球形纤维素气凝胶微颗粒的制备方法主要为超临界干燥。超临界法制备的气凝胶性能较为优异,但设备复杂昂贵、干燥工艺耗能高、危险性大。研究和开发一种成本低、工艺简单且可实现规模化生产的技术制备球形纤维素气凝胶微颗粒具有十分重要的现实意义。
发明内容
本发明针对现有技术中制备疏水纳米多孔纤维素微球的方法工艺复杂、成本高的技术问题,目的在于提供一种成本低、工艺简单且可实现规模化生产的常压干燥技术制备疏水纳米多孔纤维素微球的方法。
本发明的目的通过以下方式来完成:
本发明提供的一种疏水纳米多孔纤维素微球的制备方法,其特征在于:采用纳米微晶纤维素为骨架单元,低表面张力溶剂为置换溶剂,通过加入表面活性剂形成乳液体系进行化学反应,其中以有机硅烷化合物为疏水改性剂,过程按下述步骤依次进行:
(1)将纳米微晶纤维素水溶胶(固含量为3-20%)与去离子水在室温下混合均匀,加入交联剂和低表面张力溶剂,搅拌均匀得到混合溶液;
(2)在混合溶液中加入表面活性剂,通过高速搅拌使体系形成乳状液后,向其中加入有机硅烷化合物,加热搅拌反应,反应结束后,静置,过滤,得到白色沉淀物;
(3)对白色沉淀物进行洗涤、常压干燥,得到疏水纳米多孔纤维素微球。
为了更好地实现本发明,所述的交联剂为碳酸锆铵、2D树脂、水溶性羟基丙烯酸酯树脂的至少一种。
为了更好地实现本发明,所述的低表面张力溶剂正庚烷、正己烷和正辛烷中的至少一种。
为了更好地实现本发明,所述的有机硅烷化合物为二甲基二乙氧基硅烷、二甲基二甲氧基硅烷、六甲基二硅氧烷、六甲基二硅氮烷、甲基三乙氧基硅烷、甲基三甲氧基硅烷、十二烷基三甲氧基硅烷、十二烷基三乙氧基硅烷、十六烷基三甲氧基硅烷、十六烷基三乙氧基硅烷、八甲基环四硅氧烷、六甲基环三硅氧烷中的至少一种。
为了更好地实现本发明,所述的表面活性剂为吐温-40,吐温-60,吐温-80,司班-40,司班-65,司班-80的至少一种。
为了更好地实现本发明,在所述步骤(1)中,混合溶液中纳米微晶纤维素水溶胶、去离子水、交联剂和低表面张力溶剂的质量比为1:(0.5~5):(0.03~1):(1~5)。
在所述步骤(2)中,表面活性剂与纳米微晶纤维素水溶胶的质量比为(0.01~0.2):1。
在所述步骤(2)中,有机硅烷化合物与纳米微晶纤维素水溶胶的质量比为(0.01~1)。
在所述步骤(2)中所述的高速搅拌,指在300~1200rpm转速搅拌条件。
在所述步骤(2)中所述的加热搅拌反应,指反应温度为30~70℃,反应时间为0.5h~8h。
在所述步骤(3)中的常压干燥指在常压条件下,80~180℃下干燥1~8h。
本发明所制备的疏水纳米多孔纤维素微球为规则球形颗粒,粒径为1~1000μm,比表面积为300~1200 m2/g,孔径为10~200nm。
相对于现有技术,本发明具有如下优点和有益效果:
1、本发明所采用的疏水纳米多孔纤维素微球制备工艺流程简单,设备要求低;另外,生产原料价格低廉,溶剂易回收,生产成本低,产率高。
2、本发明所采用的疏水纳米多孔纤维素微球制备过程不必经过传统气凝胶常压干燥繁琐的溶剂置换过程,便于规模化工业生产。
3、本发明所制备的疏水纳米多孔纤维素微球为规则球形颗粒,平均粒径可在1~1000μm范围内调控,且具有典型的纳米多孔结构,可应用于隔热、色谱分离、催化、生物载药和血液净化等领域。
附图说明
图1为本发明实施例1所制备的疏水纳米多孔纤维素微球的SEM图。
图2为本发明实施例1所制备的疏水纳米多孔纤维素微球表面微观结构的SEM图。
具体实施方式
下面结合附图和实施例子对本发明的具体实施方式作进一步详细的说明,但本发明的实施方式不限于此。
实施例1
将100g纳米微晶纤维素水溶胶(固含量为6%)与300g去离子水在室温下混合均匀,加入50g碳酸锆铵和300g正己烷,搅拌均匀得到混合溶液;在混合溶液中加入10g吐温-40表面活性剂,通过在400rpm转速下快速搅拌使得体系形成乳状液后,向其加入10g二甲基二乙氧基硅烷,在30℃加热条件下搅拌反应7h,反应结束后,静置,过滤,得到白色沉淀物;用正己烷洗涤白色沉淀物3次,然后放置于鼓风干燥箱内,在100℃条件下干燥处理6h,得到白色的疏水纳米多孔纤维素微球。
所制备的疏水纳米多孔纤维素微球的扫描电镜图如附图1和附图2所示,颗粒为圆球状,粒径大小分布在15~30μm之间,通过附图2可以看出,制得的疏水纳米多孔纤维素微球是具有连续网络结构的多孔材料,孔径大小为50nm左右,且纳米孔洞分布均匀。
测试结果:
粒径:15~30μm;
比表面积:1200 m2/g;
平均孔径:50nm。
实施例2
将100g纳米微晶纤维素水溶胶(固含量为3)与50g去离子水在室温下混合均匀,加入3g 2D树脂和100g正庚烷,搅拌均匀得到混合溶液;在混合溶液中加入1g吐温-40表面活性剂,通过在1200rpm转速下快速搅拌使得体系形成乳状液后,向其加入20g六甲基二硅氧烷,在40℃加热条件下搅拌反应8h,反应结束后,静置,过滤,得到白色沉淀物;用正己烷洗涤白色沉淀物3次,然后放置于鼓风干燥箱内,在80℃条件下干燥处理6h,得到白色的疏水纳米多孔纤维素微球。
测试结果:
粒径:10~20μm;
比表面积:800 m2/g;
平均孔径:80nm。
实施例3
将100g纳米微晶纤维素水溶胶(固含量为10%)与500g去离子水在室温下混合均匀,加入100g水溶性羟基丙烯酸酯树脂和500g正己烷,搅拌均匀得到混合溶液;在混合溶液中加入20g吐温-60表面活性剂,通过在300rpm转速下快速搅拌使得体系形成乳状液后,向其加入10g甲基三乙氧基硅烷,在50℃加热条件下搅拌反应4h,反应结束后,静置,过滤,得到白色沉淀物;用正己烷洗涤白色沉淀物3次,然后放置于鼓风干燥箱内,在100℃条件下干燥处理5h,得到白色的疏水纳米多孔纤维素微球。
测试结果:
粒径:20~50μm;
比表面积:1000 m2/g;
平均孔径:100nm。
实施例4
将100g纳米微晶纤维素水溶胶(固含量为20%)与200g去离子水在室温下混合均匀,加入80g碳酸锆铵和400g正辛烷,搅拌均匀得到混合溶液;在混合溶液中加入2g吐温-80表面活性剂,通过在800rpm转速下快速搅拌使得体系形成乳状液后,向其加入1g甲基环三硅氧烷,在60℃加热条件下搅拌反应5h,反应结束后,静置,过滤,得到白色沉淀物;用正己烷洗涤白色沉淀物3次,然后放置于鼓风干燥箱内,在130℃条件下干燥处理3h,得到白色的疏水纳米多孔纤维素微球。
测试结果:
粒径:200~500μm;
比表面积:400 m2/g;
平均孔径:150nm。
实施例5
将100g纳米微晶纤维素水溶胶(固含量为8%)与400g去离子水在室温下混合均匀,加入20g碳酸锆铵和200g正庚烷,搅拌均匀得到混合溶液;在混合溶液中加入3g司班-40表面活性剂,通过在800rpm转速下快速搅拌使得体系形成乳状液后,向其加入100g六甲基二硅氮烷,在70℃加热条件下搅拌反应0.5h,反应结束后,静置,过滤,得到白色沉淀物;用正己烷洗涤白色沉淀物3次,然后放置于鼓风干燥箱内,在100℃条件下干燥处理6h,得到白色的疏水纳米多孔纤维素微球。
测试结果:
粒径:20~40μm;
比表面积:300 m2/g;
平均孔径:200nm。
实施例6
将100g纳米微晶纤维素水溶胶(固含量为5%)与100g去离子水在室温下混合均匀,加入10g水溶性羟基丙烯酸酯树脂和250g正辛烷,搅拌均匀得到混合溶液;在混合溶液中加入5g司班-65表面活性剂,通过在400rpm转速下快速搅拌使得体系形成乳状液后,向其加入20g十六烷基三甲氧基硅烷,在40℃加热条件下搅拌反应4h,反应结束后,静置,过滤,得到白色沉淀物;用正己烷洗涤白色沉淀物3次,然后放置于鼓风干燥箱内,在180℃条件下干燥处理1h,得到白色的疏水纳米多孔纤维素微球。
测试结果:
粒径:500~1000μm;
比表面积:1200 m2/g;
平均孔径:20nm。
实施例7
将100g纳米微晶纤维素水溶胶(固含量为12%)与80g去离子水在室温下混合均匀,加入75g 2D树脂和500g正己烷,搅拌均匀得到混合溶液;在混合溶液中加入9g司班-80表面活性剂,通过在500rpm转速下快速搅拌使得体系形成乳状液后,向其加入10g甲基环三硅氧烷,在35℃加热条件下搅拌反应5h,反应结束后,静置,过滤,得到白色沉淀物;用正己烷洗涤白色沉淀物3次,然后放置于鼓风干燥箱内,在100℃条件下干燥处理7h,得到白色的疏水纳米多孔纤维素微球。
测试结果:
粒径:10~20μm;
比表面积:600 m2/g;
平均孔径:120nm。
实施例8
将100g纳米微晶纤维素水溶胶(固含量为6%)与200g去离子水在室温下混合均匀,加入6g水溶性羟基丙烯酸酯树脂和200g正己烷,搅拌均匀得到混合溶液;在混合溶液中加入7g司班-80表面活性剂,通过在550rpm转速下快速搅拌使得体系形成乳状液后,向其加入60g八甲基环四硅氧烷,在40℃加热条件下搅拌反应7h,反应结束后,静置,过滤,得到白色沉淀物;用正己烷洗涤白色沉淀物3次,然后放置于鼓风干燥箱内,在120℃条件下干燥处理3h,得到白色的疏水纳米多孔纤维素微球。
测试结果:
粒径:10~60μm;
比表面积:1200 m2/g;
平均孔径:10nm。

Claims (4)

1.一种疏水纳米多孔纤维素微球的制备方法,其特征在于:采用纳米微晶纤维素为骨架单元,低表面张力溶剂为置换溶剂,通过加入表面活性剂形成乳液体系进行化学反应,其中以有机硅烷化合物为疏水改性剂,过程按下述步骤依次进行:
(1)将纳米微晶纤维素水溶胶与去离子水在室温下混合均匀,加入交联剂和低表面张力溶剂,搅拌均匀得到混合溶液;
(2)在混合溶液中加入表面活性剂,通过高速搅拌使体系形成乳状液后,向其中加入有机硅烷化合物,加热搅拌反应,反应结束后,静置,过滤,得到白色沉淀物;
(3)对白色沉淀物进行洗涤、常压干燥,得到疏水纳米多孔纤维素微球;
其中,所述的交联剂为碳酸锆铵、2D树脂、水溶性羟基丙烯酸酯树脂的至少一种;
所述纳米微晶纤维素水溶胶的固含量为3-20%;
所述的低表面张力溶剂正庚烷、正己烷和正辛烷中的至少一种;
所述的有机硅烷化合物为二甲基二乙氧基硅烷、二甲基二甲氧基硅烷、六甲基二硅氧烷、六甲基二硅氮烷、甲基三乙氧基硅烷、甲基三甲氧基硅烷、十二烷基三甲氧基硅烷、十二烷基三乙氧基硅烷、十六烷基三甲氧基硅烷、十六烷基三乙氧基硅烷、八甲基环四硅氧烷、六甲基环三硅氧烷中的至少一种;
所述的表面活性剂为吐温-40,吐温-60,吐温-80,司班-40,司班-65,司班-80的至少一种。
2.根据权利要求1所述的方法,其特征在于:
在所述步骤(1)中,混合溶液中纳米微晶纤维素水溶胶、去离子水、交联剂和低表面张力溶剂的质量比为1:(0.5~5):(0.03~1):(1~5);
在所述步骤(2)中,表面活性剂与纳米微晶纤维素水溶胶的质量比为(0.01~0.2):1;
在所述步骤(2)中,有机硅烷化合物与纳米微晶纤维素水溶胶的质量比为(0.01~1)。
3.根据权利要求1所述的方法,其特征在于:
在所述步骤(2)中所述的高速搅拌,指在300~1200rpm转速搅拌条件;
在所述步骤(2)中所述的加热搅拌反应,指反应温度为30~70℃,反应时间为0.5h~8h;
在所述步骤(3)中的常压干燥指在常压条件下,80~180℃下干燥1~8h。
4.根据权利要求1所述的方法,其特征在于:所述的疏水纳米多孔纤维素微球为规则球形颗粒,粒径为1~1000μm,比表面积为300~1200m2/g,孔径为10~200nm。
CN201610205381.6A 2016-04-04 2016-04-04 一种疏水纳米多孔纤维素微球的制备方法 Active CN105801886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610205381.6A CN105801886B (zh) 2016-04-04 2016-04-04 一种疏水纳米多孔纤维素微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610205381.6A CN105801886B (zh) 2016-04-04 2016-04-04 一种疏水纳米多孔纤维素微球的制备方法

Publications (2)

Publication Number Publication Date
CN105801886A CN105801886A (zh) 2016-07-27
CN105801886B true CN105801886B (zh) 2018-08-31

Family

ID=56460394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610205381.6A Active CN105801886B (zh) 2016-04-04 2016-04-04 一种疏水纳米多孔纤维素微球的制备方法

Country Status (1)

Country Link
CN (1) CN105801886B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108560314A (zh) * 2017-12-15 2018-09-21 华南理工大学 一种纳米纤维素基超疏水涂料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437475A (zh) * 2018-05-03 2019-11-12 青岛农业大学 一种制备空心结构瓜尔胶纳米颗粒的方法
CN112469775A (zh) * 2018-07-11 2021-03-09 纳米及先进材料研发院有限公司 交联纳米多孔糖类基材料及其制造方法
CN110052228B (zh) * 2019-04-25 2021-09-14 泉州师范学院 一种具有光应激亲疏水转换响应功能的纤维素气凝胶微球及其制备方法
CN111202206A (zh) * 2020-03-03 2020-05-29 武汉轻工大学 呕吐毒素脱毒剂及其制备方法、及呕吐毒素的脱除方法
CN116554522A (zh) * 2023-04-28 2023-08-08 广东坚派新材料有限公司 一种低粘附力疏冰的风电叶片面漆涂层结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130231B (zh) * 2011-11-25 2015-09-02 航天特种材料及工艺技术研究所 一种二氧化硅气凝胶材料及其制备方法
CN103205015B (zh) * 2012-01-17 2015-07-22 中国科学院化学研究所 一种透明、柔性的纤维素气凝胶及其制备方法
CN104525132B (zh) * 2015-01-06 2017-06-13 张家港万众一芯生物科技有限公司 一种气凝胶材料及其制备方法和应用
CN104556057B (zh) * 2015-01-14 2017-04-26 泉州三欣新材料科技有限公司 一种纳米多孔轻质二氧化硅微球的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108560314A (zh) * 2017-12-15 2018-09-21 华南理工大学 一种纳米纤维素基超疏水涂料及其制备方法
CN108560314B (zh) * 2017-12-15 2021-06-08 华南理工大学 一种纳米纤维素基超疏水涂料及其制备方法

Also Published As

Publication number Publication date
CN105801886A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
CN105801886B (zh) 一种疏水纳米多孔纤维素微球的制备方法
CN104556057B (zh) 一种纳米多孔轻质二氧化硅微球的制备方法
WO2018049965A1 (zh) 一种以微乳液为前体快速制备气凝胶的方法
CN107285324B (zh) 介孔中空二氧化硅纳米材料的制备
Petkovich et al. Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating
CN107055556B (zh) 一种亲水二氧化硅气凝胶微球及其制备方法
CN111170323B (zh) 一种包裹/释放油性物质的二氧化硅气凝胶微球及其制备方法
CN103738969B (zh) 介孔二氧化硅及其制备方法
CN103962074B (zh) 一种中空亚微米球、其制备方法与应用
CN103342991B (zh) 复合纳米胶囊相变材料及其制备方法
CN104587922B (zh) 一种二氧化钛二氧化硅复合纳米多孔微球的制备方法
Balgis et al. Morphology control of hierarchical porous carbon particles from phenolic resin and polystyrene latex template via aerosol process
CN104355313B (zh) 一种二氧化硅疏水多孔材料的简易制备方法
CN103203206A (zh) 纤维素/二氧化钛/二氧化硅气凝胶及其制备方法
CN110052228A (zh) 一种具有光应激亲疏水转换响应功能的纤维素气凝胶微球及其制备方法
CN104587924B (zh) 低聚物预涂覆制备低密度无渗透性多孔或中空微球的方法
Xie et al. Kinetics‐Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures
CN107352549A (zh) 一种空心玻璃微珠的制备方法
CN104725031A (zh) 陶瓷中空微球表面原位生长碳纳米纤维的方法
CN104445224B (zh) 一种微细二氧化硅气凝胶粉体的制备方法
CN105439155B (zh) 一种轻质多孔SiO2微球的制备方法
Li et al. Ordered macroporous titania photonic balls by micrometer-scale spherical assembly templating
CN104877166A (zh) 一种悬浮聚合原位封闭制备低密度表面无渗透性聚合物微球的方法
Rahmatika et al. Effects of Solvent Polarity on Nanostructure Formation of Spray-Dried TEMPO-Oxidized Cellulose Nanofiber Particles
CN106565269A (zh) 一种常压干燥制备硫酸钙晶须‑二氧化硅气凝胶的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240825

Address after: 433000 Fenglin Community, Guohe Town, Xiantao City, Hubei Province

Patentee after: Xiantao Sanding Technology Development Co.,Ltd.

Country or region after: China

Address before: 362801 Hou Hou 187, Hou Village, Hou Long Town, Quangang District, Quanzhou, Fujian

Patentee before: Liu Yunhui

Country or region before: China

TR01 Transfer of patent right