CN105776312B - 一种失效碱性含铜蚀刻液的回收方法 - Google Patents

一种失效碱性含铜蚀刻液的回收方法 Download PDF

Info

Publication number
CN105776312B
CN105776312B CN201610104875.5A CN201610104875A CN105776312B CN 105776312 B CN105776312 B CN 105776312B CN 201610104875 A CN201610104875 A CN 201610104875A CN 105776312 B CN105776312 B CN 105776312B
Authority
CN
China
Prior art keywords
solution
failure
container
copper etchant
etchant solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610104875.5A
Other languages
English (en)
Other versions
CN105776312A (zh
Inventor
孙树桐
邸万山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohai University
Original Assignee
Bohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohai University filed Critical Bohai University
Priority to CN201610104875.5A priority Critical patent/CN105776312B/zh
Publication of CN105776312A publication Critical patent/CN105776312A/zh
Application granted granted Critical
Publication of CN105776312B publication Critical patent/CN105776312B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/10Sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Weting (AREA)
  • ing And Chemical Polishing (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

本发明公开了一种失效碱性含铜蚀刻液的回收方法,至少包括以下步骤:a、向失效碱性含铜蚀刻液中加入氧化剂,在常温下反应8~10min;b、向失效碱性含铜蚀刻液中加入二乙基二硫代氨基甲酸铵,获得褐色沉淀;c、将褐色沉淀置于容器二中,再向所述容器二中加入氨水,直至褐色沉淀全部溶解,获得蓝色沉淀;d、将蓝色沉淀置于容器三中,向容器三中加入硫酸溶液至沉淀全部溶解,不断搅拌;e、加热溶液获得蓝色晶体。本发明的有益效果是:不引入杂质离子,不破坏蚀刻液的化学组成;二乙基二硫代氨基甲酸铵回收后可以反复利用,生产成本低;回收的硫酸铜纯度高;可根据需要控制失效碱性含铜蚀刻液中铜的浓度;不产生二次污染。

Description

一种失效碱性含铜蚀刻液的回收方法
技术领域
本发明涉及碱性含铜蚀刻液领域,尤其是一种失效碱性含铜蚀刻液的回收方法。
背景技术
印刷电路板(PCB)在碱性蚀刻过程中常采用碱性铜氨(Cu(NH3)4Cl2)溶液作为蚀刻液。蚀刻液的主要成分为CuCl2、NH4Cl、NH3·H2O,其浓度分别约为95g/L、127g/L、470ml/L。在蚀刻过程中,碱性铜氨(Cu(NH3)4Cl2)溶液中的Cu(Ⅱ)与铜反应生成Cu(Ⅰ)从而逐渐失去蚀刻能力。
目前,失效的碱性含铜蚀刻液处理方法主要有氧化还原、沉淀、电解、膜分离及溶剂萃取等方法进行回收利用。这些方法存在着回收铜的品位不高、工艺复杂、析出氯气、破坏蚀刻液的化学组成、产生二次污染、回收成本高等问题。
因此,一种工艺简单、回收铜的纯度高的失效碱性含铜蚀刻液的回收方法成为解决问题的关键。
发明内容
作为各种广泛且细致的研究和实验的结果,本发明的发明人已经发现:首先用氧化剂(如O2、H2O2、O3等)将失效碱性含铜蚀刻液中的Cu(Ⅰ)氧化生成Cu(Ⅱ);然后向失效碱性含铜蚀刻液中加入二乙基二硫代氨基甲酸铵(DDTC-NH4),Cu(Ⅱ)与二乙基二硫代氨基甲酸铵反应生成二乙基二硫代氨基甲酸铜((DDTC)2-Cu)沉淀和氯化铵。分离沉淀后使失效碱性含铜蚀刻液再生,重新得到利用。二乙基二硫代氨基甲酸铜沉淀经处理后生成二乙基二硫代氨基甲酸铵和硫酸铜。
本发明的一个目的提供一种失效碱性含铜蚀刻液的回收方法,其工期简单,回收铜的纯度高,不产生二次污染。
为实现上述目的,本发明提供一种失效碱性含铜蚀刻液的回收方法,包括如下步骤:
a、将失效碱性含铜蚀刻液置于容器一中,向所述失效碱性含铜蚀刻液中加入氧化剂,所述氧化剂为氧气、过氧化氢或臭氧中的任意一种,在常温下反应8~10min;
b、经过步骤b反应后,向失效碱性含铜蚀刻液中加入二乙基二硫代氨基甲酸铵,匀速搅拌,在常温下反应8~10min后,在所述容器一中有褐色沉淀生成,过滤获得褐色沉淀;
c、将步骤b中过滤所得的褐色沉淀置于容器二中,再向所述容器二中加入氨水,直至褐色沉淀全部溶解,在所述容器二中有蓝色沉淀生成,过滤获得蓝色沉淀;
d、将步骤c中过滤所得的蓝色沉淀置于容器三中,向容器三中加入硫酸溶液至沉淀全部溶解,不断搅拌,并控制容器三内溶液的pH为5~6;
e、加热经过步骤d反应后容器三中的溶液至沸腾,蒸发溶剂,当液面出现晶膜时,停止加热,搅拌溶液,使晶膜分散到溶液中,停止搅拌溶液,将溶液冷却至室温,在溶液中有蓝色晶体析出,过滤获得蓝色晶体。
优选的是,所述氧气的加入量与失效碱性含铜蚀刻液中铜物质的摩尔之比为0.95~1.05:2。
优选的是,所述氧气的加入量与失效碱性含铜蚀刻液中铜物质的摩尔之比为1:2。
优选的是,在步骤a中将氧气以0.1~0.2L/s的速度通入失效碱性含铜蚀刻液中。
优选的是,步骤b中,二乙基二硫代氨基甲酸铵的加入量与失效碱性含铜蚀刻液中铜物质的摩尔之比为0.95~1.05:1。
优选的是,步骤b中,二乙基二硫代氨基甲酸铵的加入量与失效碱性含铜蚀刻液中铜物质的摩尔之比为1:1。
优选的是,步骤中控制容器三内溶液的pH为5.5。
本发明的有益效果是:1、失效碱性含铜蚀刻液的再生不引入杂质离子,不破坏蚀刻液的化学组成;2、二乙基二硫代氨基甲酸铵回收后可以反复利用,生产成本低;3、回收的硫酸铜纯度高;4、可根据需要控制失效碱性含铜蚀刻液中铜的浓度;5、不产生二次污染。
具体实施方式
下面结合具体实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
实施例1
a、将100ml的失效碱性含铜蚀刻液(其中在所述失效碱性含铜蚀刻液中铜的质量分数为190g/L)置于容器一中,以0.15L/s的速度向所述失效碱性含铜蚀刻液中通入4.8g氧气,在常温下反应9min;在此过程中,发生如下化学反应:
4Cu(NH3)2Cl+4NH4Cl+4NH3·H2O+O2→4Cu(NH3)4Cl2+6H2O
b、经过步骤b反应后,向失效碱性含铜蚀刻液中加入0.3mol的二乙基二硫代氨基甲酸铵,匀速搅拌,在常温下反应9min后,在所述容器一中有褐色沉淀生成,过滤获得褐色沉淀;在此过程中,发生如下化学反应:
Cu(NH3)4Cl2+2C3H6NS2NH4+4H2O=[(CH3)2NCS2]2Cu↓+2NH4Cl+4NH3·H2O
c、将步骤b中过滤所得的褐色沉淀置于容器二中,再向所述容器二中加入氨水,直至褐色沉淀全部溶解,在所述容器二中有蓝色沉淀生成,过滤获得蓝色沉淀;在此过程中,发生如下化学反应:
[(CH3)2NCS2]2Cu+2NH3·H2O=2C3H6NS2NH4+Cu(OH)2
d、将步骤c中过滤所得的蓝色沉淀置于容器三中,向容器三中加入硫酸溶液至沉淀全部溶解,不断搅拌,并控制容器三内溶液的pH为5.5;在此过程中,发生如下化学反应:
Cu(OH)2+H2SO4=CuSO4+2H2O
e、加热经过步骤d反应后容器三中的溶液至沸腾,蒸发溶剂,当液面出现晶膜时,停止加热,搅拌溶液,使晶膜分散到溶液中,停止搅拌溶液,将溶液冷却至室温,在溶液中有蓝色晶体析出,过滤获得蓝色晶体。
实施例2
a、将100ml的失效碱性含铜蚀刻液(其中在所述失效碱性含铜蚀刻液中铜的质量分数为190g/L)置于容器一中,以0.1L/s的速度向所述失效碱性含铜蚀刻液中通入4.56g氧气,在常温下反应10min;
b、经过步骤b反应后,向失效碱性含铜蚀刻液中加入0.315mol的二乙基二硫代氨基甲酸铵,匀速搅拌,在常温下反应8min后,在所述容器一中有褐色沉淀生成,过滤获得褐色沉淀;
c、将步骤b中过滤所得的褐色沉淀置于容器二中,再向所述容器二中加入氨水,直至褐色沉淀全部溶解,在所述容器二中有蓝色沉淀生成,过滤获得蓝色沉淀;
d、将步骤c中过滤所得的蓝色沉淀置于容器三中,向容器三中加入硫酸溶液至沉淀全部溶解,不断搅拌,并控制容器三内溶液的pH为5;
e、加热经过步骤d反应后容器三中的溶液至沸腾,蒸发溶剂,当液面出现晶膜时,停止加热,搅拌溶液,使晶膜分散到溶液中,停止搅拌溶液,将溶液冷却至室温,在溶液中有蓝色晶体析出,过滤获得蓝色晶体。
实施例3
a、将100ml的失效碱性含铜蚀刻液(其中在所述失效碱性含铜蚀刻液中铜的质量分数为190g/L)置于容器一中,以0.2L/s的速度向所述失效碱性含铜蚀刻液中通入5.04g氧气,在常温下反应8min;
b、经过步骤b反应后,向失效碱性含铜蚀刻液中加入0.285mol的二乙基二硫代氨基甲酸铵,匀速搅拌,在常温下反应10min后,在所述容器一中有褐色沉淀生成,过滤获得褐色沉淀;
c、将步骤b中过滤所得的褐色沉淀置于容器二中,再向所述容器二中加入氨水,直至褐色沉淀全部溶解,在所述容器二中有蓝色沉淀生成,过滤获得蓝色沉淀;
d、将步骤c中过滤所得的蓝色沉淀置于容器三中,向容器三中加入硫酸溶液至沉淀全部溶解,不断搅拌,并控制容器三内溶液的pH为6;
e、加热经过步骤d反应后容器三中的溶液至沸腾,蒸发溶剂,当液面出现晶膜时,停止加热,搅拌溶液,使晶膜分散到溶液中,停止搅拌溶液,将溶液冷却至室温,在溶液中有蓝色晶体析出,过滤获得蓝色晶体。
实施例4
a、将100ml的失效碱性含铜蚀刻液(其中在所述失效碱性含铜蚀刻液中铜的质量分数为190g/L)置于容器一中,以0.18L/s的速度向所述失效碱性含铜蚀刻液中通入4.66g氧气,在常温下反应8.5min;
b、经过步骤b反应后,向失效碱性含铜蚀刻液中加入0.295mol的二乙基二硫代氨基甲酸铵,匀速搅拌,在常温下反应9.5min后,在所述容器一中有褐色沉淀生成,过滤获得褐色沉淀;
c、将步骤b中过滤所得的褐色沉淀置于容器二中,再向所述容器二中加入氨水,直至褐色沉淀全部溶解,在所述容器二中有蓝色沉淀生成,过滤获得蓝色沉淀;
d、将步骤c中过滤所得的蓝色沉淀置于容器三中,向容器三中加入硫酸溶液至沉淀全部溶解,不断搅拌,并控制容器三内溶液的pH为5.2;
e、加热经过步骤d反应后容器三中的溶液至沸腾,蒸发溶剂,当液面出现晶膜时,停止加热,搅拌溶液,使晶膜分散到溶液中,停止搅拌溶液,将溶液冷却至室温,在溶液中有蓝色晶体析出,过滤获得蓝色晶体。
实施例5
a、将100ml的失效碱性含铜蚀刻液(其中在所述失效碱性含铜蚀刻液中铜的质量分数为190g/L)置于容器一中,以0.16L/s的速度向所述失效碱性含铜蚀刻液中通入4.96g氧气,在常温下反应9.5min;
b、经过步骤b反应后,向失效碱性含铜蚀刻液中加入0.305mol的二乙基二硫代氨基甲酸铵,匀速搅拌,在常温下反应8.5min后,在所述容器一中有褐色沉淀生成,过滤获得褐色沉淀;
c、将步骤b中过滤所得的褐色沉淀置于容器二中,再向所述容器二中加入氨水,直至褐色沉淀全部溶解,在所述容器二中有蓝色沉淀生成,过滤获得蓝色沉淀;
d、将步骤c中过滤所得的蓝色沉淀置于容器三中,向容器三中加入硫酸溶液至沉淀全部溶解,不断搅拌,并控制容器三内溶液的pH为5.8;
e、加热经过步骤d反应后容器三中的溶液至沸腾,蒸发溶剂,当液面出现晶膜时,停止加热,搅拌溶液,使晶膜分散到溶液中,停止搅拌溶液,将溶液冷却至室温,在溶液中有蓝色晶体析出,过滤获得蓝色晶体。
实施例6
a、将100ml的失效碱性含铜蚀刻液(其中在所述失效碱性含铜蚀刻液中铜的质量分数为190g/L)置于容器一中,以0.15L/s的速度向所述失效碱性含铜蚀刻液中通入3.2g臭氧,在常温下反应9min;在此过程中,发生如下化学反应:
6Cu(NH3)2Cl+6NH4Cl+6NH3·H2O+O3→6Cu(NH3)4Cl2+9H2O
b、经过步骤b反应后,向失效碱性含铜蚀刻液中加入0.3mol的二乙基二硫代氨基甲酸铵,匀速搅拌,在常温下反应9min后,在所述容器一中有褐色沉淀生成,过滤获得褐色沉淀;在此过程中,发生如下化学反应:
Cu(NH3)4Cl2+2C3H6NS2NH4+4H2O=[(CH3)2NCS2]2Cu↓+2NH4Cl+4NH3·H2O
c、将步骤b中过滤所得的褐色沉淀置于容器二中,再向所述容器二中加入氨水,直至褐色沉淀全部溶解,在所述容器二中有蓝色沉淀生成,过滤获得蓝色沉淀;在此过程中,发生如下化学反应:
[(CH3)2NCS2]2Cu+2NH3·H2O=2C3H6NS2NH4+Cu(OH)2
d、将步骤c中过滤所得的蓝色沉淀置于容器三中,向容器三中加入硫酸溶液至沉淀全部溶解,不断搅拌,并控制容器三内溶液的pH为5.5;在此过程中,发生如下化学反应:
Cu(OH)2+H2SO4=CuSO4+2H2O
e、加热经过步骤d反应后容器三中的溶液至沸腾,蒸发溶剂,当液面出现晶膜时,停止加热,搅拌溶液,使晶膜分散到溶液中,停止搅拌溶液,将溶液冷却至室温,在溶液中有蓝色晶体析出,过滤获得蓝色晶体。
实施例7
a、将100ml的失效碱性含铜蚀刻液(其中在所述失效碱性含铜蚀刻液中铜的质量分数为190g/L)置于容器一中,向所述失效碱性含铜蚀刻液中加入10.6g过氧化氢,在常温下反应9min;在此过程中,发生如下化学反应:
2Cu(NH3)2Cl+2NH4Cl+2NH3·H2O+H2O2→2Cu(NH3)4Cl2+4H2O
b、经过步骤b反应后,向失效碱性含铜蚀刻液中加入0.3mol的二乙基二硫代氨基甲酸铵,匀速搅拌,在常温下反应9min后,在所述容器一中有褐色沉淀生成,过滤获得褐色沉淀;在此过程中,发生如下化学反应:
Cu(NH3)4Cl2+2C3H6NS2NH4+4H2O=[(CH3)2NCS2]2Cu↓+2NH4Cl+4NH3·H2O
c、将步骤b中过滤所得的褐色沉淀置于容器二中,再向所述容器二中加入氨水,直至褐色沉淀全部溶解,在所述容器二中有蓝色沉淀生成,过滤获得蓝色沉淀;在此过程中,发生如下化学反应:
[(CH3)2NCS2]2Cu+2NH3·H2O=2C3H6NS2NH4+Cu(OH)2
d、将步骤c中过滤所得的蓝色沉淀置于容器三中,向容器三中加入硫酸溶液至沉淀全部溶解,不断搅拌,并控制容器三内溶液的pH为5.5;在此过程中,发生如下化学反应:
Cu(OH)2+H2SO4=CuSO4+2H2O
e、加热经过步骤d反应后容器三中的溶液至沸腾,蒸发溶剂,当液面出现晶膜时,停止加热,搅拌溶液,使晶膜分散到溶液中,停止搅拌溶液,将溶液冷却至室温,在溶液中有蓝色晶体析出,过滤获得蓝色晶体。
对比例1
a、将100ml的失效碱性含铜蚀刻液(其中在所述失效碱性含铜蚀刻液中铜的质量分数为190g/L)置于容器一中,以0.5L/s的速度向所述失效碱性含铜蚀刻液中通入2.4g氧气,在常温下反应9min;
b、经过步骤b反应后,向失效碱性含铜蚀刻液中加入0.3mol的二乙基二硫代氨基甲酸铵,匀速搅拌,在常温下反应9min后,在所述容器一中有褐色沉淀生成,过滤获得褐色沉淀;
c、将步骤b中过滤所得的褐色沉淀置于容器二中,再向所述容器二中加入氨水,直至褐色沉淀全部溶解,在所述容器二中有蓝色沉淀生成,过滤获得蓝色沉淀;
d、将步骤c中过滤所得的蓝色沉淀置于容器三中,向容器三中加入硫酸溶液至沉淀全部溶解,不断搅拌,并控制容器三内溶液的pH为5.5;
e、加热经过步骤d反应后容器三中的溶液至沸腾,蒸发溶剂,当液面出现晶膜时,停止加热,搅拌溶液,使晶膜分散到溶液中,停止搅拌溶液,将溶液冷却至室温,在溶液中有蓝色晶体析出,过滤获得蓝色晶体。
对比例2
a、将100ml的失效碱性含铜蚀刻液(其中在所述失效碱性含铜蚀刻液中铜的质量分数为190g/L)置于容器一中,以0.5L/s的速度向所述失效碱性含铜蚀刻液中通入4.8g氧气,在常温下反应9min;
b、经过步骤b反应后,向失效碱性含铜蚀刻液中加入0.15mol的二乙基二硫代氨基甲酸铵,匀速搅拌,在常温下反应9min后,在所述容器一中有褐色沉淀生成,过滤获得褐色沉淀;
c、将步骤b中过滤所得的褐色沉淀置于容器二中,再向所述容器二中加入氨水,直至褐色沉淀全部溶解,在所述容器二中有蓝色沉淀生成,过滤获得蓝色沉淀;
d、将步骤c中过滤所得的蓝色沉淀置于容器三中,向容器三中加入硫酸溶液至沉淀全部溶解,不断搅拌,并控制容器三内溶液的pH为5.5;
e、加热经过步骤d反应后容器三中的溶液至沸腾,蒸发溶剂,当液面出现晶膜时,停止加热,搅拌溶液,使晶膜分散到溶液中,停止搅拌溶液,将溶液冷却至室温,在溶液中有蓝色晶体析出,过滤获得蓝色晶体。
实验数据
一、纯度的测定
分别测量实施例1-7和对比例1-2制得的硫酸铜晶体的纯度。测得的硫酸铜晶体的纯度见表一。
表一
项目 纯度(%)
实施例1 99.8
实施例2 99.7
实施例3 99.7
实施例4 99.8
实施例5 99.8
实施例6 99.7
实施例7 99.7
对比例1 99.6
对比例2 99.5
由此可见,通过本方法回收的硫酸铜晶体具有较高的纯度。
二、回收率的测定
分别测量实施例1-7和对比例1-2制得的硫酸铜晶体的回收率。测得的硫酸铜晶体的回收率见表二。
表二
项目 纯度(%)
实施例1 96.5
实施例2 96.2
实施例3 96.1
实施例4 96.3
实施例5 96.3
实施例6 96.1
实施例7 96.2
对比例1 43.1
对比例2 47.8
由此可见,通过本方法铜元素的回收率高。
三、氧气加入量对回收量的影响
称取100.0mL失效碱性含铜蚀刻液(失效碱性含铜蚀刻液中铜的质量分数为190g/L)置于容器中,分别通过不同量的O2,然后加入0.3mol的二乙基二硫代氨基甲酸铵生成二乙基二硫代氨基甲酸铜沉淀,分离沉淀,向沉淀中加入氨水至褐色沉淀全部溶解。分离氢氧化铜沉淀,向沉淀中加入硫酸溶液至沉淀全部溶解。蒸发溶剂制备硫酸铜晶体。并计算铜的回收率,得表三。
表三
由表三可以看出随着氧气加入量的增加,回收率增大;当氧气的加入量与失效碱性含铜蚀刻液中铜物质的摩尔之比为1:2时,回收率较大;当氧气的加入量与失效碱性含铜蚀刻液中铜物质的摩尔之比大于1:2时,回收率增加不明显。
三、二乙基二硫代氨基甲酸铵加入量对回收量的影响
称取100.0mL失效碱性含铜蚀刻液(失效碱性含铜蚀刻液中铜的质量分数为190g/L)置于容器中,通过足量的O2,然后加入不同量的二乙基二硫代氨基甲酸铵生成二乙基二硫代氨基甲酸铜沉淀,分离沉淀,向沉淀中加入氨水至褐色沉淀全部溶解。分离氢氧化铜沉淀,向沉淀中加入硫酸溶液至沉淀全部溶解。蒸发溶剂制备硫酸铜晶体。并计算铜的回收率,得表四。
表四
二乙基二硫代氨基甲酸铵加入量mol 回收率%
0.15 47.8
0.2 63.9
0.24 76.5
0.28 89.5
0.30 96.2
0.32 96.3
0.34 96.4
由表四可以看出随着二乙基二硫代氨基甲酸铵加入量的增加,回收率增大;当二乙基二硫代氨基甲酸铵加入量与失效碱性含铜蚀刻液中铜物质的摩尔之比为1:1时,回收率较大;当氧气的加入量与失效碱性含铜蚀刻液中铜物质的摩尔之比大于1:1时,回收率增加不明显。
如上所述本发明一种失效碱性含铜蚀刻液的回收方法,在失效碱性含铜蚀刻液的再生不引入杂质离子,不破坏蚀刻液的化学组成;二乙基二硫代氨基甲酸铵回收后可以反复利用,生产成本低;回收的硫酸铜纯度高;可根据需要控制失效碱性含铜蚀刻液中铜的浓度;不产生二次污染。
尽管本发明的实施方案已公开如上,但其并不仅仅限于明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。

Claims (4)

1.一种失效碱性含铜蚀刻液的回收方法,其特征在于,包括如下步骤:
a、将失效碱性含铜蚀刻液置于容器一中,向所述失效碱性含铜蚀刻液中加入氧化剂,所述氧化剂为氧气、过氧化氢或臭氧中的任意一种,在常温下反应8~10min;
b、经过步骤b反应后,向失效碱性含铜蚀刻液中加入二乙基二硫代氨基甲酸铵,匀速搅拌,在常温下反应8~10min后,在所述容器一中有褐色沉淀生成,过滤获得褐色沉淀;
c、将步骤b中过滤所得的褐色沉淀置于容器二中,再向所述容器二中加入氨水,直至褐色沉淀全部溶解,在所述容器二中有蓝色沉淀生成,过滤获得蓝色沉淀;
d、将步骤c中过滤所得的蓝色沉淀置于容器三中,向容器三中加入硫酸溶液至沉淀全部溶解,不断搅拌,并控制容器三内溶液的pH为5~6;
e、加热经过步骤d反应后容器三中的溶液至沸腾,蒸发溶剂,当液面出现晶膜时,停止加热,搅拌溶液,使晶膜分散到溶液中,停止搅拌溶液,将溶液冷却至室温,在溶液中有蓝色晶体析出,过滤获得蓝色晶体;
其中, 所述氧气的加入量与失效碱性含铜蚀刻液中铜物质的摩尔之比为0.95~1.05:2; 在步骤a中将氧气以0.1~0.2L/s的速度通入失效碱性含铜蚀刻液中; 步骤b中,二乙基二硫代氨基甲酸铵的加入量与失效碱性含铜蚀刻液中铜物质的摩尔之比为0.95~1.05:1。
2.如权利要求1所述的失效碱性含铜蚀刻液的回收方法,其特征在于:所述氧气的加入量与失效碱性含铜蚀刻液中铜物质的摩尔之比为1:2。
3.如权利要求1所述的失效碱性含铜蚀刻液的回收方法,其特征在于:步骤b中,二乙基二硫代氨基甲酸铵的加入量与失效碱性含铜蚀刻液中铜物质的摩尔之比为1:1。
4.如权利要求1所述的失效碱性含铜蚀刻液的回收方法,其特征在于:步骤中控制容器三内溶液的pH为5.5。
CN201610104875.5A 2016-02-25 2016-02-25 一种失效碱性含铜蚀刻液的回收方法 Expired - Fee Related CN105776312B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610104875.5A CN105776312B (zh) 2016-02-25 2016-02-25 一种失效碱性含铜蚀刻液的回收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610104875.5A CN105776312B (zh) 2016-02-25 2016-02-25 一种失效碱性含铜蚀刻液的回收方法

Publications (2)

Publication Number Publication Date
CN105776312A CN105776312A (zh) 2016-07-20
CN105776312B true CN105776312B (zh) 2017-11-14

Family

ID=56403724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610104875.5A Expired - Fee Related CN105776312B (zh) 2016-02-25 2016-02-25 一种失效碱性含铜蚀刻液的回收方法

Country Status (1)

Country Link
CN (1) CN105776312B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107354315A (zh) * 2017-06-12 2017-11-17 合肥市惠科精密模具有限公司 一种从amoled碱性蚀刻废液中回收铜的方法
CN109267066A (zh) * 2018-10-10 2019-01-25 深圳晶恒宇环境科技有限公司 一种印制电路板碱性蚀刻废液循环再生及回收铜系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083758A (en) * 1976-09-27 1978-04-11 Criterion Process for regenerating and for recovering metallic copper from chloride-containing etching solutions
CN101215250A (zh) * 2007-12-28 2008-07-09 上海电力学院 含双dtc基团的螯合剂及其制备方法
CN101717111B (zh) * 2008-10-09 2012-01-11 广州康瑞德生物技术股份有限公司 用电路板含铜蚀刻废液生产饲料级硫酸铜的方法
CN103803744B (zh) * 2014-01-26 2015-12-30 武汉市嘉恒化工有限公司 含铜微蚀废液的处理方法
CN104961220A (zh) * 2015-06-19 2015-10-07 许昌学院 一种新型重金属捕集剂及其制备方法

Also Published As

Publication number Publication date
CN105776312A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
CN108117105B (zh) 一种铜冶炼副产物粗硫酸镍的精制方法
CN108149249A (zh) 一种线路板碱性蚀刻废液的蒸氨回收循环工艺
CA1098861A (en) Method of obtaining copper from copper-bearing ores
CN105779792B (zh) 一种制备低杂质含量氢氧化稀土的方法
US4233063A (en) Process for producing cobalt powder
CA1119817A (en) Method for the recovery of metallic copper
Kumbasar et al. Separation and concentration of cobalt from ammoniacal solutions containing cobalt and nickel by emulsion liquid membranes using 5, 7-dibromo-8-hydroxyquinoline (DBHQ)
CN105776312B (zh) 一种失效碱性含铜蚀刻液的回收方法
CA1335332C (en) Separation and recovery of nickel and cobalt in ammoniacal systems
US7794677B2 (en) Reduction of copper content in the molybdenite concentrate
JP7251406B2 (ja) コバルト水溶液の製造方法
JP3440752B2 (ja) コバルトを含む硫酸ニッケルの精製方法
CA1110076A (en) Metal leaching from concentrates using nitrogen dioxide in acids
CN107265486B (zh) 利用含锂铝质岩制备碳酸锂的方法
US4042474A (en) Separating nickel, cobalt and chromium from iron in metallurgical products
CN107739829A (zh) 红土镍矿冶炼中和渣中镍元素、钴元素、铜元素及锌元素的回收方法
AU2009259277A1 (en) Method for leaching nickel matte in the presence of added copper
US3148051A (en) Process for the production of metallic copper powder and ammonium sulfate from copper sulfate solutions
JPH01131009A (ja) 電気半導体用りん酸の精製法
JP2009126759A (ja) 硫酸ニッケルと硫酸コバルトとを含む高純度溶液の作成方法、及びこの溶液を用いた高純度ニッケルの製造方法。
JP7087566B2 (ja) 加圧酸化浸出方法および硫酸ニッケルの製造方法
US6086744A (en) Production of electrolytic copper from dilute solutions contaminated by other metals
CN106800303A (zh) 一种利用微通道反应器制备碘化钾的方法
CN86101108A (zh) 锑精矿制取焦锑酸钠的湿法工艺
US4369164A (en) Recovery of copper from arsenical drosses by ammonium arsenate leach

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171114

Termination date: 20190225