CN105754124A - 一种生物增强阴离子交换膜的制备方法 - Google Patents

一种生物增强阴离子交换膜的制备方法 Download PDF

Info

Publication number
CN105754124A
CN105754124A CN201610267279.9A CN201610267279A CN105754124A CN 105754124 A CN105754124 A CN 105754124A CN 201610267279 A CN201610267279 A CN 201610267279A CN 105754124 A CN105754124 A CN 105754124A
Authority
CN
China
Prior art keywords
exchange membrane
prepared
modified
mixed
collect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610267279.9A
Other languages
English (en)
Inventor
袁春华
高玉刚
薛培龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610267279.9A priority Critical patent/CN105754124A/zh
Publication of CN105754124A publication Critical patent/CN105754124A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种生物增强阴离子交换膜的制备方法,属于交换膜制备技术领域。本发明首先将丝瓜络粉末与多糖酶溶解,在一定温度下进行酶解后,过滤,并将滤饼干燥后,与环氧大豆油等物质混合,加热搅拌,再滴加完吡咯,进行水浴加热,过滤,将收集的改性丝瓜络纤维用氢氧化钠溶液、盐酸和去离子洗涤后,干燥,得改性丝瓜络纤维,接着将其与水球磨,过滤,将滤饼与聚乙烯醇搅拌混合,超声分散,得改性聚乙烯醇,最后将其浇筑成膜,静置,洗涤,烘干,制备得生物增强阴离子交换膜,本发明制备的生物增强阴离子交换膜的耐碱性能提高,提高了16~18%;且有很好的导电性,离子传导率达到19mS/cm以上。

Description

一种生物增强阴离子交换膜的制备方法
技术领域
本发明涉及一种生物增强阴离子交换膜的制备方法,属于交换膜制备技术领域。
背景技术
阴离子交换膜就是一种膜状的阴离子交换树脂,理想的阴离子交换膜应该具有以下性能:(1)选择性能高,对于性能较好的阴离子交换膜必须对反离子有较好的透过性,而对同离子具有较好的排斥性;(2)机械性能稳定,在电渗析过程中,阴离子交换膜应该具有较好的机械强度以及较低的溶胀度;(3)化学稳定性高,阴离子交换膜在使用过程中可能会接触到酸、碱、氧化剂等各种化学试剂,要求膜在各种情况下都能保持化学稳定性。
目前的报道的阴离子交换膜多采用聚苯乙烯作为骨架,该骨架的改性成本较低,但性能较差,往往电导率偏低,且耐碱性和机械性能难以满足商业需求。所采用的离子交换基团也多为季铵盐,在受热情况下较易分解,耐碱性亦差强人意。因此具有较大共轭体系的咪唑基、吡啶基阴离子交换膜的报道日渐增加。但大共轭体系造成的电荷过度分散问题会降低膜正电荷密度,造成耐碱性下降,离子传导率降低;且较大的共轭结构刚性较强,膜的机械性能会随之下降。
发明内容
本发明所要解决的技术问题:针对具有较大共轭体系的阴离子交换膜中的电荷过度分散,降低了膜正电荷密度,造成耐碱性下降,离子传导率降低且膜的机械能降低的问题,提供了一种将丝瓜络粉末与多糖酶溶解,在一定温度下进行酶解后,过滤,并将滤饼干燥后,与环氧大豆油等物质混合,加热搅拌,再滴加完吡咯,进行水浴加热,过滤,将收集的改性丝瓜络纤维用氢氧化钠溶液、盐酸和去离子洗涤后,干燥,得改性丝瓜络纤维,接着将其与水球磨,过滤,将滤饼与聚乙烯醇搅拌混合,超声分散,得改性聚乙烯醇,最后将其浇筑成膜,静置,洗涤,烘干,制备得生物增强阴离子交换膜的方法。本发明制备的生物增强阴离子交换膜的耐碱性强,离子传导率高。
为解决上述技术问题,本发明采用如下所述的技术方案是:
(1)收集成熟丝瓜,待其自然风干后,将其去皮并洗净烘干,随后切割至10~12cm长丝瓜络,去除内籽并对其粉碎,收集丝瓜络粉末,按质量比1:5,将上述制备的丝瓜络粉末与质量浓度5%的多糖酶溶液搅拌混合,并置于30℃下酶解2~3h,随后过滤并收集滤饼,在65~80℃下干燥6~8h,制备得丝瓜络粉碎纤维;
(2)按重量份数计,分别称量35~55份上述制备的丝瓜络粉碎纤维、25~35份环氧大豆油和20~30份N,N-二甲基甲酰胺置于三口烧瓶中,在95~100℃下搅拌混合10~15min;
(3)待混合完成后,对三口烧瓶滴加环氧大豆油质量1/3的吡咯,控制滴加时间为10~15min,待滴加完成后,再在85~100℃下水浴加热1~2h,待水浴加热完成后,过滤并收集改性丝瓜络纤维,随后分别用1mol/L氢氧化钠溶液和1mol/L盐酸各洗涤3~5次,再用去离子水洗涤pH至7.0后,在65~80℃下干燥6~8h,制备得阴离子改性丝瓜络纤维;
(4)将上述制备的改性丝瓜络纤维置于球磨机中,以去离子水为介质,球磨3~4h后,制备得固含量为80%的混合浆液,收集浆液并过滤,按质量比1:5,将滤饼与聚乙烯醇搅拌混合,再在200~300W下超声分散10~15min,制备得改性聚乙烯醇;
(5)将上述制备的改性聚乙烯醇置于玻璃板上浇筑成膜,再在室温下静置20~24h,收集改性聚乙烯醇膜并用无水乙醇洗涤3~5次,再在65~80℃烘箱中干燥6~8h,即可制备得一种生物增强阴离子交换膜。
本发明的应用方法:按重量份数计,分别称量60~70份去离子水,17~18份Pt/C催化剂,10~15份碳黑,3~7份异丙醇搅拌混合成浆料,备用,再将本发明制备的生物增强阴离子交换膜两面分别喷涂一层由含质量比70~80%的去离子水和20~30%碱性阴离子树脂混合而成的悬浮液,晾干,使其表面形成一层粘结剂,接着将浆料继续喷涂至有粘结剂的膜上,喷涂厚度为15~20μm,喷涂结束后置于烘箱中干燥,最后将其置于热压机中进行热压,制备阴离子交换膜电极。经检测,该阴离子交换膜电极电阻达到15.36~19.65Ω/cm2
本发明与其他方法相比,有益技术效果是:
(1)本发明制备的生物增强阴离子交换膜的耐碱性能提高,提高了16~18%;
(2)本发明制备的生物增强阴离子交换膜有很好的导电性,离子传导率达到19mS/cm以上;
(3)本发明制备步骤简单,所需成本低。
具体实施方式
首先收集成熟丝瓜,待其自然风干后,将其去皮并洗净烘干,随后切割至10~12cm长丝瓜络,去除内籽并对其粉碎,收集丝瓜络粉末,按质量比1:5,将上述制备的丝瓜络粉末与质量浓度5%的多糖酶溶液搅拌混合,并置于30℃下酶解2~3h,随后过滤并收集滤饼,在65~80℃下干燥6~8h,制备得丝瓜络粉碎纤维;按重量份数计,分别称量35~55份上述制备的丝瓜络粉碎纤维、25~35份环氧大豆油和20~30份N,N-二甲基甲酰胺置于三口烧瓶中,在95~100℃下搅拌混合10~15min;待混合完成后,对三口烧瓶滴加环氧大豆油质量1/3的吡咯,控制滴加时间为10~15min,待滴加完成后,再在85~100℃下水浴加热1~2h,待水浴加热完成后,过滤并收集改性丝瓜络纤维,随后分别用1mol/L氢氧化钠溶液和1mol/L盐酸各洗涤3~5次,再用去离子水洗涤pH至7.0后,在65~80℃下干燥6~8h,制备得阴离子改性丝瓜络纤维;再将上述制备的改性丝瓜络纤维置于球磨机中,以去离子水为介质,球磨3~4h后,制备得固含量为80%的混合浆液,收集浆液并过滤,按质量比1:5,将滤饼与聚乙烯醇搅拌混合,再在200~300W下超声分散10~15min,制备得改性聚乙烯醇;最后将上述制备的改性聚乙烯醇置于玻璃板上浇筑成膜,再在室温下静置20~24h,收集改性聚乙烯醇膜并用无水乙醇洗涤3~5次,再在65~80℃烘箱中干燥6~8h,即可制备得一种生物增强阴离子交换膜。
实例1
首先收集成熟丝瓜,待其自然风干后,将其去皮并洗净烘干,随后切割至12cm长丝瓜络,去除内籽并对其粉碎,收集丝瓜络粉末,按质量比1:5,将上述制备的丝瓜络粉末与质量浓度5%的多糖酶溶液搅拌混合,并置于30℃下酶解2h,随后过滤并收集滤饼,在65℃下干燥6h,制备得丝瓜络粉碎纤维;按重量份数计,分别称量55份上述制备的丝瓜络粉碎纤维、25份环氧大豆油和20份N,N-二甲基甲酰胺置于三口烧瓶中,在100℃下搅拌混合15min;待混合完成后,对三口烧瓶滴加环氧大豆油质量1/3的吡咯,控制滴加时间为15min,待滴加完成后,再在100℃下水浴加热2h,待水浴加热完成后,过滤并收集改性丝瓜络纤维,随后分别用1mol/L氢氧化钠溶液和1mol/L盐酸各洗涤5次,再用去离子水洗涤pH至7.0后,在80℃下干燥8h,制备得阴离子改性丝瓜络纤维;再将上述制备的改性丝瓜络纤维置于球磨机中,以去离子水为介质,球磨4h后,制备得固含量为80%的混合浆液,收集浆液并过滤,按质量比1:5,将滤饼与聚乙烯醇搅拌混合,再在300W下超声分散15min,制备得改性聚乙烯醇;最后将上述制备的改性聚乙烯醇置于玻璃板上浇筑成膜,再在室温下静置24h,收集改性聚乙烯醇膜并用无水乙醇洗涤5次,再在80℃烘箱中干燥8h,即可制备得一种生物增强阴离子交换膜。
按重量份数计,分别称量70份去离子水,17份Pt/C催化剂,10份碳黑,3份异丙醇搅拌混合成浆料,备用,再将本发明制备的生物增强阴离子交换膜两面分别喷涂一层由含质量比80%的去离子水和30%碱性阴离子树脂混合而成的悬浮液,晾干,使其表面形成一层粘结剂,接着将浆料继续喷涂至有粘结剂的膜上,喷涂厚度为20μm,喷涂结束后置于烘箱中干燥,最后将其置于热压机中进行热压,制备阴离子交换膜电极。经检测,该阴离子交换膜电极电阻达到19.65Ω/cm2
实例2
首先收集成熟丝瓜,待其自然风干后,将其去皮并洗净烘干,随后切割至10cm长丝瓜络,去除内籽并对其粉碎,收集丝瓜络粉末,按质量比1:5,将上述制备的丝瓜络粉末与质量浓度5%的多糖酶溶液搅拌混合,并置于30℃下酶解2h,随后过滤并收集滤饼,在80℃下干燥8h,制备得丝瓜络粉碎纤维;按重量份数计,分别称量35份上述制备的丝瓜络粉碎纤维、35份环氧大豆油和30份N,N-二甲基甲酰胺置于三口烧瓶中,在95℃下搅拌混合10min;待混合完成后,对三口烧瓶滴加环氧大豆油质量1/3的吡咯,控制滴加时间为10min,待滴加完成后,再在85℃下水浴加热1h,待水浴加热完成后,过滤并收集改性丝瓜络纤维,随后分别用1mol/L氢氧化钠溶液和1mol/L盐酸各洗涤3次,再用去离子水洗涤pH至7.0后,在65℃下干燥6h,制备得阴离子改性丝瓜络纤维;再将上述制备的改性丝瓜络纤维置于球磨机中,以去离子水为介质,球磨3h后,制备得固含量为80%的混合浆液,收集浆液并过滤,按质量比1:5,将滤饼与聚乙烯醇搅拌混合,再在200W下超声分散10min,制备得改性聚乙烯醇;最后将上述制备的改性聚乙烯醇置于玻璃板上浇筑成膜,再在室温下静置20h,收集改性聚乙烯醇膜并用无水乙醇洗涤3次,再在65℃烘箱中干燥6h,即可制备得一种生物增强阴离子交换膜。
按重量份数计,分别称量60份去离子水,18份Pt/C催化剂,15份碳黑,7份异丙醇搅拌混合成浆料,备用,再将本发明制备的生物增强阴离子交换膜两面分别喷涂一层由含质量比70%的去离子水和20%碱性阴离子树脂混合而成的悬浮液,晾干,使其表面形成一层粘结剂,接着将浆料继续喷涂至有粘结剂的膜上,喷涂厚度为15μm,喷涂结束后置于烘箱中干燥,最后将其置于热压机中进行热压,制备阴离子交换膜电极。经检测,该阴离子交换膜电极电阻达到15.36Ω/cm2
实例3
首先收集成熟丝瓜,待其自然风干后,将其去皮并洗净烘干,随后切割至11cm长丝瓜络,去除内籽并对其粉碎,收集丝瓜络粉末,按质量比1:5,将上述制备的丝瓜络粉末与质量浓度5%的多糖酶溶液搅拌混合,并置于30℃下酶解3h,随后过滤并收集滤饼,在70℃下干燥7h,制备得丝瓜络粉碎纤维;按重量份数计,分别称量40份上述制备的丝瓜络粉碎纤维、30份环氧大豆油和30份N,N-二甲基甲酰胺置于三口烧瓶中,在97℃下搅拌混合12min;待混合完成后,对三口烧瓶滴加环氧大豆油质量1/3的吡咯,控制滴加时间为12min,待滴加完成后,再在90℃下水浴加热1h,待水浴加热完成后,过滤并收集改性丝瓜络纤维,随后分别用1mol/L氢氧化钠溶液和1mol/L盐酸各洗涤4次,再用去离子水洗涤pH至7.0后,在70℃下干燥7h,制备得阴离子改性丝瓜络纤维;再将上述制备的改性丝瓜络纤维置于球磨机中,以去离子水为介质,球磨4h后,制备得固含量为80%的混合浆液,收集浆液并过滤,按质量比1:5,将滤饼与聚乙烯醇搅拌混合,再在250W下超声分散12min,制备得改性聚乙烯醇;最后将上述制备的改性聚乙烯醇置于玻璃板上浇筑成膜,再在室温下静置22h,收集改性聚乙烯醇膜并用无水乙醇洗涤4次,再在70℃烘箱中干燥7h,即可制备得一种生物增强阴离子交换膜。
按重量份数计,分别称量69份去离子水,18份Pt/C催化剂,10份碳黑,3份异丙醇搅拌混合成浆料,备用,再将本发明制备的生物增强阴离子交换膜两面分别喷涂一层由含质量比75%的去离子水和25%碱性阴离子树脂混合而成的悬浮液,晾干,使其表面形成一层粘结剂,接着将浆料继续喷涂至有粘结剂的膜上,喷涂厚度为18μm,喷涂结束后置于烘箱中干燥,最后将其置于热压机中进行热压,制备阴离子交换膜电极。经检测,该阴离子交换膜电极电阻达到18.43Ω/cm2

Claims (1)

1.一种生物增强阴离子交换膜的制备方法,其特征在于具体制备步骤为:
(1)收集成熟丝瓜,待其自然风干后,将其去皮并洗净烘干,随后切割至10~12cm长丝瓜络,去除内籽并对其粉碎,收集丝瓜络粉末,按质量比1:5,将上述制备的丝瓜络粉末与质量浓度5%的多糖酶溶液搅拌混合,并置于30℃下酶解2~3h,随后过滤并收集滤饼,在65~80℃下干燥6~8h,制备得丝瓜络粉碎纤维;
(2)按重量份数计,分别称量35~55份上述制备的丝瓜络粉碎纤维、25~35份环氧大豆油和20~30份N,N-二甲基甲酰胺置于三口烧瓶中,在95~100℃下搅拌混合10~15min;
(3)待混合完成后,对三口烧瓶滴加环氧大豆油质量1/3的吡咯,控制滴加时间为10~15min,待滴加完成后,再在85~100℃下水浴加热1~2h,待水浴加热完成后,过滤并收集改性丝瓜络纤维,随后分别用1mol/L氢氧化钠溶液和1mol/L盐酸各洗涤3~5次,再用去离子水洗涤pH至7.0后,在65~80℃下干燥6~8h,制备得阴离子改性丝瓜络纤维;
(4)将上述制备的改性丝瓜络纤维置于球磨机中,以去离子水为介质,球磨3~4h后,制备得固含量为80%的混合浆液,收集浆液并过滤,按质量比1:5,将滤饼与聚乙烯醇搅拌混合,再在200~300W下超声分散10~15min,制备得改性聚乙烯醇;
(5)将上述制备的改性聚乙烯醇置于玻璃板上浇筑成膜,再在室温下静置20~24h,收集改性聚乙烯醇膜并用无水乙醇洗涤3~5次,再在65~80℃烘箱中干燥6~8h,即可制备得一种生物增强阴离子交换膜。
CN201610267279.9A 2016-04-27 2016-04-27 一种生物增强阴离子交换膜的制备方法 Withdrawn CN105754124A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610267279.9A CN105754124A (zh) 2016-04-27 2016-04-27 一种生物增强阴离子交换膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610267279.9A CN105754124A (zh) 2016-04-27 2016-04-27 一种生物增强阴离子交换膜的制备方法

Publications (1)

Publication Number Publication Date
CN105754124A true CN105754124A (zh) 2016-07-13

Family

ID=56325953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610267279.9A Withdrawn CN105754124A (zh) 2016-04-27 2016-04-27 一种生物增强阴离子交换膜的制备方法

Country Status (1)

Country Link
CN (1) CN105754124A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106633210A (zh) * 2016-10-14 2017-05-10 袁春华 一种完全生物降解食品包装材料的制备方法
CN108822547A (zh) * 2018-06-07 2018-11-16 江苏理工学院 一种丝瓜络/离子液体协同改性聚合物导电复合材料的制备方法
CN109233286A (zh) * 2018-08-28 2019-01-18 江苏理工学院 一种丝瓜络/纳米银聚合物复合材料及其制备方法
CN114032564A (zh) * 2021-11-08 2022-02-11 西湖大学 生物离子传输膜、制备方法及其应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106633210A (zh) * 2016-10-14 2017-05-10 袁春华 一种完全生物降解食品包装材料的制备方法
CN108822547A (zh) * 2018-06-07 2018-11-16 江苏理工学院 一种丝瓜络/离子液体协同改性聚合物导电复合材料的制备方法
CN109233286A (zh) * 2018-08-28 2019-01-18 江苏理工学院 一种丝瓜络/纳米银聚合物复合材料及其制备方法
CN114032564A (zh) * 2021-11-08 2022-02-11 西湖大学 生物离子传输膜、制备方法及其应用

Similar Documents

Publication Publication Date Title
CN105754124A (zh) 一种生物增强阴离子交换膜的制备方法
CN102992306B (zh) 高比表面积多级孔石墨化碳及其制备方法
CN104148666B (zh) 一种纳米银修饰石墨烯的方法
CN102513546B (zh) 一种功能性片状银粉及其制备方法
CN103864010B (zh) 一种氮掺杂石墨烯/铁酸钴纳米复合材料及其制备
CN107633954A (zh) 一种石墨烯/MXene复合电极材料及其应用
CN102430393B (zh) 柠檬酸丝瓜络制备方法及应用
CN104477878A (zh) 一种石墨烯基多级孔炭材料及制法和应用
CN104118863B (zh) 一种离子液体活化稻壳制备超级电容器用多孔炭材料的方法
CN105788884B (zh) 一种超级电容器用二氧化锰/碳纸复合电极的制备方法
CN105948041A (zh) 一种真菌基活性炭纳米纤维及其制备方法与应用
CN107129752B (zh) 一种石墨烯银纳米线复合浆料及其制备方法
CN103723723B (zh) 一种石墨烯改性活性炭的制备方法
CN103103869A (zh) 一种碳纤维复合功能纸的制备方法
CN103131033A (zh) 一种制备纳米二氧化锰/纳米微晶纤维素复合薄膜的方法
CN109137593A (zh) 一种涂层增强型低紧度免碳化固态电解电容器纸及其制备方法
CN102784927A (zh) 一种高性能片状银粉的制备方法
CN101983759A (zh) 一种掺杂阴离子型快离子导体制备高离子传导效率的双极膜的方法
CN108538618A (zh) 一种多孔ZnO-C复合材料及其制备方法和应用
CN113402725B (zh) 杂多酸改性金属有机框架复合物的制备方法及应用
CN104043826A (zh) 一种铝粉表面水化处理方法及其在制备Al@Ag核壳复合粒子导电与电磁屏蔽填料中的应用
CN103508522A (zh) 离子交换树脂改性炭电极及其制备方法和应用
CN103691326B (zh) 一种离型纸转移法生产聚合物基异相离子交换膜的方法
CN106832368A (zh) 一种高碱稳苯并咪唑型碱性阴离子交换膜及其制备方法
CN103723720A (zh) 一种适用于超级电容器的石墨烯改性活性炭的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20160713