CN105734541B - 一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法 - Google Patents

一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法 Download PDF

Info

Publication number
CN105734541B
CN105734541B CN201610202241.3A CN201610202241A CN105734541B CN 105734541 B CN105734541 B CN 105734541B CN 201610202241 A CN201610202241 A CN 201610202241A CN 105734541 B CN105734541 B CN 105734541B
Authority
CN
China
Prior art keywords
substrate
alpha
transition zone
prepared
alumina crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610202241.3A
Other languages
English (en)
Other versions
CN105734541A (zh
Inventor
郭志超
李平林
申建芳
程素君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinxiang University
Original Assignee
Xinxiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinxiang University filed Critical Xinxiang University
Priority to CN201610202241.3A priority Critical patent/CN105734541B/zh
Publication of CN105734541A publication Critical patent/CN105734541A/zh
Application granted granted Critical
Publication of CN105734541B publication Critical patent/CN105734541B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C20/00Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
    • C23C20/06Coating with inorganic material, other than metallic material
    • C23C20/08Coating with inorganic material, other than metallic material with compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment

Abstract

本发明公开了一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法,属于超导材料的制备技术领域。本发明的技术方案要点为:一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法,该方法采用在高纯铝阳极氧化技术制备的氧化铝晶体基底上用有机盐沉积法和溶胶凝胶法外延生长YBCO超导层的过渡层薄膜。本发明所得过渡层薄膜厚度均一且光洁度高,解决了溅射镀膜法制备过渡层/Al2O3过渡层薄膜质量不高的问题;采用在高纯铝阳极氧化技术制备的氧化铝晶体基底上制备过渡层,解决了用大面积的蓝宝石作为衬底成本较高和薄膜尺寸受制备仪器空间限制的问题。

Description

一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法
技术领域
本发明属于超导材料的制备技术领域,具体涉及一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法。
背景技术
目前的集成电子器件基本都是以薄膜材料为基础,由于高温超导薄膜具有优异的电学性能,因此受到广泛的研究和重视,其中YBa2Cu3O7-δ(YBCO)超导薄膜已经应用于滤波器。为了保证YBCO薄膜的性能,超导薄膜必须是制备在晶格匹配的衬底上,在衬底表面上原子的周期性排列必须与高温超导体中原子的周期性排列近似对应,以使外延生长成为可能,称为晶格匹配过程。另外由于高温超导薄膜的制备需要在500-1000℃的高温氧气环境下,而且要求薄膜是外延生长的,这就对基片提出了以下要求:在高温过程中,要求基片与薄膜之间没有扩散,即使有很少的扩散也不能影响薄膜的超导性能;为避免在成膜过程或实际应用中由于温度的升降循环导致薄膜产生微裂纹,要求基片的热膨胀系数与超导材料的接近;基片材料能够生长出尺寸足够大的单晶,有足够的机械强度及化学稳定性。
然而,现在微电子器件常用蓝宝石(R-Al2O3)基片,它的介电常数小且介质损耗小,它的微波性能好以及强度大等优势被广泛选用。但实践证明,蓝宝石淀积的薄膜基片和YBCO膜之间还会发生严重的扩散,并且与YBCO的晶格匹配关系不好,必要通过处理来解决这些问题。使用过渡层改善其与YBCO薄膜的兼容性是一个有效的手段,目前用于过渡层的材料主要有:以MgO、CeO2、YSZ、Tb2O3、Y2O3、Gd2O3和Eu2O3等为代表的简单氧化物,还有以SrTiO3、LaAlO3、LaMnO3和SrRuO3等为代表的钙钛矿结构(ABO3)的氧化物,以及以La2Zr2O7(LZO)、Gd2Zr2O7和Gd2Nb2O7等为代表的烧绿石结构(A2B2O7)的氧化物等。这些过渡层具有较好的化学稳定性,与YBCO有较好的晶格匹配关系。这一思路主要使用PLD、热蒸发和溅射法制备YBCO/过渡层/Al2O3结构的过渡层和超导薄膜层,然而这些方法生长的过渡层有较多的空穴和错位缺陷、质量不高且制备出的YBCO外延薄膜质量严重下降。针对单晶蓝宝石基片加工中存在的问题和大面积的蓝宝石成本较高的问题,本发明采用高纯铝阳极氧化技术制备了廉价的高表面质量的氧化铝晶体基底,如何在氧化铝晶体基底上制备高质量的过渡层薄膜将直接决定外延的YBCO薄膜的质量,探索优良的过渡层薄膜制备方法是个关键问题。
发明内容
为解决溅射镀膜法制备YBCO/过渡层/Al2O3过渡层薄膜质量不高的问题,探索优良的过渡层薄膜制备方法,本发明提供了一种在氧化铝晶体基底上制备高温超导薄膜的方法,该方法采用在高纯铝阳极氧化技术制备的氧化铝晶体基底上用有机盐沉积法和溶胶凝胶法外延生长YBCO超导层的过渡层薄膜。
本发明为解决上述技术问题采用如下技术方案,一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法,其特征在于具体步骤为:
(1)氧化铝晶体基底的制备,将0.2mm厚的铝片剪切后放入丙酮中超声清洗15分钟,再将超声清洗后的铝片在350℃的温度下隔绝空气退火3小时,将退火处理后的铝片进行电化学抛光,以退火处理后的铝片作为阳极,圆形铜片作为阴极,阴阳两极平行相对,以体积比为5:1的乙醇和高氯酸的混合溶液作为电解液,在20V的电压和6-8℃的温度下电解直至铝片表面一层黑色薄膜退去,电解后用60℃热水冲洗表面的电解液,然后以预处理后的铝片作为阳极,铂电极作为阴极,在醋酸溶液中于5℃进行阳极氧化直至铝片变为透明的氧化铝为止,其中氧化的电压为45V,最后将得到的氧化铝基底用高纯水清洗后置于退火炉中,在高纯氧气气氛下以50℃/s的升温速率升温至800℃保温1小时,然后随炉冷却后制得氧化铝晶体基底;
(2)过渡层的制备,以丙酸为溶剂配制摩尔浓度为0.4mol/L的乙酰丙酮铈前驱液或者以丙酮为溶剂配制总的阳离子浓度为1mol/L的乙酰丙酮镧和乙酰丙酮锆混合前驱液,将氧化铝晶体基底置于旋涂机中进行乙酰丙酮铈前驱液或乙酰丙酮镧和乙酰丙酮锆混合前驱液的涂覆,然后经过退火处理制得CeO2/Al2O3基片或LZO/Al2O3基片。
进一步优选,步骤(1)中铝片的纯度为99.99%。
进一步优选,步骤(1)中醋酸溶液的摩尔浓度为1mol/L。
进一步优选,步骤(2)中制备CeO2/Al2O3基片的退火处理过程为:以300-600℃/h的升温速率升温至1000℃并保温5分钟后随炉冷却制得CeO2过渡层。
进一步优选,步骤(2)中制备LZO/Al2O3基片的退火处理过程为:以Ar-H2作为保护气,其中H2的体积分数为4%,退火烧结温度为1100-1150℃,烧结保温时间为90分钟制得LZO过渡层。
本发明与现有技术相比具有以下有益效果:用有机盐沉积法和溶胶凝胶法在氧化铝晶体基底上外延生长过渡层薄膜,所得过渡层薄膜厚度均一且光洁度高,解决了溅射镀膜法制备过渡层/Al2O3过渡层薄膜质量不高的问题;采用在高纯铝阳极氧化技术制备的氧化铝晶体基底上制备过渡层,解决了用大面积的蓝宝石作为衬底成本较高和薄膜尺寸受制备仪器空间限制的问题。
附图说明
图1是本发明实施例中氧化铝晶体基底上沉积的LZO过渡层的XRD图谱;
图2是本发明实施例中氧化铝晶体基底上沉积的LZO过渡层的SEM图;
图3是本发明实施例中氧化铝晶体基底上沉积的CeO2过渡层的SEM图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
氧化铝晶体基底的制备
将0.2mm厚的铝片剪切后放入丙酮中超声清洗15分钟,再将超声清洗后的铝片在350℃的温度下隔绝空气退火3小时,将退火处理后的铝片进行电化学抛光,以退火处理后的铝片作为阳极,圆形铜片作为阴极,阴阳两极平行相对,以体积比为5:1的乙醇和高氯酸的混合溶液作为电解液,在20V的电压和6-8℃的温度下电解直至铝片表面一层黑色薄膜退去,电解后用60℃热水冲洗表面的电解液,然后以预处理后的铝片作为阳极,铂电极作为阴极,在醋酸溶液中于5℃进行阳极氧化直至铝片变为透明的氧化铝为止,其中氧化的电压为45V,最后将得到的氧化铝基底用高纯水清洗后置于退火炉中,在高纯氧气气氛下以50℃/s的升温速率升温至800℃保温1小时,然后随炉冷却后制得氧化铝晶体基底。
实施例2
在氧化铝晶体基底上制备LZO过渡层
以乙酰丙酮镧(La(CH3COCHCOCH3)3xH2O)和乙酰丙酮锆(Zr(CH3COCHCOCH3)4)作为前驱盐,丙酸作为溶剂,配制总的阳离子摩尔浓度为1.0mol/L的乙酰丙酮镧和乙酰丙酮锆混合前驱液;将氧化铝晶体基底置于旋涂机中进行乙酰丙酮镧和乙酰丙酮锆混合前驱液的涂覆,首先设定旋转的加速时间和涂覆时间,然后将洗净烘干的氧化铝晶体基底置于匀胶机中心,开启真空泵抽真空,吸住基底,将溶液滴在氧化铝晶体基底上,开启电动机,氧化铝晶体基底将随转台一起旋转,基底上的前驱液均匀铺展,最终得到均匀的前驱薄膜,再以Ar-H2作为保护气,其中H2的体积分数为4%,退火烧结温度为1100-1150℃,烧结保温时间为90分钟制得过渡层薄膜。所得到的LZO过渡层的XRD结果如图1所示,样品SEM表面形貌如图2所示,由图可知,过渡层表面均匀、平整且致密性高。
实施例3
在氧化铝晶体基底上制备CeO2过渡层
以丙酸为溶剂配制摩尔浓度为0.4mol/L的乙酰丙酮铈前驱液,将氧化铝晶体基底置于旋涂机中进行乙酰丙酮铈前驱液的涂覆,涂覆到氧化铝晶体基底上的前驱膜经过高温热处理才能获得最终的过渡层薄膜,热处理的工艺为快速升温至1000℃并保温5min后随炉冷却。CeO2过渡层的SEM表面形貌图如图3所示,由图可知,过渡层表面均匀、平整且致密性高。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (3)

1.一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法,其特征在于具体步骤为:
(1)氧化铝晶体基底的制备,将0.2mm厚的铝片剪切后放入丙酮中超声清洗15分钟,再将超声清洗后的铝片在350℃的温度下隔绝空气退火3小时,将退火处理后的铝片进行电化学抛光,以退火处理后的铝片作为阳极,圆形铜片作为阴极,阴阳两极平行相对,以体积比为5:1的乙醇和高氯酸的混合溶液作为电解液,在20V的电压和6-8℃的温度下电解直至铝片表面一层黑色薄膜退去,电解后用60℃热水冲洗表面的电解液,然后以预处理后的铝片作为阳极,铂电极作为阴极,在醋酸溶液中于5℃进行阳极氧化直至铝片变为透明的氧化铝为止,其中氧化的电压为45V,最后将得到的氧化铝基底用高纯水清洗后置于退火炉中,在高纯氧气气氛下以50℃/s的升温速率升温至800℃保温1小时,然后随炉冷却后制得氧化铝晶体基底,铝片的纯度为99.99%,醋酸溶液的摩尔浓度为1.0mol/L;
(2)过渡层的制备,以丙酸为溶剂配制摩尔浓度为0.4mol/L的乙酰丙酮铈前驱液或者以丙酮为溶剂配制总的阳离子浓度为1mol/L的乙酰丙酮镧和乙酰丙酮锆混合前驱液,将氧化铝晶体基底置于旋涂机中进行乙酰丙酮铈前驱液或乙酰丙酮镧和乙酰丙酮锆混合前驱液的涂覆,然后经过退火处理制得CeO2/Al2O3基片或LZO/Al2O3基片。
2.根据权利要求1所述的在氧化铝晶体基底上制备高温超导薄膜过渡层的方法,其特征在于:步骤(2)中制备CeO2/Al2O3基片的退火处理过程为:以300-600℃/h的升温速率升温至1000℃并保温5分钟后随炉冷却制得CeO2过渡层。
3.根据权利要求1所述的在氧化铝晶体基底上制备高温超导薄膜过渡层的方法,其特征在于:步骤(2)中制备LZO/Al2O3基片的退火处理过程为:以Ar-H2作为保护气,其中H2的体积分数为4%,退火烧结温度为1100-1150℃,烧结保温时间为90分钟制得LZO过渡层。
CN201610202241.3A 2016-04-05 2016-04-05 一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法 Expired - Fee Related CN105734541B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610202241.3A CN105734541B (zh) 2016-04-05 2016-04-05 一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610202241.3A CN105734541B (zh) 2016-04-05 2016-04-05 一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法

Publications (2)

Publication Number Publication Date
CN105734541A CN105734541A (zh) 2016-07-06
CN105734541B true CN105734541B (zh) 2017-11-07

Family

ID=56253530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610202241.3A Expired - Fee Related CN105734541B (zh) 2016-04-05 2016-04-05 一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法

Country Status (1)

Country Link
CN (1) CN105734541B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106381477B (zh) * 2016-11-16 2019-02-01 上海大学 具有柱状晶的锆酸镧薄膜的制备方法及装置
CN106830074A (zh) * 2017-01-17 2017-06-13 北京工业大学 一种二代高温超导过渡层锆酸镧的制备方法
CN111876755B (zh) * 2020-07-15 2022-02-18 齐鲁工业大学 一种bmn多层介质薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188152A (zh) * 2007-10-26 2008-05-28 上海大学 涂层导体用CeO2薄膜的制备方法
CN101624286A (zh) * 2009-07-03 2010-01-13 北京工业大学 一种La掺杂CeO2过渡层薄膜及其制备方法
CN103290394A (zh) * 2012-02-29 2013-09-11 苏州新材料研究所有限公司 一种用于制备第二代高温超导材料的金属基带的表面处理方法
CN103382568A (zh) * 2012-05-04 2013-11-06 李福全 一种纳米多孔阳极氧化铝膜的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI285225B (en) * 2004-09-07 2007-08-11 Univ Nat Chiao Tung Method of manufacturing aluminum oxide film with arrayed nanometric pores

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188152A (zh) * 2007-10-26 2008-05-28 上海大学 涂层导体用CeO2薄膜的制备方法
CN101624286A (zh) * 2009-07-03 2010-01-13 北京工业大学 一种La掺杂CeO2过渡层薄膜及其制备方法
CN103290394A (zh) * 2012-02-29 2013-09-11 苏州新材料研究所有限公司 一种用于制备第二代高温超导材料的金属基带的表面处理方法
CN103382568A (zh) * 2012-05-04 2013-11-06 李福全 一种纳米多孔阳极氧化铝膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"MOD法制备YBCO高温超导带材缓冲层研究";黄博;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20110415;第18页第2.2.3节-第63页第4.3节 *

Also Published As

Publication number Publication date
CN105734541A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN100372140C (zh) 一种大面积均匀薄膜或长超导导线的制备方法及其装置
CN105734541B (zh) 一种在氧化铝晶体基底上制备高温超导薄膜过渡层的方法
CN1719553A (zh) 一种高温超导覆膜导体及其制备方法
CN101333655A (zh) 高温超导涂层导体La2Zr2O7缓冲层薄膜制备工艺
CN105803434B (zh) 一种在氧化铝晶体基底上制备高温超导薄膜的方法
EP1912785A1 (en) Electrodeposition of biaxially textured layers on a substrate
Paranthaman et al. Fabrication of Long Lengths of Epitaxial Buffer Layers on Biaxially Textured Nickel Substrates Using a Continuous Reel‐to‐Reel Dip‐Coating Unit
CN103833416B (zh) 一种镍酸镧导电薄膜的化学溶液沉积制备方法
CN102931338B (zh) 一种具有多层复合结构的ybco超导膜及其制备方法
CN101320604B (zh) 一种SrZrO3掺杂的YBCO薄膜及其制备方法
CN109627043A (zh) 具有高度择优取向的纯相铁酸铋薄膜的制备方法
CN101587763B (zh) 一种高温超导涂层导体缓冲层的制备方法
CN101178954A (zh) 一种导电型阻隔层LaNiO3的制备方法
CN104992777B (zh) 一种双轴织构缓冲层结构
CN101188152B (zh) 涂层导体用CeO2薄膜的制备方法
CN101178955B (zh) 提高涂层导体用CeO2薄膜厚度的方法
CN1905081A (zh) 一种具有导电缓冲层的钇钡铜氧涂层导体及制备方法
CN104928660B (zh) 超导涂层用YxCe1‑xO2/La2Zr2O7复合过渡层薄膜的制备方法
CN101624286B (zh) 一种La掺杂CeO2过渡层薄膜及其制备方法
CN106653993A (zh) 一种多层结构钇钡铜氧超导厚膜的制备方法
CN102241526B (zh) 一种高温超导涂层导体缓冲层的制备方法
CN202871869U (zh) 一种具有多层复合结构的ybco超导膜
CN102134712B (zh) 一种化学溶液沉积快速制备GdBCO薄膜的方法
Nie et al. Biaxially textured MgO buffer layer on flexible metal template for coated conductor
CN101281804A (zh) 单层有效的高温超导涂层导体缓冲层厚膜的制备工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171107

Termination date: 20210405

CF01 Termination of patent right due to non-payment of annual fee