CN105734504A - 一种掺银氧化钒热敏薄膜材料及其制备方法 - Google Patents

一种掺银氧化钒热敏薄膜材料及其制备方法 Download PDF

Info

Publication number
CN105734504A
CN105734504A CN201610160097.1A CN201610160097A CN105734504A CN 105734504 A CN105734504 A CN 105734504A CN 201610160097 A CN201610160097 A CN 201610160097A CN 105734504 A CN105734504 A CN 105734504A
Authority
CN
China
Prior art keywords
silver
vanadium oxide
oxygen
film
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610160097.1A
Other languages
English (en)
Other versions
CN105734504B (zh
Inventor
顾德恩
周鑫
蒋亚东
王志辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610160097.1A priority Critical patent/CN105734504B/zh
Publication of CN105734504A publication Critical patent/CN105734504A/zh
Application granted granted Critical
Publication of CN105734504B publication Critical patent/CN105734504B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及探测器和电子薄膜技术领域,具体涉及一种掺银氧化钒热敏薄膜材料及其制备方法。本发明以银为掺杂元素制备,元素摩尔百分比含量为银3?10%,钒30?40%,氧50?67%;其TCR为4.2?5.5%/K,电阻温度特性呈现出无相变特征,电阻率0.1?1.1Ω·cm,方阻稳定性在72h后变化率小于10%。先通过溅射工艺分两步沉积银/氧化钒复合薄膜,再通过富氧气氛高温退火得到掺银氧化钒热敏薄膜材料。本发明所制备的掺银氧化钒热敏薄膜材料电阻温度系数高,具有无相变特征,避免了热滞噪声问题,可提高非制冷焦平面器件的灵敏度;且电阻率小,器件可在低偏置条件下工作;其工艺与MEMS工艺兼容性好,适于基于氧化钒热敏薄膜器件的大批量制造。

Description

一种掺银氧化钒热敏薄膜材料及其制备方法
技术领域
本发明涉及探测器和电子薄膜技术领域,具体涉及一种高电阻温度系数(TCR)、无相变氧化钒热敏薄膜材料及其制备方法。
背景技术
由于具有:(a)高TCR(b)低本征噪声(c)良好的MEMS工艺和CMOS工艺兼容性等优点,氧化钒薄膜被广泛用作高性能非制冷焦平面阵列的热敏材料。氧化钒热敏薄膜的TCR、电阻率、噪声系数是影响器件灵敏度的重要因素。氧化钒热敏薄膜的|TCR|越高(半导体材料的TCR一般为负,本文所涉及TCR大小时,若无特殊说明,均是指TCR的绝对值|TCR|),则相应的非制冷焦平面阵列器件的噪声等效温差(NETD)越小,即灵敏度越高。
氧化钒作为重要的金属氧化物半导体材料,根据含氧量的不同,可形成多达13种可稳定存在的相,其晶格结构和空间排列各不相同,各种氧化钒之间的性质也大有不同,这就使得氧化钒薄膜的制备成为高性能非制冷焦平面阵列研制的一大难点。其中,非制冷焦平面阵列常用的氧化钒热敏薄膜为混合价氧化钒薄膜(VOx),其氧含量x具有一定的要求,以获得适当的薄膜电阻率和综合性能,从而保证器件良好的性能。这种混合价氧化钒薄膜一般具有2-2.5%/K的TCR(R.A.Wood,et al.,IEEE,1992,132-135;S.H.Black,et al.,Proc.of SPIE,2011,8012,80121A;)。但这种氧化钒薄膜的稳定性较差,在室温下大气环境中存放时,还存在方阻逐渐增大的问题。方阻的不稳定性增加了非制冷焦平面阵列器件的MEMS制造工艺兼容性难度。
在氧化钒的不同相中,VO2薄膜在发生半导体-金属相变时,相变区间TCR可高达15%/K以上,有人尝试采用具有半导体-金属相变特性的VO2薄膜作为热敏材料,以期望获得高灵敏的非制冷焦平面器件。但是相变区间的热滞洄现象意味着高的热滞噪声,这会降低非制冷焦平面器件的信噪比。同时,VO2相变一般伴随晶体结构在单斜相和四方相之间的转换。这种晶体结构的转换带来了显著的晶胞体积变化,从而在薄膜中形成应变。以VO2作为热敏薄膜材料时,后续的多步工艺的基本工艺温度都高于VO2的典型相变温度68℃,这导致VO2在后续工艺中将经历多次相变过程,从而导致薄膜内反复的应变循环。这将降低含热敏薄膜的桥面膜层的可靠性。因此,VO2薄膜在非制冷焦平面器件中难以获得真正的应用。
因此,为了适应高性能非制冷焦平面阵列器件研制的需要,开发具有高TCR、方阻稳定性好、无相变的新型氧化钒薄膜材料及其制备方法具有重要的意义。
发明内容
针对上述存在问题或不足,为实现氧化钒薄膜材料具有高TCR、方阻稳定性好和无相变的特点,且其制备方法与非制冷焦平面阵列器件的MEMS工艺兼容,从而适用于非制冷焦平面阵列器件的批量研制。本发明提供了一种掺银氧化钒热敏薄膜材料及其制备方法。
具体技术方案为:
一种掺银氧化钒热敏薄膜材料,掺银氧化钒薄膜各元素摩尔百分比含量为:银3-10%,钒30-40%,氧50-67%;其TCR为4.2-5.5%/K,电阻温度特性呈现出无相变特征,电阻率0.1-1.1Ω·cm,方阻稳定性在72h后变化率小于10%。银元素采用纯度高于98%的纯银,钒元素采用纯度高于98%的纯钒。
其制备方法包括以下步骤:
步骤1、将石英基片在真空环境下100-200℃进行预热30-100分钟;
步骤2、采用氩气气氛0.5-5.0pa的工作气压,对纯度高于98%的银靶进行预溅射5-20分钟;再以相同气氛对预溅射后的银靶进行溅射,在预热好的石英基片上沉积银薄膜,沉积厚度为10-50nm;
步骤3、将步骤2沉积了银薄膜后的基片在100-250℃预热30-120分钟;
步骤4、采用氧/氩流量比为1:15-1:30的气氛,在0.5-2.0pa的工作气压下,以纯度高于98%的金属钒靶为源材料,通过反应溅射在步骤3所预热的基片上溅射沉积200-400nm厚度的氧化钒薄膜,得到银/氧化钒复合薄膜;
步骤5、对步骤4所制备的银/氧化钒复合薄膜进行富氧气氛退火,氧/氩流量比1:1-1:0,真空室气压1.0-4.0pa,退火温度350-450℃,退火时间30-150分钟。
本发明通过预先在基片上沉积一层银薄膜,然后再沉积氧化钒薄膜,制备得到银/氧化钒复合薄膜,最终通过高温富氧退火处理实现掺银氧化钒薄膜的制备。制备的氧化钒热敏薄膜材料TCR为4.2-5.5%/K,电阻温度特性呈现出无相变特征,电阻率0.1-1.1Ω·cm,方阻稳定性在72h后变化率小于10%。工艺与非制冷焦平面阵列器件的MEMS工艺兼容,从而适用于非制冷焦平面阵列器件的批量研制。
综上所述,本发明具有如下有益效果:
1、本发明制备的氧化钒热敏薄膜材料TCR为4.2-5.5%/K,显著高于混合价氧化钒热敏薄膜材料的TCR(2.0-2.5%/K),有利于提高非制冷焦平面阵列器件的灵敏度。
2、本发明制备的氧化钒热敏薄膜材料72小时后方阻变化率小于10%,同种工艺条件制备的VO2薄膜则为16.3%,好的方阻稳定性可以大大降低其与器件MEMS工艺的兼容性难度。
3、本发明制备的氧化钒热敏薄膜材料的电阻温度特性呈现出无相变特征,这可以避免VO2薄膜存在的热滞噪声问题。
4、本发明制备的氧化钒热敏薄膜材料的电阻率为0.1-1.1Ω·cm,显著小于同种条件下制备VO2薄膜的2.6Ω·cm,这有助于降低焦平面器件的工作偏置电压。
附图说明
图1为本发明的制备方法流程示意图;
图2为实施例1制备得到的掺银氧化钒热敏薄膜样品VOA-1的方阻温度特性曲线;
图3为实施例2制备得到的掺银氧化钒热敏薄膜样品VOA-2的方阻温度特性曲线;
图4为实施例3制备得到的掺银氧化钒热敏薄膜样品VOA-3的方阻温度特性曲线。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步描述:
实施例1:
如图1所示,将溅射室抽至高真空环境(本底真空<5×10-4Pa);将石英基片在真空环境下100℃预热90分钟;对银靶(纯度:99.99%)以氩气气氛在3.0Pa的工作气压下预溅射10分钟,再以相同气氛对预溅后的银靶进行溅射,在基片上沉积20nm银薄膜;将沉积有20nm银薄膜的基片在真空环境下180℃预热60分钟;对金属钒靶(纯度:99.95%)以纯氩气气氛在2.0Pa的气压下预溅射10分钟,采用氧/氩流量比为1:20的气氛,在1.5pa的工作气压下沉积200nm氧化钒薄膜;对沉积的银/氧化钒复合薄膜进行富氧气氛退火,氧/氩流量比1:1,真空室气压3.1pa,退火温度350℃,退火时间90分钟,得到掺银氧化钒热敏薄膜(记为VOA-1)。
测试其方阻温度特性曲线,如图2所示,VOA-1的方阻温度特性显示出无相变特征。30℃的电阻温度系数(TCR)为-4.3%/k,电阻率为1.1Ω·cm。
作为参照样,以相同的工艺制备未掺杂氧化钒薄膜:将石英基片在真空环境下180℃预热60分钟;对金属钒靶(纯度:99.95%)以纯氩气气氛在2.0Pa的气压下预溅射10分钟,采用氧/氩流量比为1:20的气氛,在1.5pa的工作气压下沉积200nm氧化钒薄膜;然后对沉积的氧化钒薄膜进行富氧气氛退火,氧/氩流量比1:1,真空室气压3.1pa,退火温度350℃,退火时间90分钟,得到未掺杂的氧化钒热敏薄膜。测试其30℃的TCR为-2.7%/k,电阻率率为2.5Ω·cm。实施例2:
如图1所示,将溅射室抽至高真空环境(本底真空<5×10-4Pa);将石英基片在真空环境下150℃预热60分钟;对银靶(纯度:99.99%)以氩气气氛在3.0Pa的工作气压下预溅射10分钟,再以相同气氛对预溅后的银靶进行溅射,在基片上沉积30nm银薄膜;将沉积有30nm银薄膜的基片在真空环境下180℃预热60分钟;对金属钒靶(纯度:99.95%)以纯氩气气氛在2.0Pa的气压下预溅射10分钟,采用氧/氩流量比为1:20的气氛,在1.5pa的工作气压下沉积200nm氧化钒薄膜;对沉积的银/氧化钒复合薄膜进行富氧气氛退火,氧/氩流量比3:1,真空室气压3.1pa,退火温度400℃,退火时间90分钟,得到掺银氧化钒热敏薄膜(记为VOA-2)。
测试其方阻温度特性曲线,如图3所示,VOA-2的方阻温度特性显示出无相变特征。30℃的电阻温度系数(TCR)为-5.0%/k,电阻率为0.34Ω·cm。
作为参照样,以相同的工艺制备未掺杂氧化钒薄膜:将石英基片在真空环境下180℃预热60分钟;对金属钒靶(纯度:99.95%)以纯氩气气氛在2.0Pa的气压下预溅射10分钟,采用氧/氩流量比为1:20的气氛,在1.5pa的工作气压下沉积200nm氧化钒薄膜;然后对沉积的氧化钒薄膜进行富氧气氛退火,氧/氩流量比3:1,真空室气压3.1pa,退火温度400℃,退火时间90分钟,得到未掺杂的氧化钒热敏薄膜。测试其30℃的电阻温度系数(TCR)其TCR为-2.9%/k,电阻率为2.6Ω·cm。
实施例3:
如图1所示,将溅射室抽至高真空环境(本底真空<5×10-4Pa);将石英基片在真空环境下200℃预热30分钟;对银靶(纯度:99.99%)以氩气气氛在3.0Pa的工作气压下预溅射10分钟,再以相同气氛对预溅后的银靶进行溅射,在基片上沉积40nm银薄膜;将沉积有40nm银薄膜的基片在真空环境下180℃预热60分钟;对金属钒靶(纯度:99.95%)以纯氩气气氛在2.0Pa的气压下预溅射10分钟,采用氧/氩流量比为1:20的气氛,在1.5pa的工作气压下沉积250nm氧化钒薄膜;对沉积的银/氧化钒复合薄膜进行富氧气氛退火,氧/氩流量比1:0,真空室气压3.1pa,退火温度450℃,退火时间30分钟,得到掺银氧化钒热敏薄膜(记为VOA-3)。
测试其方阻温度特性曲线,如图4所示,VOA-3的方阻温度特性显示出无相变特征。30℃的电阻温度系数(TCR)为-5.2%/k,电阻率为0.10Ω·cm。
作为参照样,以相同的工艺制备未掺杂氧化钒薄膜:将石英基片在真空环境下180℃预热60分钟;对金属钒靶(纯度:99.95%)以纯氩气气氛在2.0Pa的气压下预溅射10分钟,采用氧/氩流量比为1:20的气氛,在1.5pa的工作气压下沉积250nm氧化钒薄膜;然后对沉积的氧化钒薄膜进行富氧气氛退火,氧/氩流量比1:0,真空室气压3.1pa,退火温度450℃,退火时间30分钟,得到未掺杂的氧化钒热敏薄膜。测试其30℃的电阻温度系数(TCR)其TCR为-2.8%/k,,电阻率率为2.6Ω·cm。

Claims (3)

1.一种掺银氧化钒热敏薄膜材料,其特征在于:以银为掺杂元素制备得到,掺银氧化钒薄膜各元素摩尔百分比含量为银3-10%,钒30-40%,氧50-67%;其TCR为4.2-5.5%/K,电阻温度特性呈现出无相变特征,电阻率0.1-1.1Ω·cm,方阻稳定性在72h后变化率小于10%;银元素采用纯度高于98%的纯银,钒元素采用纯度高于98%的纯钒。
2.如权利要求1所述掺银氧化钒热敏薄膜材料的制备方法,其特征在于:掺银氧化钒薄膜的制备采用两步法进行,即预先在基片上沉积一层银薄膜,然后再沉积氧化钒薄膜,并通过高温富氧退火处理实现掺银氧化钒薄膜的制备。
3.如权利要求1所述掺银氧化钒热敏薄膜材料的制备方法,具体为:
步骤1、将石英基片在真空环境下100-200℃进行预热30-100分钟;
步骤2、采用氩气气氛0.5-5.0pa的工作气压,对纯度高于98%的银靶进行预溅射5-20分钟;再以相同气氛对预溅射后的银靶进行溅射,在预热好的石英基片上沉积银薄膜,沉积厚度为10-50nm;
步骤3、将步骤2沉积了银薄膜后的基片在100-250℃预热30-120分钟;
步骤4、采用氧/氩流量比为1:15-1:30的气氛,在0.5-2.0pa的工作气压下,以纯度高于98%的金属钒靶为源材料,通过反应溅射在步骤3所预热的基片上溅射沉积200-400nm厚度的氧化钒薄膜,得到银/氧化钒复合薄膜;
步骤5、对步骤4所制备的银/氧化钒复合薄膜进行富氧气氛退火,氧/氩流量比1:1-1:0,真空室气压1.0-4.0pa,退火温度350-450℃,退火时间30-150分钟。
CN201610160097.1A 2016-03-21 2016-03-21 一种掺银氧化钒热敏薄膜材料及其制备方法 Expired - Fee Related CN105734504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610160097.1A CN105734504B (zh) 2016-03-21 2016-03-21 一种掺银氧化钒热敏薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610160097.1A CN105734504B (zh) 2016-03-21 2016-03-21 一种掺银氧化钒热敏薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105734504A true CN105734504A (zh) 2016-07-06
CN105734504B CN105734504B (zh) 2018-05-18

Family

ID=56250883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610160097.1A Expired - Fee Related CN105734504B (zh) 2016-03-21 2016-03-21 一种掺银氧化钒热敏薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105734504B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107177823A (zh) * 2017-06-14 2017-09-19 中国航发北京航空材料研究院 一种具有激光防护性能的Ag/VO2复合薄膜的制备方法
CN109115835A (zh) * 2018-07-20 2019-01-01 南京理工大学 硅锗硅多量子阱红外敏感材料电学参数测试装置及方法
CN109133201A (zh) * 2018-09-19 2019-01-04 北京科技大学 基于多组分a位共掺杂镍基钙钛矿氧化物材料及使用方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333758B1 (zh) * 1974-11-19 1978-09-16
CN104878358A (zh) * 2015-06-12 2015-09-02 电子科技大学 一种高电阻温度系数氧化钒热敏薄膜材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333758B1 (zh) * 1974-11-19 1978-09-16
CN104878358A (zh) * 2015-06-12 2015-09-02 电子科技大学 一种高电阻温度系数氧化钒热敏薄膜材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜明军: "氧化钒薄膜的制备及其光电性能研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107177823A (zh) * 2017-06-14 2017-09-19 中国航发北京航空材料研究院 一种具有激光防护性能的Ag/VO2复合薄膜的制备方法
CN109115835A (zh) * 2018-07-20 2019-01-01 南京理工大学 硅锗硅多量子阱红外敏感材料电学参数测试装置及方法
CN109133201A (zh) * 2018-09-19 2019-01-04 北京科技大学 基于多组分a位共掺杂镍基钙钛矿氧化物材料及使用方法

Also Published As

Publication number Publication date
CN105734504B (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
JP3636914B2 (ja) 高抵抗透明導電膜及び高抵抗透明導電膜の製造方法並びに高抵抗透明導電膜形成用スパッタリングターゲット
US9481926B2 (en) Vanadium oxide thermo-sensitive film material with high temperature coefficient of resistance and a preparing method thereof
Wei et al. Phase change behavior in titanium-doped Ge2Sb2Te5 films
Simchi et al. Characterization of reactively sputtered molybdenum oxide films for solar cell application
Meysing et al. Properties of reactively sputtered oxygenated cadmium sulfide (CdS: O) and their impact on CdTe solar cell performance
CN107686973B (zh) 一种钛钌共掺二氧化钒热敏薄膜材料及其制备方法
CN102348827B (zh) 透明导电膜和透明导电膜层叠体及其制造方法、以及硅系薄膜太阳能电池
CN101158049B (zh) P型透明导电氧化物CuAlO2薄膜的制备方法
Scott et al. Highly conductive ZnO grown by pulsed laser deposition in pure Ar
CN103882389B (zh) 一种高电阻温度系数氧化钒薄膜制备方法
CN105734504A (zh) 一种掺银氧化钒热敏薄膜材料及其制备方法
CN103021605B (zh) 片式铂热敏电阻器制作方法
CN101174671A (zh) 具有相变特性二氧化钒纳米薄膜的制备方法
CN102738260A (zh) 光电二极管、光感测组件及光电二极管的制造方法
Li et al. TiNx/Hf0. 5Zr0. 5O2/TiNx ferroelectric memory with tunable transparency and suppressed wake-up effect
WO2019176552A1 (ja) 酸化物薄膜及び該薄膜を製造するためのスパッタリングターゲット用酸化物焼結体
CN105624630A (zh) 一种VOx/M/VOx“三明治”结构薄膜制备VO2的方法及其应用
KR101420264B1 (ko) 볼로미터용 저항 박막 제조방법, 볼로미터 제조방법, 및 이들에 의해서 제조된 볼로미터와 적외선 검출 소자
CN104611670A (zh) 一种高电阻温度系数氧化钒薄膜的制备方法
KR20070016203A (ko) 산화아연계 투명 도전막
JP2001189114A (ja) 透明電極の製造方法
Huang et al. Influence of Ca/Al ratio on properties of amorphous/nanocrystalline Cu–Al–Ca–O thin films
Löbl et al. Thermal stability of nonstoichiometric silicon nitride films made by reactive dc magnetron sputter deposition
CN110926604A (zh) 一种基于铬-铌共掺杂二氧化钒外延薄膜的光热探测单元
Zhao et al. Preparation and thermoelectric characteristics of ITO/PtRh: PtRh thin film thermocouple

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180518