CN107177823A - 一种具有激光防护性能的Ag/VO2复合薄膜的制备方法 - Google Patents

一种具有激光防护性能的Ag/VO2复合薄膜的制备方法 Download PDF

Info

Publication number
CN107177823A
CN107177823A CN201710454298.7A CN201710454298A CN107177823A CN 107177823 A CN107177823 A CN 107177823A CN 201710454298 A CN201710454298 A CN 201710454298A CN 107177823 A CN107177823 A CN 107177823A
Authority
CN
China
Prior art keywords
film
nano
silver
preparation
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710454298.7A
Other languages
English (en)
Other versions
CN107177823B (zh
Inventor
田野
罗飞
刘大博
祁洪飞
罗炳威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN201710454298.7A priority Critical patent/CN107177823B/zh
Publication of CN107177823A publication Critical patent/CN107177823A/zh
Application granted granted Critical
Publication of CN107177823B publication Critical patent/CN107177823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于功能薄膜技术领域,具体涉及一种具有激光防护性能的Ag/VO2复合薄膜的制备方法。本发明在VO2多晶薄膜表面涂覆具有表面等离激元共振特性的银纳米线或银纳米颗粒结构层。该工艺可以有效提高薄膜对激光的响应度以及耐激光辐射能力,其制备过程简单可控,不需要昂贵的设备,同时对VO2薄膜的尺寸、形貌无特殊要求,为VO2基激光防护薄膜提供了一种高效率、短周期、可工业化实施的新技术。

Description

一种具有激光防护性能的Ag/VO2复合薄膜的制备方法
技术领域
本发明属于功能薄膜技术领域,具体涉及一种具有激光防护性能的Ag/VO2复合薄膜的制备方法。
背景技术
随着激光干扰与致盲武器的迅速发展,寻找一种适用于激光防护的新型材料,保护军事人员和各种光电探测系统不受打击,已成为亟需解决的重要问题。作为一种热致相变材料,VO2可以在不同温度下实现在金属-绝缘体之间的可逆转变。伴随相变的发生,材料的光电特性发生突变,从而实现强光照射时具有低透过率,保护探测器不受损伤,弱光照射时具有高透过率,不影响探测器接收信号。同其它激光防护材料相比,VO2具有防护波段宽,制备成本低,性能稳定等优点,是智能激光防护材料的研究热点,在航空航天领域有着广泛的应用潜力。
目前,研究者已经采用了多种途径合成了VO2薄膜材料,然而,由于纯净化学计量比的VO2薄膜较难制备并且其相变温度较高,严重阻碍了VO2薄膜的实际应用。目前虽然可以通过优化制备工艺及元素掺杂对其进行调控,但却存在制备周期长,成本高、薄膜的开关特性减弱等很多不利影响。因此,如何制备具有良好激光防护性能的VO2薄膜成为了一个亟需解决的技术难题。
作为一种贵金属纳米材料,银纳米材料由于具有独特的光学、电学和催化特性,在诸多领域有着广泛的应用价值。尤其银纳米材料具有表面等离子体共振效应,会使其表现出许多奇异的光学性质,比如局域电场增强效应、纳米天线效应、强烈的光散射、光吸收以及光热特性等。目前,银纳米材料已被广泛应用于光伏器件、发光器件、探测器件等光电材料中,可以大幅提高器件的工作效率(M.Rycenga,C.M.Cobley,J.Zeng,W.Y.Li,C.H.Moran,Q.Zhang,D.Qin,and Y.N.Xia,"Controlling the Synthesis and Assembly ofSilverNanostructures for Plasmonic Applications",Chem.Rev.,2011,111:3669-3712)。但是,利用表面等离子体共振效应增强激光防护用Ag/VO2复合薄膜却一直未有报道,其相关技术瓶颈主要在于银纳米结构层的厚度及形貌选择存在困难。具体为一方面,银纳米结构层过厚虽然可以大幅降低VO2薄膜的激光可透过率并提升薄膜的耐激光损伤阈值,但是却会严重削弱银纳米结构的表面等离子体共振效应,并且降低VO2薄膜的实际可接收光信号强度。另一方面,银纳米结构层过薄,虽然可以提高银纳米结构自身的表面等离子体共振效应,提升VO2薄膜可接收的光信号强度,但是却无法降低VO2薄膜的激光可透过率,同时很难提高薄膜的耐激光损伤阈值。同理,在银纳米结构层的形貌选择上也存在上述技术困难。因此,恰当选择银纳米结构层的厚度及形貌是激光防护用Ag/VO2复合薄膜的技术难点。
发明内容
为了解决已有的激光防护用VO2薄膜在制备过程中存在的问题,本发明提供了一种具有激光防护性能的Ag/VO2复合薄膜的制备工艺。
一种具有激光防护性能的Ag/VO2复合薄膜的制备工艺,其工艺过程为:
1)以金属钒靶作为溅射源,在氩气条件下在洁净石英衬底上溅射100nm厚的金属钒膜,衬底温度保持在200℃;
2)将一端敞口的管式退火炉进行升温,到500℃时进行保温,从炉管的非敞口端通入氮气,氮气流量保持在2L/min;
3)将制备的金属钒膜放入石英坩埚中,之后将坩埚推入上述管式退火炉中进行退火,退火时间为10min,到时后拉出坩埚进行快速空气下冷却。得到所需的VO2薄膜。
4)以AgNO3为银源,乙二醇为还原剂,聚乙烯吡咯烷酮为稳定剂和分散剂,利用化学还原反应得到银纳米线或银纳米颗粒产物,随后将产物离心分离并分散到乙醇中,得到浓度为0.5%的银纳米线或银纳米颗粒分散液。
5)利用旋涂仪将上述银纳米线或银纳米颗粒分散液均匀涂覆于VO2薄膜表面,具体参数为先进行低速旋涂,速度为400转/分钟,旋涂时间5s,再进行高速旋涂,速度为2000转/分钟,旋涂时间30s。
6)将涂覆有湿银胶膜的VO2薄膜进行烘干,随后在空气下进行250℃热处理1h定型成膜,即得到所需的Ag/VO2复合薄膜。
利用本发明方法制备的Ag/VO2复合薄膜具有如下优点:
本发明开发了一种具有激光防护性能的Ag/VO2复合薄膜的制备方法。基于表面等离激元共振技术在VO2薄膜表面制备一层银纳米线(AgNW)或银纳米颗粒(AgNP)结构层,有效地提升了薄膜的激光防护性能。同传统的纯VO2激光防护薄膜相比,这种薄膜具有更低的激光可透过率以及更高的耐激光损伤阈值。该工艺可以有效提高薄膜对激光的响应度以及耐激光辐射能力,其制备过程简单可控,不需要昂贵的设备,同时对VO2薄膜的尺寸、形貌无特殊要求,为VO2基激光防护薄膜提供了一种高效率、短周期、可工业化实施的新技术。
1.在激光辐射下,银纳米结构层的光热效应会产生大量热能,从而使VO2薄膜的表面温度更快升至相变温度,缩短薄膜的相变响应时间,弥补薄膜自身的热滞效应缺陷。
2.在银纳米结构层的强散射作用下,激光束在VO2薄膜内的传播长度被大大增加,使激光辐照下的薄膜表面温度场更加均匀,利于VO2薄膜快速向金属态转变。
3.银纳米结构层与基层VO2薄膜具有良好的结合性和兼容性,在不影响VO2薄膜固有性能的前提下,可以大幅降低该Ag/VO2复合薄膜的激光可透过率,同时大幅提升薄膜的耐激光损伤阈值。
4.制备工艺简单,无需昂贵的设备,可方便实现大面积制备及批量化生产。
附图说明
图1为实施例1中制备的AgNW/VO2复合薄膜的SEM图;
图2为不同脉冲激光能量入射下探测到的VO2薄膜及AgNW/VO2复合薄膜的激光可透过率变化曲线;
图3为实施例2中制备的AgNP/VO2复合薄膜的SEM图;
图4为不同脉冲激光能量入射下探测到的VO2薄膜及AgNP/VO2复合薄膜的激光可透过率变化曲线。
具体实施方式
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
1)以金属钒靶作为溅射源,在氩气条件下在洁净石英衬底上溅射100nm厚的金属钒膜,衬底温度保持在200℃;
2)将一端敞口的管式退火炉进行升温,到500℃时进行保温,从炉管的非敞口端通入氮气,氮气流量保持在2L/min;
3)将制备的金属钒膜放入石英坩埚中,之后将坩埚推入上述管式退火炉中进行退火,退火时间为10min,到时后拉出坩埚进行快速空气下冷却。得到所需的VO2薄膜。
4)以AgNO3为银源,乙二醇为还原剂,聚乙烯吡咯烷酮为稳定剂和分散剂,HCl为成核控制剂,利用化学还原反应得到银纳米线,将产物离心分离并分散到乙醇中,得到浓度为0.5%的银纳米线分散液。
5)利用旋涂仪将上述银纳米线分散液均匀涂覆于VO2薄膜表面,具体参数为先进行低速旋涂,速度为400转/分钟,旋涂时间5s,再经高速旋涂,速度为2000转/分钟,旋涂时间30s。
6)将涂覆有湿银胶膜的VO2薄膜进行烘干,随后在空气下进行250℃热处理1h定型成膜,即得到所需的AgNW/VO2复合薄膜。
图1给出了AgNW/VO2复合薄膜的SEM照片,可以看到在VO2多晶薄膜表面覆盖着一层较薄的银纳米线结构层,银纳米线的长度在5μm左右,具有较高的长径比和均匀性。紫外-可见吸收光谱的测试结果表明该银纳米线层具有良好的表面等离激元共振吸收特性。在脉冲激光辐射下,进一步对薄膜的透过率进行比较可以发现,AgNW/VO2复合薄膜在不同脉冲能量下的激光可透过率均低于单一的VO2薄膜,最低可达5%,如图2所示。这说明经过Ag纳米线复合的VO2薄膜可以有效降低VO2薄膜的激光可透过率。进一步的相关测试还发现薄膜的耐激光损伤阈值也有了明显的提升,这种激光限幅性能的增强可能是由于Ag的表面等离激元共振效应导致的。
实施例2
1)以金属钒靶作为溅射源,在氩气条件下在洁净石英衬底上溅射100nm厚的金属钒膜,衬底温度保持在200℃;
2)将一端敞口的管式退火炉进行升温,到500℃时进行保温,从炉管的非敞口端通入氮气,氮气流量保持在2L/min;
3)将制备的金属钒膜放入石英坩埚中,之后将坩埚推入上述管式退火炉中进行退火,退火时间为10min,到时后拉出坩埚进行快速空气下冷却。得到所需的VO2薄膜。
4)以AgNO3为银源,乙二醇为还原剂,聚乙烯吡咯烷酮为稳定剂和分散剂,利用化学还原反应得到银纳米颗粒,将产物离心分离并分散到乙醇中,得到浓度为0.5%的银纳米颗粒分散液。
5)利用旋涂仪将上述银纳米颗粒分散液均匀涂覆于VO2薄膜表面,具体参数为先进行低速旋涂,速度为400转/分钟,旋涂时间5s,再经高速旋涂,速度为2000转/分钟,旋涂时间30s。
6)将涂覆有湿银胶膜的VO2薄膜进行烘干,随后在空气下进行250℃热处理1h定型成膜,即得到所需的AgNP/VO2复合薄膜。
图3给出了AgNP/VO2复合薄膜的SEM照片,可以看到在VO2多晶薄膜表面覆盖着一层较薄的银纳米颗粒结构层,银纳米颗粒的直径在几十至几百纳米左右,呈岛状随机分布。紫外-可见吸收光谱的测试结果表明该银纳米颗粒层具有良好的表面等离激元共振吸收特性。在脉冲激光辐射下,进一步对薄膜的透过率进行比较可以发现,AgNP/VO2复合薄膜在不同脉冲能量下的激光可透过率均低于单一的VO2薄膜,最低可达5%,如图4所示。这说明经过Ag纳米颗粒复合的VO2薄膜可以有效降低VO2薄膜的激光可透过率。进一步的相关测试还发现薄膜的耐激光损伤阈值也有了明显的提升,这种激光限幅性能的增强可能是由于Ag的表面等离激元共振效应导致的。

Claims (1)

1.一种具有激光防护性能的Ag/VO2复合薄膜的制备方法,其特征在于该工艺包括下述步骤:
1)以金属钒靶作为溅射源,在氩气条件下在洁净石英衬底上溅射100nm厚的金属钒膜,衬底温度保持在200℃;
2)将一端敞口的管式退火炉进行升温,到500℃时进行保温,从炉管的非敞口端通入氮气,氮气流量保持在2L/min;
3)将制备的金属钒膜放入石英坩埚中,之后将坩埚推入上述管式退火炉中进行退火,退火时间为10min,到时后拉出坩埚进行快速空气下冷却。得到所需的VO2薄膜;
4)以AgNO3为银源,乙二醇为还原剂,聚乙烯吡咯烷酮为稳定剂和分散剂,利用化学还原反应得到银纳米线或银纳米颗粒产物,随后将产物离心分离并分散到乙醇中,得到浓度为0.5%的银纳米线或银纳米颗粒分散液;
5)利用旋涂仪将上述银纳米线或银纳米颗粒分散液均匀涂覆于VO2薄膜表面,具体参数为先进行低速旋涂,速度为400转/分钟,旋涂时间5s,再进行高速旋涂,速度为2000转/分钟,旋涂时间30s;
6)将涂覆有湿银胶膜的VO2薄膜进行烘干,随后在空气下进行250℃热处理1h定型成膜,即得到所需的Ag/VO2复合薄膜。
CN201710454298.7A 2017-06-14 2017-06-14 一种具有激光防护性能的Ag/VO2复合薄膜的制备方法 Active CN107177823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710454298.7A CN107177823B (zh) 2017-06-14 2017-06-14 一种具有激光防护性能的Ag/VO2复合薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710454298.7A CN107177823B (zh) 2017-06-14 2017-06-14 一种具有激光防护性能的Ag/VO2复合薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN107177823A true CN107177823A (zh) 2017-09-19
CN107177823B CN107177823B (zh) 2019-07-23

Family

ID=59836789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710454298.7A Active CN107177823B (zh) 2017-06-14 2017-06-14 一种具有激光防护性能的Ag/VO2复合薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN107177823B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107858649A (zh) * 2017-11-17 2018-03-30 天津大学 一种可提高vo2薄膜太阳光调控效率的制备方法
CN107988581A (zh) * 2017-11-06 2018-05-04 天津大学 一种二氧化硅纳米球阵列-vo2薄膜复合结构制备方法
CN108445567A (zh) * 2018-03-30 2018-08-24 苏州沛斯仁光电科技有限公司 一种高损伤阈值的高反膜及制备方法
CN108594627A (zh) * 2018-05-29 2018-09-28 华中科技大学 一种功能光学器件的延迟时间的获取方法
CN108950492A (zh) * 2018-07-06 2018-12-07 中国航发北京航空材料研究院 一种具有光限幅性能的vo2复合薄膜的制备方法
CN111991141A (zh) * 2020-09-17 2020-11-27 中国人民解放军陆军军医大学第一附属医院 一种多功能野外训练用防护眼镜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219739A (ja) * 2005-02-14 2006-08-24 Hitachi Cable Ltd 金属酸化膜形成方法
CN104228208A (zh) * 2014-09-26 2014-12-24 中国科学院合肥物质科学研究院 银纳米线-m相二氧化钒纳米颗粒复合薄膜及其制备方法
CN105734504A (zh) * 2016-03-21 2016-07-06 电子科技大学 一种掺银氧化钒热敏薄膜材料及其制备方法
CN106048532A (zh) * 2016-06-17 2016-10-26 中国航空工业集团公司北京航空材料研究院 一种二氧化钒纳米颗粒膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219739A (ja) * 2005-02-14 2006-08-24 Hitachi Cable Ltd 金属酸化膜形成方法
CN104228208A (zh) * 2014-09-26 2014-12-24 中国科学院合肥物质科学研究院 银纳米线-m相二氧化钒纳米颗粒复合薄膜及其制备方法
CN105734504A (zh) * 2016-03-21 2016-07-06 电子科技大学 一种掺银氧化钒热敏薄膜材料及其制备方法
CN106048532A (zh) * 2016-06-17 2016-10-26 中国航空工业集团公司北京航空材料研究院 一种二氧化钒纳米颗粒膜的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107988581A (zh) * 2017-11-06 2018-05-04 天津大学 一种二氧化硅纳米球阵列-vo2薄膜复合结构制备方法
CN107858649A (zh) * 2017-11-17 2018-03-30 天津大学 一种可提高vo2薄膜太阳光调控效率的制备方法
CN108445567A (zh) * 2018-03-30 2018-08-24 苏州沛斯仁光电科技有限公司 一种高损伤阈值的高反膜及制备方法
CN108594627A (zh) * 2018-05-29 2018-09-28 华中科技大学 一种功能光学器件的延迟时间的获取方法
CN108950492A (zh) * 2018-07-06 2018-12-07 中国航发北京航空材料研究院 一种具有光限幅性能的vo2复合薄膜的制备方法
CN108950492B (zh) * 2018-07-06 2020-06-09 中国航发北京航空材料研究院 一种具有光限幅性能的vo2复合薄膜的制备方法
CN111991141A (zh) * 2020-09-17 2020-11-27 中国人民解放军陆军军医大学第一附属医院 一种多功能野外训练用防护眼镜

Also Published As

Publication number Publication date
CN107177823B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN107177823B (zh) 一种具有激光防护性能的Ag/VO2复合薄膜的制备方法
Chen et al. Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water
Krstulović et al. Parameters optimization for synthesis of Al-doped ZnO nanoparticles by laser ablation in water
Jalil et al. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices
CN108895690B (zh) 一种硅基半导体-金属纳米复合材料及其制备方法
Noč et al. Review of the spectrally selective (CSP) absorber coatings, suitable for use in SHIP
CN103887073A (zh) 一种基于表面等离子体增强原理的太阳能电池及其制备方法
Tian et al. Coupling of plasmon and 3D antireflection quasi-photonic crystal structure for enhancement infrared absorption
Cai et al. Nonlinear optical and optical limiting properties of ultra-long gold nanowires
Zhou et al. Reducing transition temperature and diluting brown-yellow color of VO2 films via embedding Ag particles periodic arrays
Eskandari et al. One-step fabrication of Au@ Al2O3 core-shell nanoparticles by continuous-wave fiber laser ablation of thin gold layer on aluminum surface: Structural and optical properties
Huang et al. Uniformity control of laser-induced periodic surface structures
Chen et al. Weakening heat accumulation behavior caused by femtosecond pulses for high-performance antireflection micro-nano porous structures
Jin et al. The influence of AZO films on morphology and surface plasmon resonance properties of Ag particles
Kuriakose et al. Modulation of nonlinear optical properties in CdS based core shell nanocolloids fostered by metal nanoparticles
CN108950492A (zh) 一种具有光限幅性能的vo2复合薄膜的制备方法
Koleva et al. Laser-assisted approach for synthesis of plasmonic Ag/ZnO nanostructures
Ruffino et al. Size-selected Au nanoparticles on FTO substrate: Controlled synthesis by the Rayleigh-Taylor instability and optical properties
Sarkar et al. Plasmonic enhanced optical characteristics of Ag nanostructured ZnO thin films
Ma et al. Determining femtosecond laser fluence for surface engineering of transparent conductive thin films by single shot irradiation
Ruffino et al. Metal nanostructures with complex surface morphology: The case of supported lumpy Pd and Pt nanoparticles produced by laser processing of metal films
Hasaneen et al. Effect of copper and silver as a middle layer on the structural, electrical, photocatalytic, and optical properties of ZnS/metal/ZnS films for optoelectronics applications
Mondal et al. Nanosecond laser–assisted tuning of the plasmon band of triangular-shaped Ag nanostructures and development of a broadband visible-near infrared light absorber
Qin et al. Multiexciton dynamics in CsPbBr3 nanocrystals: the dependence on pump fluence and temperature
Shukla et al. Investigations on effect of laser-induced self-assembled patterning on optical properties of flexible polyimide substrates for solar cell applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant