CN105702575A - 半导体器件制造方法 - Google Patents

半导体器件制造方法 Download PDF

Info

Publication number
CN105702575A
CN105702575A CN201410685729.7A CN201410685729A CN105702575A CN 105702575 A CN105702575 A CN 105702575A CN 201410685729 A CN201410685729 A CN 201410685729A CN 105702575 A CN105702575 A CN 105702575A
Authority
CN
China
Prior art keywords
silicon nitride
nitrogen
cavity
tensile stress
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410685729.7A
Other languages
English (en)
Inventor
王桂磊
刘金彪
李俊峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201410685729.7A priority Critical patent/CN105702575A/zh
Priority to US14/662,963 priority patent/US9418835B2/en
Publication of CN105702575A publication Critical patent/CN105702575A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供了一种半导体制造方法,用于制备张应力氮化硅,其包括:步骤c1,通入氨气和氮气并预稳定;步骤c2,通入硅烷;步骤c3,射频点火;步骤c4,沉积氮化硅;步骤c5,氮离子注入处理氮化硅。本发明采用氮离子注入轰击的方式来增强SiN薄膜中N的含量从而提高薄膜密度,提高了张应力氮化硅的抗酸性,使其能适用于集成在双应变衬层后栅工艺中,有效提高了器件的性能和可靠性。

Description

半导体器件制造方法
技术领域
本发明涉及半导体器件制造方法领域,特别地,涉及一种具有张应力的应变氮化硅的制造方法。
背景技术
在当前的半导体器件领域,仅通过缩减特征尺寸来降低成本的方法已经遇到了瓶颈。特别是当特征尺寸降至150nm以下时,半导体器件的很多物理参数不能按比例变化,例如硅禁带宽度Eg、费米势界面态及氧化层电荷Qox、热电势Vt以及pn结自建势等等,这些参数将影响按比例缩小的器件性能。若试图使得器件仍然能保持良好的性能,则载流子迁移率增强技术对于CMOS等比例缩小是至关重要的。其中,应变硅技术通过增大载流子迁移率而提高了器件的开关速度,这成为当前研究的一个热点。
为了进一步改进器件性能,人们通过不同的工艺方案将应变引入MOSFET的沟道区,用来提高载流子的迁移率。例如,在晶面为(100)的晶片上,沟道区晶向为<110>,在PMOS中沿着纵轴方向(沿源漏方向)的应力需要为压应力,沿着横轴方向的应力需要为张力;而在NMOS中沿着纵轴方向的应力需要为张应力,而沿着横轴方向的应力为压力。近期,在高性能逻辑器件中,广泛采用了平面共轴工艺应变硅。已研发了通过在器件结构上淀积不同应力类型的氮化物盖层(CESLSiN:contactetchstoplayer,接触刻蚀阻挡层)来引入沟道应变,例如在NMOS器件中覆盖张应力SiN从而诱发沟道应变来提高NMOS载流子迁移率。同样地,可以在PMOS器件结构上形成压应力氮化物盖层以增大PMOS载流子迁移率。对于NMOS而言,通过氮化硅薄膜由上述工艺诱导得到了高达约1.4GPa的张应力,而对于PMOS而言,则产生了高达约3.0GPa的压应力。
以上所介绍的双应变衬层集成工艺不仅需要高的氮化硅应变,而且,更值得注意的是,当使用后栅工艺时,需要氮化硅薄膜具有良好的致密性以及抗腐蚀性。例如,在高介电常数和金属栅工艺(HKMG,High-kandMetalGate)集成中,去除虚设栅极及其垫氧化层时,腐蚀所用的稀释氢氟酸(dHF)会使得暴露在外的应变层具有较大的、乃至不可接受的损伤,从而严重影响器件的性能。采用dHF腐蚀剂时(浓度(与水的体积比)1:100,温度23℃),热氧化物(栅氧化物)的腐蚀速率为压应力氮化硅的腐蚀速率为 而张应力氮化硅的腐蚀速率为由此可见,在同样的腐蚀条件下,常规方法淀积的张应力氮化硅在dHF中刻蚀速率明显快于压应力氮化硅以及热氧化物,这样,为了适应上述的腐蚀工艺,在后栅工艺的双应变衬层中就难以集成采用常规方法淀积的张应力氮化硅。
因此,需要提供一种新的具有张应力的应变氮化硅制造方法,使制备获得的张应力氮化硅适应工艺的要求。
发明内容
本发明提出了一种张应力氮化硅制造方法,通过氮离子注入的处理,使获得的张应力氮化硅能够适应当前半导体工艺的要求。
本发明提供了一种半导体器件制造方法,用于制备具有张应力的氮化硅,包括:
步骤c1,在沉积设备腔体内通入氨气和氮气,并预稳定,使所述腔体内部气体扩散均匀、压力稳定;
步骤c2,向所述腔体内通入硅烷;
步骤c3,射频点火;
步骤c4,在上述步骤c1-c3顺序执行的基础上,在晶片上沉积具有张应力的氮化硅,步骤c1-c4的顺序执行即为一个沉积循环;
步骤c5,采用氮离子注入工艺处理所述氮化硅。
根据本发明的一个方面,步骤c1中,氨气流量为80sccm,氮气流量为4000sccm。
根据本发明的一个方面,步骤c2中,硅烷流量为20sccm。
根据本发明的一个方面,步骤c3中,在保持步骤c1和步骤c2中气体流量的同时,开启射频,设定功率为40W,时间为5s。
根据本发明的一个方面,步骤c4的时间设定为1.5s,使得晶片上沉积的所述氮化硅的厚度为
根据本发明的一个方面,步骤c1至步骤c4执行过程中,所述沉积设备腔体内压力稳定控制在6T。
根据本发明的一个方面,步骤c5具体为下列方法(1)或者方法(2)或者方法(1)和(2)的结合:(1)在同一所述沉积设备腔体内,关闭氨气和硅烷的阀门,保持氮气的阀门开启,持续通入4000sccm的氮气,开启RF功率为40W,激发氮等离子体轰击所述氮化硅的表面;(2)将沉积了氮化硅的晶片传送进入低能离子注入腔,再将氮离子注入到所述氮化硅中。
根据本发明的一个方面,循环多次执行步骤c1至步骤c5,其中,在每次所述沉积循环之后,均执行步骤c5;或者,循环多次执行步骤c1至步骤c5,其中,在所选的某次或某些次所述沉积循环之后,才执行步骤c5。
根据本发明的一个方面,步骤c1之前进一步包括:步骤a,清洁以及调适所述沉积设备腔体,耗时120s;步骤b,装载所述晶片,耗时5s;其中,所述沉积设备为双频容性耦合等离子体平行板式PECVD设备,所述沉积设备腔体内本底真空度小于等于30mT。
本发明的优点在于:采用氮离子注入处理沉积获得的氮化硅,减小了张应力氮化硅在dHF中的腐蚀速率,使其抗酸性显著提高,有利于集成至双应力衬层的工艺,提高了器件的可靠性。同时,由于氮气离子注入轰击氮化硅薄膜,使得氮化硅的张应力提高,促进了载流子迁移率进一步提升,提高了器件的性能。
附图说明
图1本发明方法的流程示意图
具体实施方式
以下,通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
本发明提供一种半导体器件制造方法,具体而言,涉及一种张应力氮化硅制造方法。下面,参见附图1,将详细描述本发明提供的半导体器件制造方法。
在本发明的一个实施例中,沉积张应力氮化硅薄膜的方法是采用PECVD工艺,采用的设备是双频容性耦合等离子体平行板式PECVD设备和低能离子注入设备。除此之外,本发明的其他实施例也可以采用其他等离子体设备和沉积方法,离子注入轰击方法例如PECVD(不同的板式或者不同的耦合方式)、HDPCVD、PEALD等设备,只要方法中包含了本发明所述的氮离子注入轰击的步骤即可。
在本发明一个实施例中,PECVD淀积SiN设备腔体中温度控制在约200~550℃,并优选为400℃,射频(RF)低频控制为106~188KHz,并优选为158KHz,高频控制为13.56MHz。设备腔体采用分子泵、离子泵等设备抽真空,本底的理想值接近于0(腔内本底气压约为0),而实际中依照抽真空设备的能力,优选地使得本底真空度小于等于30mT。氮离子注入过程包含在PECVD设备同一腔体里持续通入氮气,开启射频RF,激发氮等离子体轰击注入氮进入该氮化硅薄膜里(等离子体注入),或者将晶圆传送到低能注入机腔体,在N2氛围里使用低能量将一定剂量的N注入到SiN薄膜中,提高SIN薄膜的含N量和致密性,或者先在PECVD设备中等离子体注入后再到注入机进行氮离子注入,实际中依照抽真空设备的能力,优选地使得本底真空度小于等于10-5T,使用能量小于等于5KeV。
图1所示为依照本发明一个实施例的工艺方法流程图,值得注意的是,图中所示各个步骤除了“沉积”和“氮离子注入”步骤是必须的之外,其余各个步骤均是优选的,并且这些步骤之间的先后顺序以及重复次数也可以是可以根据工艺需求来进行调整的。
步骤a,清洁以及调适(season)腔体。通入氮气或者氩气等惰性气体,并可加入含氟的化合物,例如碳氟基气体,如CF4、CH2F2、CH3F、CHF3、XeF等,以增强清洁能力,吹扫腔体,去除腔体内以及腔体壁上残留的前次反应产物。通入清洁气体之后,可以适当提高温度以促进清洁能力,优选地,将温度保持一定时间以调适腔体,使得腔体内部各处达到均衡,例如温度、压力等参数分布均匀。步骤a的持续时间例如为约120s。
步骤b,装载晶片。打开设备腔室的门,操纵机械手或其他夹持装置,将单个晶片或者多个晶片(平行放置在晶片盒或类似固定装置中)传送至腔体中并且固定。步骤b的持续时间约为5s。
步骤c1,在沉积设备腔体内通入氨气和氮气,并预稳定,使所述腔体内部气体扩散均匀、压力稳定。打开第一阀门,通入作为氮元素来源的第一反应气体,以及打开第三阀门通入氮气(N2)。在本发明一个实施例中,第一反应气体是氨气(NH3)。通入N2和NH3气体的时间约为10s。N2与NH3气体流量分别是:约80sccm的N2以及约4000sccm的NH3。在反应腔室中,并不立即通入硅元素来源的第二气体,而是使N2和NH3保持一段时间,使得第一反应气体NH3以及N2在腔体内扩散均匀化,使得腔体内的压力稳定,优选地保持在约6T。
步骤c2,通入第二反应气体,也即向腔体内通入硅烷。在保持步骤c1的通入第一气体氨气以及氮气的流量的同时,打开第二阀门,通入作为硅元素来源的第二反应气体,例如是硅烷(SiH4)。第二气体的流量约为20sccm,时间例如是5s,并使得腔体内压力稳定保持在与步骤c1相同的数值,例如为6T。
步骤c3,射频(RF)点火。在保持步骤c1和c2的反应气体的流量以及使得腔体内压力稳定保持在6T的同时,激发射频,开启高频RF,设定功率为40W,时间为5s。
步骤c4,在上述步骤c1-c3顺序执行的基础上,在晶片上沉积具有张应力的氮化硅。在保持步骤c1~c3的条件下进行步骤c4的张应力氮化硅薄膜的沉积,步骤c4的时间设定为1.5s,使得晶片上沉积的氮化硅的薄膜厚度约为此时腔内压力仍稳定保持在约6T。步骤c1-c4的顺序执行即为一个沉积循环(cycle),沉积循环内,腔体内压力保持稳定,为约6T。
步骤c5,采用氮离子注入工艺处理氮化硅。在本发明的一个实施例中,在PECVD中进行过程:关闭NH3和SiH4原料气的第一和第二阀门,保持N2的第三阀门开启,持续通入4000sccm的氮气,开启高频RF40W,激发氮等离子体轰击由步骤c4形成的氮化硅薄膜表面。在本发明的另一个可选的实施例中,可以将沉积了氮化硅的晶片传送进入低能离子注入腔,通过低能离子注入腔将氮离子注入到SiN薄膜里。该低能离子注入腔体可以通过平板电场将工艺气体(本实施例中即为N2)电离为离子(本实施例中即为N+),然后离子在加速电场的作用下均匀注入到样品(本实施例中即为沉积了氮化硅的晶片)中,注入的能量在0.1~5KeV之间,注入剂量在1E13~1E17之间。腔体四周配置有多个石墨法拉第杯用于注入剂量的检测和监控。以上两种方法均可以增强氮化硅中氮的含量从而提高薄膜密度,提高了张应力氮化硅的抗酸性和耐腐蚀性,使其能适用于集成在双应变衬层后栅工艺中,有效提高了器件的性能和可靠性。可选地,以上两种方法结合在一起使用。
优选地,在进行完步骤a和步骤b后,循环地重复执行步骤c1至步骤c5,以使得氮化硅薄膜达到所需厚度。在本发明一个实施例中,步骤c1至步骤c5的循环执行次数为1-20次,优选为20次。值得注意的是,步骤c5的氮离子注入可以是任意次数,例如可以在每个沉积循环的步骤c4之后均执行步骤c5以获得最佳效果,但是,也可以仅在所选的某次或者某些次沉积循环的步骤c4之后才执行步骤c5,诸如仅在最初以及最后几个沉积循环(例如前5个或者后5个)中才在步骤c4之后执行步骤c5,如此使得氮化硅薄膜整体的至少表层提高了抗酸性。但是,优选地,为了使得张应力氮化硅的抗酸性最优化,在每个沉积循环的步骤c4之后均执行步骤c5,使得每层氮化硅子层均提高了抗酸性。
步骤d,结束。经历了所需的多次循环之后,取出晶片,完成整个氮化硅沉积工艺。
通过本发明制备的张应力氮化硅,在dHF中的腐蚀速率相比常规张应力氮化硅有显著下降。采用dHF腐蚀剂时(浓度(与水的体积比)1:100,温度23℃),常规张应力氮化硅的腐蚀速率为而本发明制备的张应力氮化硅的腐蚀速率可以达到
由此可见,氮离子注入处理减小了张应力氮化硅在dHF中的腐蚀速率,使其抗酸性显著提高,有利于集成至双应力衬层的工艺,提高了器件的可靠性。除此之外,由于氮离子注入轰击氮化硅薄膜,进一步使得氮化硅层的应力提高,使得最终形成的氮化硅薄膜的应力从未经处理的900MPa提升至经过处理之后的1200MPa,提高了张应力,促进了载流子迁移率进一步提升,提高了器件的性能。
依照本发明的张应力氮化硅制造方法,采用氮离子注入来增强氮化硅薄膜中氮的含量从而提高薄膜密度,提高了张应力氮化硅的抗酸性,使其能适用于集成在双应变衬层后栅工艺中,有效提高了器件的性能和可靠性。
尽管已参照一个或多个示例性实施例说明本发明,本领域技术人员可以知晓无需脱离本发明范围而对器件结构和/或工艺流程做出各种合适的改变和等价方式。此外,由所公开的教导可做出许多可能适于特定情形或材料的修改而不脱离本发明范围。因此,本发明的目的不在于限定在作为用于实现本发明的最佳实施方式而公开的特定实施例,而所公开的器件结构及其制造方法将包括落入本发明范围内的所有实施例。

Claims (10)

1.一种半导体器件制造方法,用于制备具有张应力的氮化硅,其特征在于包括如下步骤:
步骤c1,在沉积设备腔体内通入氨气和氮气,并预稳定,使所述腔体内部气体扩散均匀、压力稳定;
步骤c2,向所述腔体内通入硅烷;
步骤c3,射频点火;
步骤c4,在上述步骤c1-c3顺序执行的基础上,在晶片上沉积具有张应力的氮化硅,步骤c1-c4的顺序执行即为一个沉积循环;
步骤c5,采用氮离子注入工艺处理所述氮化硅。
2.根据权利要求1所述的方法,其特征在于,步骤c1中,氨气流量为80sccm,氮气流量为4000sccm。
3.根据权利要求1所述的方法,其特征在于,步骤c2中,硅烷流量为20sccm。
4.根据权利要求1所述的方法,其特征在于,步骤c3中,在保持步骤c1和步骤c2中气体流量的同时,开启射频,设定功率为40W,时间为5s。
5.根据权利要求1所述的方法,其特征在于,步骤c4的时间设定为1.5s,使得晶片上沉积的所述氮化硅的厚度为
6.根据权利要求1所述的方法,其特征在于,步骤c1至步骤c4执行过程中,所述沉积设备腔体内压力稳定控制在6T。
7.根据权利要求1所述的方法,其特征在于,步骤c5具体为下列方法(1)或者方法(2)或者方法(1)和(2)的结合:(1)在同一所述沉积设备腔体内,关闭氨气和硅烷的阀门,保持氮气的阀门开启,持续通入4000sccm的氮气,开启RF功率为40W,激发氮等离子体轰击所述氮化硅的表面;(2)将沉积了氮化硅的晶片传送进入低能离子注入腔,再将氮离子注入到所述氮化硅中。
8.根据权利要求1-7任一项所述的方法,其特征在于,循环多次执行步骤c1至步骤c5,其中,在每次所述沉积循环之后,均执行步骤c5。
9.根据权利要求1-7任一项所述的方法,其特征在于,循环多次执行步骤c1至步骤c5,其中,在所选的某次或某些次所述沉积循环之后,才执行步骤c5。
10.根据权利要求1所述的方法,其特征在于,步骤c1之前进一步包括:步骤a,清洁以及调适所述沉积设备腔体,耗时120s;步骤b,装载所述晶片,耗时5s;其中,所述沉积设备为双频容性耦合等离子体平行板式PECVD设备,所述沉积设备腔体内本底真空度小于等于30mT。
CN201410685729.7A 2014-11-25 2014-11-25 半导体器件制造方法 Pending CN105702575A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410685729.7A CN105702575A (zh) 2014-11-25 2014-11-25 半导体器件制造方法
US14/662,963 US9418835B2 (en) 2014-11-25 2015-03-19 Methods for manufacturing semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410685729.7A CN105702575A (zh) 2014-11-25 2014-11-25 半导体器件制造方法

Publications (1)

Publication Number Publication Date
CN105702575A true CN105702575A (zh) 2016-06-22

Family

ID=56010916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410685729.7A Pending CN105702575A (zh) 2014-11-25 2014-11-25 半导体器件制造方法

Country Status (2)

Country Link
US (1) US9418835B2 (zh)
CN (1) CN105702575A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109712888A (zh) * 2018-12-28 2019-05-03 张家港意发功率半导体有限公司 GaNHEMT器件及其制造方法
CN112103270A (zh) * 2020-11-10 2020-12-18 晶芯成(北京)科技有限公司 Mim电容器及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649005B (zh) * 2018-05-22 2020-10-30 山东汉旗科技有限公司 一种半导体晶圆批量刻蚀装置
CN118176563A (zh) * 2021-10-29 2024-06-11 朗姆研究公司 原子层沉积接缝减少

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85105267A (zh) * 1985-07-06 1987-01-14 中国科学院上海冶金研究所 热压成型钢模具表面的离子束处理方法
CN101088150A (zh) * 2004-11-16 2007-12-12 应用材料股份有限公司 用于半导体的拉伸及压缩应力材料
CN101527312A (zh) * 2008-03-05 2009-09-09 索尼株式会社 固体摄像装置及其制造方法
US20110115051A1 (en) * 2009-11-19 2011-05-19 Shin-Hye Kim Semiconductor devices including 3-d structures with support pad structures and related methods and systems
CN103579089A (zh) * 2012-07-31 2014-02-12 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN103839800A (zh) * 2012-11-20 2014-06-04 中国科学院微电子研究所 氮化硅制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85105267A (zh) * 1985-07-06 1987-01-14 中国科学院上海冶金研究所 热压成型钢模具表面的离子束处理方法
CN101088150A (zh) * 2004-11-16 2007-12-12 应用材料股份有限公司 用于半导体的拉伸及压缩应力材料
CN101527312A (zh) * 2008-03-05 2009-09-09 索尼株式会社 固体摄像装置及其制造方法
US20110115051A1 (en) * 2009-11-19 2011-05-19 Shin-Hye Kim Semiconductor devices including 3-d structures with support pad structures and related methods and systems
CN103579089A (zh) * 2012-07-31 2014-02-12 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN103839800A (zh) * 2012-11-20 2014-06-04 中国科学院微电子研究所 氮化硅制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109712888A (zh) * 2018-12-28 2019-05-03 张家港意发功率半导体有限公司 GaNHEMT器件及其制造方法
CN112103270A (zh) * 2020-11-10 2020-12-18 晶芯成(北京)科技有限公司 Mim电容器及其制造方法

Also Published As

Publication number Publication date
US20160148799A1 (en) 2016-05-26
US9418835B2 (en) 2016-08-16

Similar Documents

Publication Publication Date Title
TWI351708B (zh)
CN1757098B (zh) 利用具有氨的超低压快速热退火调节氧氮化硅的氮分布曲线
US9126229B2 (en) Deposit removal method
KR20140012727A (ko) 컨포멀한 도핑을 위한 방법들 및 장치
CN103839800A (zh) 氮化硅制造方法
WO2015050668A1 (en) Interface treatment of semiconductor surfaces with high density low energy plasma
TW200811925A (en) Plasma CVD method, method for forming silicon nitride film and method for manufacturing semiconductor device
CN105702575A (zh) 半导体器件制造方法
US7579287B2 (en) Surface treatment method, manufacturing method of semiconductor device, and manufacturing method of capacitive element
CN101620995A (zh) 栅极介质层及其制造方法、半导体器件及其制造方法
CN102142369A (zh) 一种改善SiC器件性能的方法
CN102203912B (zh) 改善p3i腔室中共形掺杂的方法
KR20040048483A (ko) 반도체소자의 게이트 산화막 형성방법
CN110211870B (zh) 晶圆减薄方法
KR20140135115A (ko) 수소 플라즈마를 사용하여 반도체 상에 계면층을 형성하는 방법
CN105070646B (zh) 一种低应力氮化硅薄膜的制备方法
CN104599961A (zh) 一种降低氮氧化硅薄膜表面电荷的方法
KR20180032153A (ko) 플라스마 처리 방법
JP2009164519A (ja) 低温ポリシリコン用保護膜の成膜方法、低温ポリシリコン用保護膜の成膜装置および低温ポリシリコンtft
US20150064925A1 (en) Deposit removing method and gas processing apparatus
JP5642427B2 (ja) プラズマ処理方法
CN106098611B (zh) 基于氮化硅应力薄膜与尺度效应的晶圆级单轴应变sgoi的制作方法
JP2016058643A (ja) プラズマエッチング方法
CN107331602A (zh) 一种金刚石材料表面空穴浓度提高方法
CN112233977A (zh) 一种改善晶格损伤的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160622

RJ01 Rejection of invention patent application after publication