CN105664929B - 一种含有贵金属的纳米片及其制备方法 - Google Patents

一种含有贵金属的纳米片及其制备方法 Download PDF

Info

Publication number
CN105664929B
CN105664929B CN201610033086.7A CN201610033086A CN105664929B CN 105664929 B CN105664929 B CN 105664929B CN 201610033086 A CN201610033086 A CN 201610033086A CN 105664929 B CN105664929 B CN 105664929B
Authority
CN
China
Prior art keywords
noble metal
nanometer
nanometer sheets
solution
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610033086.7A
Other languages
English (en)
Other versions
CN105664929A (zh
Inventor
吴棱
宋玉洁
熊锦华
刘玉豪
罗水广
梁诗景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201610033086.7A priority Critical patent/CN105664929B/zh
Publication of CN105664929A publication Critical patent/CN105664929A/zh
Application granted granted Critical
Publication of CN105664929B publication Critical patent/CN105664929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • B01J35/39
    • B01J35/396
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/511Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups
    • C07C45/512Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups the singly bound functional group being a free hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开了一种含有贵金属的纳米片及其应用,属于催化材料的制备领域。M@H1.07Ti1.73O4•H2O纳米片是以H1.07Ti1.73O4•H2O纳米片为载体,通过光沉积还原法将Au、Pd、Pt等金属纳米颗粒负载于超薄的H1.07Ti1.73O4•H2O单分子层纳米片表面构成的纳米复合材料。该复合材料在光解水制氢方面表现出高效的性能,同时将其作为光催化剂用于光诱导下苯酚羟化反应制备环己酮,解决了高温高压下苯酚加氢制备环己酮的能耗大、选择性低、成本高等问题。本发明工艺简单,环保绿色,选择性高,能耗低,成本小,符合实际生产需要,具有较大的应用潜力。

Description

一种含有贵金属的纳米片及其制备方法
技术领域
本发明属于催化技术领域,具体涉及到一种贵金属@H1.07Ti1.73O4•H2O纳米片及其应用。
背景技术
环己酮是一种重要的有机化工产品,具有高溶解性和低挥发性,可以作为特种溶剂,对聚合物如硝化棉及纤维素等是一种理想的溶剂;也是重要的有机化工原料,是制备尼龙、己内酰胺和己二酸的主要中间体。随着社会现代化发展的需要环己酮的用途不断扩大,特别是作为一种高档的有机溶剂,在涂料、油墨、胶粘剂等行业被广泛应用,形成了较大的商品市场。目前常用于生产环己酮的方法有苯酚加氢法,环己烯水合法以及环己烷氧化法。然而这些制备环己酮的方法中存在着能耗高,成本大,副产物多,步骤繁杂,反应速率慢,污染大,效率低等问题。因此为了解决这些缺点以满足社会发展进步的需要和经济环境的要求,开发清洁、环保、高效的环己酮生产方法具有非常重大的意义。如何实现这一要求引起各国科研工作者们的广泛关注。到目前为止,很多苯酚液相和气相加氢条件下催化苯酚羟化反应制备环己酮的催化剂被开发出来,特别是负载金属纳米颗粒的无机材料,它们为促进苯酚的羟化制备环己酮提供了新思路和方法。然而这些催化剂大多都需要在加热,高压或者多相溶剂才能实现。此外,贵金属纳米粒子的均匀分散,以及粒径的大小对催化剂的催化活性都将产生影响。如果能使金属纳米粒子均匀分散在材料表面,并且催化剂能在常温常压等温和的条件下实现苯酚羟化制备环己酮的高效的转化,将有利于不可再生能源的节约和环境污染的降低。
而在近几十年来人们对于清洁能源的探索从未停止,光解水制氢作为一种利用太阳能制备清洁能源的方法一直是人们研究的热点,光催化剂的研究是最重要的研究热点之一,到目前为止已经有很多光催化剂被开发出来,其中二维材料由于其本身的独特结构成为今年研究的热点之一。
无机二维(2D)片状纳米材料是一类分子或原子厚度并具有各向异性的片状结构,是一种纳米级的特殊材料。同时也是重要的功能材料之一,其特殊的物理化学性质使之在催化,吸附,传导等方面有着重要的应用。贵金属Au,Pd,Pt具有较好的电学传导和催化性能,在基础研究和实际应用领域具有很大的价值,将贵金属纳米颗粒均匀地分散到纳米片表面形成复合材料不仅可以保持纳米片本身的优点,而且金属纳米颗粒与纳米片形成协同作用。用光沉积还原的方式制备高分散的纳米片已经得到很多研究者的认可,将金属纳米粒子以光沉积的方式负载到纳米片的表面形成的复合材料在多相催化反应中表现出优越的性能和诱人的前景。光催化是多相催化的一种,作为一种可利用清洁可再生的太阳能来实现化学反应的具有巨大潜力的技术,它具有绿色环保,无二次污染的特点,因此受到了国内外科学家的高度关注。如果能结合二维纳米材料的特点以及金属纳米颗粒的催化性能,将光沉积制备的金属纳米颗粒高分散于纳米片的表面制备的复合材料用于光催化反应生产清洁能源和苯酚的羟化反应制备环己酮,这将为清洁能源的开发以及生产低成本的环己酮带来新希望。
发明内容
本发明的目的在于提供一种M@H1.07Ti1.73O4•H2O(M=Au,Pd, Pt)纳米片及其制备方法和应用。本发明制得的M@H1.07Ti1.73O4•H2O纳米复合材料可作为催化剂用于光催化反应,该催化剂高效,无毒,制备方法简单,选择性高,操作简单,成本低廉,具有广阔的应用前景,并且可以扩展到其他两类或更多类贵金属的共沉积负载。
为实现上述目的,本发明采用如下技术方案:
一种贵金属@H1.07Ti1.73O4•H2O纳米片:以H1.07Ti1.73O4•H2O纳米片为载体,通过光沉积还原法将贵金属纳米颗粒负载于纳米片表面上而制备的纳米复合材料;所述的贵金属为Au、Pd或Pt,贵金属的负载量为0.5~10 wt%;贵金属纳米颗粒的粒径为2-5 nm。
一种制备如上所述的贵金属@H1.07Ti1.73O4•H2O纳米片的方法:将超薄的单分子层H1.07Ti1.73O4•H2O纳米片分散于20-25 mL去离子水中,超声搅拌直至其分散均匀,在搅拌下将金属前驱体溶液逐滴加入,并继续加入甲醇溶液,通氮气0.5 h,紫外灯照射3-5 h,过滤,洗涤和烘干后,即得到贵金属@ H1.07Ti1.73O4•H2O纳米片。
所述的金属前驱体溶液为HAuCl4•4H2O溶液、Pd(NO3)2•2H2O溶液或H2PtCl6•6H2O溶液中的一种。
所述的贵金属@H1.07Ti1.73O4•H2O纳米片作为光催化反应的催化剂的应用。
所述的光催化反应为光解水制氢的反应或光诱导下常温常压羟化苯酚制备环己酮的反应。
本发明的显著优点在于:
(1)本发明制得的M@H1.07Ti1.73O4•H2O纳米复合材料可作为催化剂用于光催化反应,该催化剂高效,无毒,制备方法简单,选择性高,操作简单,成本低廉,具有广阔的应用前景;
(2)本发明的纳米复合材料作为光解水制氢的催化剂,具有高效的光催化活性和反应稳定性;
(3)以本发明的纳米复合材料作为催化剂,在光诱导、水为溶剂以及常温常压的反应条件下,即可实现苯酚羟化制备环己酮;较传统的环己酮合成方法,本发明的方法节约能耗,降低环境污染,节约成本以及选择性更高;
(4)本发明的纳米复合材料作为催化剂时,实验操作方法简单,易于操作,有利于大规模的推广使用。
附图说明
图1是本发明的催化剂Pd@H1.07Ti1.73O4•H2O和H1.07Ti1.73O4•H2O纳米片的X射线衍射(XRD)图;
图2是本发明的催化剂Pd@H1.07Ti1.73O4•H2O的透射电子显微镜(TEM)图和高分辨透射电子显微镜(HRTEM)图;
图3是本发明的以Pd@H1.07Ti1.73O4•H2O纳米片为催化剂在光诱导下催化苯酚羟化生成环己酮的转化率-时间曲线:曲线(a, b)分别是有催化剂和光照的条件下苯酚羟化转化率和环己酮的产率情况;
图4是本发明的M@H1.07Ti1.73O4•H2O(Au,Pd,Pt)纳米片的紫外-可见漫反射图;
图5是本发明扩展的M@H1.07Ti1.73O4•H2O(Au,Pd,Pt)纳米片为催化剂光解水制氢活性图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
H1.07Ti1.73O4•H2O纳米片的制备
将摩尔比为2.4:0.8:10.4的K2CO3,Li2CO3和TiO2研磨均匀后,置于刚玉坩埚中,800℃煅烧2 h,冷却至室温,再次研磨,1000 ℃煅烧20 h,重复一次;得到层状K0.80Ti1.73Li0.67O4,取10 g所得K0.80Ti1.73Li0.67O4样品加入1000 ml,1 mol/L的盐酸溶液中搅拌,每24 h换一次酸,4天后,去离子水洗涤至中性,60 ℃干燥,即为层状H1.07Ti1.73O4•H2O;将上述层状H1.07Ti1.73O4•H2O与TBAOH(四丁基氢氧化铵)(40 wt%)溶液按照摩尔比1:1混合,磁力搅拌15天,3000 rpm离心,除去未剥离的层状物,得到H1.07Ti1.73O4•H2O纳米片的溶胶,在超声条件下滴加1 mol/L的盐酸,所得絮凝物用去离子水洗涤至离子浓度小于10 ppm;60℃干燥一晚上;即为H1.07Ti1.73O4•H2O纳米片。
取H1.07Ti1.73O4•H2O纳米片0.2 g置于玻璃瓶中,加入20 ml水,10 ml甲醇和388 μL的二水合硝酸钯溶液(10 mg/mL),超声30 min分散均匀,通0.5 h氮气以排进瓶子内部空气;用300 W氙灯照射3-5 h;所得灰黑色产物,过滤得到固体,洗涤烘干,即为Pd@H1.07Ti1.73O4•H2O纳米片。
图1展示了本发明的催化剂H1.07Ti1.73O4•H2O和Pd@H1.07Ti1.73O4•H2O纳米片的X射线衍射(XRD)图,从图中可以发现制备的H1.07Ti1.73O4•H2O纳米片为纯相,在负载Pd后H1.07Ti1.73O4•H2O纳米片结构没有改变;图2展示了本发明的催化剂Pd@H1.07Ti1.73O4•H2O的透射电子显微镜(TEM)图和高分辨透射电子显微镜(HRTEM)图,从图中可以看出Pd纳米颗粒均匀分散到H1.07Ti1.73O4•H2O纳米片表面,其平均颗粒尺寸在3-5 nm。
实施例2
Pd@H1.07Ti1.73O4•H2O纳米片在光诱导下催化苯酚的羟化制备环己酮。
将制备的Pd@H1.07Ti1.73O4•H2O纳米片用作催化剂在光诱导下实现苯酚的羟化制备环己酮,称取20 mg纳米片与100 mg硅钨酸,抽真空以排尽空气,加入2 mL纯净水、10 μL苯酚,在H2条件下搅拌,然后开启光源进行光催化反应,产物使用气相色谱检测;实验使用的光源为300 W氙灯;苯酚的转化及产物的生成情况如图3所示,从图上可以看出在有催化剂时,苯胺在光照15 h后转化率达到100 %(曲线a),环己酮的产率达到99 %以上(曲线b),而在没有加催化剂或不光照或以H1.07Ti1.73O4•H2O纳米片为催化剂的条件下,苯酚的转化率非常小,且没有环己酮的产生;因此,在光的诱导下,Pd@H1.07Ti1.73O4•H2O纳米片能高效地催化苯酚的羟化制备环己酮。
实施例3
M@H1.07Ti1.73O4•H2O(Au,Pd,Pt)纳米片制备并将其作为催化剂光解水制氢。
制备方法:将H1.07Ti1.73O4•H2O纳米片分散于22 mL去离子水中,超声搅拌直至其分散均匀;在搅拌下将HAuCl4•4H2O, H2PtCl6•6H2O或 Pd(NO3)2•2H2O溶液逐滴加入溶液中,并继续加入10 mL甲醇溶液,通氮气0.5 h,紫外灯照射3-5 h,过滤,洗涤和烘干,即得到M@H1.07Ti1.73O4•H2O(M=Au,Pd,Pt)中M的负载量按1wt%的最佳量进行换算。从图4可以看出合成的催化剂具有较强的SPR的特征吸收峰。
将制备的贵金属@H1.07Ti1.73O4•H2O(Au,Pt)纳米片为催化剂光解水制氢,取80 mg催化剂加入到72 mL水中加入8 mL三乙醇胺抽真空排尽空气,然后开启光源进行光催化反应,产物使用气相色谱检测。实验使用的光源为300 W氙灯。氢气的产生速率如图5所示,从图中可以看出M@H1.07Ti1.73O4•H2O(Au,Pd,Pt)纳米片表现出高效的产氢能力。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (3)

1.一种贵金属@H1.07Ti1.73O4•H2O纳米片的应用,其特征在于:作为光催化反应的催化剂,所述的光催化反应为光诱导下常温常压羟化苯酚制备环己酮的反应;所述的纳米片是以H1.07Ti1.73O4•H2O纳米片为载体,通过光沉积还原法将贵金属纳米颗粒负载于纳米片表面上而制备的纳米复合材料;所述的贵金属为Au、Pd或Pt,贵金属的负载量为0.5~10 wt%;贵金属纳米颗粒的粒径为2-5 nm。
2.根据权利要求1所述的贵金属@H1.07Ti1.73O4•H2O纳米片的应用,其特征在于:所述的纳米片的制备方法为:将H1.07Ti1.73O4•H2O纳米片分散于20-25 mL去离子水中,超声搅拌直至其分散均匀,在搅拌下将金属前驱体溶液逐滴加入,并继续加入甲醇溶液,通氮气0.5 h,紫外灯照射3-5 h,过滤,洗涤和烘干后,即得到贵金属@ H1.07Ti1.73O4•H2O纳米片。
3.根据权利要求2所述的贵金属@H1.07Ti1.73O4•H2O纳米片的应用,其特征在于:所述的金属前驱体溶液为HAuCl4•4H2O溶液、Pd(NO3)2•2H2O溶液或H2PtCl6•6H2O溶液中的一种。
CN201610033086.7A 2016-01-19 2016-01-19 一种含有贵金属的纳米片及其制备方法 Active CN105664929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610033086.7A CN105664929B (zh) 2016-01-19 2016-01-19 一种含有贵金属的纳米片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610033086.7A CN105664929B (zh) 2016-01-19 2016-01-19 一种含有贵金属的纳米片及其制备方法

Publications (2)

Publication Number Publication Date
CN105664929A CN105664929A (zh) 2016-06-15
CN105664929B true CN105664929B (zh) 2018-07-17

Family

ID=56301448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610033086.7A Active CN105664929B (zh) 2016-01-19 2016-01-19 一种含有贵金属的纳米片及其制备方法

Country Status (1)

Country Link
CN (1) CN105664929B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106111129B (zh) * 2016-06-28 2018-09-18 福州大学 用于同时产氢和选择性氧化乙醇的光催化剂及其制备方法
CN108687341B (zh) * 2018-04-13 2020-06-23 华东理工大学 无还原剂光诱导银包金纳米材料的制备方法和应用
CN109876803A (zh) * 2019-03-26 2019-06-14 北京化工大学 光沉积贵金属/超薄Ti基LDHs催化剂及其制备方法和应用
CN110790659A (zh) * 2019-11-13 2020-02-14 江苏方时远略科技咨询有限公司 一种制备环己酮的方法
CN113751035A (zh) * 2020-06-03 2021-12-07 深圳先进技术研究院 一种复合催化剂及其制备方法
CN114345326A (zh) * 2022-01-23 2022-04-15 天津金玺科技发展有限公司 一种光解水产氢Ru单原子负载催化剂的制备方法
CN117299232B (zh) * 2023-09-26 2024-04-19 华北电力大学 一种催化二元醇合成羟基醛并耦合制氢的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120184A (zh) * 2011-01-25 2011-07-13 中国科学院山西煤炭化学研究所 一种负载贵金属二氧化钛光催化剂及制法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120184A (zh) * 2011-01-25 2011-07-13 中国科学院山西煤炭化学研究所 一种负载贵金属二氧化钛光催化剂及制法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Stoichiometric photocatalytic decomposition of pure water in Pt/TiO2 aqueous suspension system";S. Tabata等;《Catalysis Letters》;19951231;第34卷;第246页2. Experimental *
"Topotactic Growth, Selective Adsorption, and Adsorption-Driven Photocatalysis of Protonated Layered Titanate Nanosheets";Qili Wu等;《ACS Appl. Mater. Interfaces》;20140918;第6卷;第17731页右栏第2段、第17737页右栏第1段 *

Also Published As

Publication number Publication date
CN105664929A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
CN105664929B (zh) 一种含有贵金属的纳米片及其制备方法
Meng et al. Insight into the transfer mechanism of photogenerated carriers for WO3/TiO2 heterojunction photocatalysts: is it the transfer of band–band or Z-scheme? Why?
Li et al. Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO− TiO2 nanocomposites
Jia et al. Aerosol-sprayed gold/ceria photocatalyst with superior plasmonic hot electron-enabled visible-light activity
Xu et al. Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase TiO2 nanocrystals with tunable brookite/rutile ratios
Ucar et al. Catalytic degradation of organic dye using reduced graphene oxide–polyoxometalate nanocomposite
Liu et al. TiO2 nanoflakes modified with gold nanoparticles as photocatalysts with high activity and durability under near UV irradiation
Manwar et al. Ceria supported Pt/PtO-nanostructures: Efficient photocatalyst for sacrificial donor assisted hydrogen generation under visible-NIR light irradiation
CN105413712B (zh) 金纳米棒‑CdS‑金纳米粒子复合光催化剂和应用
Umer et al. Montmorillonite dispersed single wall carbon nanotubes (SWCNTs)/TiO2 heterojunction composite for enhanced dynamic photocatalytic H2 production under visible light
CN102614933B (zh) 一种贵金属银沉积-聚吡咯敏化的中空状二氧化钛纳米光催化剂及其制备方法
Umer et al. Synergistic effects of single/multi-walls carbon nanotubes in TiO2 and process optimization using response surface methodology for photo-catalytic H2 evolution
CN101619177A (zh) 一种纳米二氧化钛包覆纳米三氧化二铝的制备方法
Tang et al. Facile synthesis of Ag@ AgCl-contained cellulose hydrogels and their application
Zarepour et al. Facile fabrication of Ag decorated TiO2 nanorices: highly efficient visible-light-responsive photocatalyst in degradation of contaminants
CN107497455B (zh) 一种微量硫表面修饰的超薄钨酸铋纳米片光催化剂的制备方法及其应用
CN105195143A (zh) 一种介孔光催化材料及其制备方法
Mim et al. Recent advancements in strategies to improve performance of tungsten-based semiconductors for photocatalytic hydrogen production: a review
Khusnun et al. Influence of TiO2 dispersion on silica support toward enhanced amine assisted CO2 photoconversion to methanol
CN105834448A (zh) 一步法制备Ag@TiO2纳米复合材料
Liu et al. CoNi bimetallic alloy cocatalyst-modified TiO2 nanoflowers with enhanced photocatalytic hydrogen evolution
Chen et al. Facile synthesis of AgBr@ ZIF-8 hybrid photocatalysts for degradation of Rhodamine B
Liu et al. Study of the efficiency of g-C3N4-loaded P25 for photocatalytic degradation of malachite green in aqueous and Pickering emulsion systems
CN103657645B (zh) 可见光下降解染料复合结构催化剂的制备方法及其应用
Chen et al. Red blood cell-like hollow TiO2@ WO3 microspheres as highly efficient photocatalysts for degradation of organic pollutants

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant