CN105834448A - 一步法制备Ag@TiO2纳米复合材料 - Google Patents

一步法制备Ag@TiO2纳米复合材料 Download PDF

Info

Publication number
CN105834448A
CN105834448A CN201610277277.8A CN201610277277A CN105834448A CN 105834448 A CN105834448 A CN 105834448A CN 201610277277 A CN201610277277 A CN 201610277277A CN 105834448 A CN105834448 A CN 105834448A
Authority
CN
China
Prior art keywords
tio
tio2
ethyl alcohol
particles
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610277277.8A
Other languages
English (en)
Other versions
CN105834448B (zh
Inventor
张海娇
王栋海
朱学栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610277277.8A priority Critical patent/CN105834448B/zh
Publication of CN105834448A publication Critical patent/CN105834448A/zh
Application granted granted Critical
Publication of CN105834448B publication Critical patent/CN105834448B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种一步制备Ag@TiO2纳米复合材料的方法,属于材料化学合成领域。本发明工艺过程中,乙醇既作为溶剂又作为还原剂,在高温高压的水热环境下,乙醇的羟基将Ag+还原成单质Ag颗粒,同时乙醇间醚化反应生成的H2O也促进了钛酸正丁酯(TBOT)的水解。为了降低体系的表面能,水解产生的TiO2小粒子逐渐与生成的Ag纳米颗粒一起聚集成球,并将其包覆到TiO2球内;随着反应的进行,最终得到了球状Ag@TiO2纳米复合材料。该方法具有操作简单,原料易得,成本低,过程可控等优点。通过此方法制备的球状Ag@TiO2纳米复合材料,在光催化和表面增强拉曼效应等领域有着潜在的应用前景。

Description

一步法制备Ag@TiO2纳米复合材料
技术领域
本发明涉及一种一步法制备Ag@TiO2纳米复合材料的方法,属于材料化学合成领域。
背景技术
随着纳米技术的发展,以半导体金属氧化物为基础的拥有灵活的化学组成和良好形貌结构的异质纳米材料已经引起了科学家极大的研究兴趣,并被广泛应用于生物医药、光催化和纳米器件等领域。当前,多种异质结构如半导体-半导体、金属-半导体和金属-金属等已被研究和开发出来。特别地,贵金属-半导体异质结,因其在光催化和表面拉曼增强等领域具有广阔的应用前景而成为最受欢迎的异质结之一。通过将金属与半导体氧化物进行结合,一方面可增强光催化氧化还原反应进程,因为金属较高的费米能级能够有效地分离半导体光激发电子与空穴对;同时金属可以作为一个光电子容器,提高了界面电荷转移过程,并且阻缓了半导体光激发电子与空穴的复合。
在众多半导体金属氧化物中,二氧化钛(TiO2)兼具高的光催化活性、成本低、毒性小以及良好的化学和热稳定性等优点,成为最有潜力的半导体纳米材料之一。相比于金属纳米粒子简单附着于TiO2表面的金属-TiO2复合材料,拥有核壳结构或限域空间内的金属@TiO2材料展现出更为优异的光催化活性。这是因为这种结构能够使TiO2与金属粒子之间连接更为紧密,从而增强了两种物质之间的界面相互作用,提高了颗粒间电荷分离效率。同时这种异质结构能够避免金属颗粒在光催化反应中发生溶解或泄漏,确保了该材料的循环稳定性。尽管多种金属@TiO2复合纳米粒子(如Au、Ag、Pt等)已经被开发出来,然而目前制备金属@TiO2复合纳米材料的路线还是典型的两步法,主要包括金属纳米颗粒的合成以及后续TiO2壳层的包覆。这种合成路线通常要求精确控制金属颗粒的均匀性以及TiO2壳层的厚度。此外,在包覆过程中还需要稳定剂来防止金属粒子团聚,这就导致TiO2与金属之间出现一有机层,那将进一步阻碍粒子间电荷的分离和传输,造成光催化性能的降低。
发明内容
本发明的目的是提供一种Ag@TiO2纳米复合材料的制备方法。
本发明以钛酸正丁酯(TBOT)为钛源,硝酸银、乙醇等为原料,采用一步水热法制备了球状形貌的Ag@TiO2纳米复合材料。
为达到上述目的,本发明采用以下技术方案:
一步法制备Ag@TiO2纳米复合材料的方法,其特征在于该方法的具体步骤为:
a.将钛酸正丁酯和硝酸银溶于无水乙醇中混合均匀,其中硝酸银的浓度为0.08~0.12mol/L;所述的钛酸正丁酯和硝酸银的摩尔比是22:1~35:1;
a.将步骤a所得溶液在180 ℃条件下反应12~18 h,反应完成后,产物经离心分离、乙醇和去离子水洗涤后,烘干即得Ag@TiO2纳米复合材料。
本发明的工艺过程中,乙醇既作为溶剂也作为还原剂,在高温高压的水热环境下,乙醇的羟基将Ag+还原成单质Ag颗粒,同时乙醇间醚化反应生成的H2O也促进了TBOT的水解。为了降低体系的表面能,水解产生的TiO2小粒子逐渐与生成的Ag纳米颗粒一起聚集成球,同时Ag纳米颗粒被TiO2包覆到球内。随着反应的进行,最终得到了球状Ag@TiO2纳米复合材料。
本发明方法具有操作简单,原料易得,成本低,过程可控等优点。通过此方法制备的Ag@TiO2复合材料,在光催化和表面增强拉曼等领域有着潜在的应用前景。
附图说明
图1为本发明实施例1中所得Ag@TiO2纳米复合材料的XRD谱图。
图2为本发明实施例1中所得Ag@TiO2纳米复合材料的TEM图片。
图3为本发明实施例1中所得Ag@TiO2纳米复合材料的STEM图片和相应的元素分布。
具体实施方式
所有实施例均按上述技术方案的操作步骤进行操作。
实施例1
a.分别量取30 mL无水乙醇、0.12 mL 钛酸正丁酯(TBOT)溶液和0.12 mL 硝酸银(AgNO3)溶液(0.1 mol/L),放入50 mL平底烧瓶中混合搅拌10 min;
b.将上述溶液转移到50 mL的带聚四氟乙烯内衬的高压反应釜中,在180 ℃条件下反应12 h,反应完成后,将产物从反应釜中取出,经过离心、乙醇和去离子水反复洗涤后,在60℃下烘干,即得本发明制备的球状Ag@TiO2纳米复合材料。
将所制备的样品进行物性表征,其部分结果如附图所示。从TEM照片可以看出,制得的Ag@TiO2纳米复合材料是由很多TiO2小颗粒堆积组成的球形结构,其粒径在200~250 nm左右。其中,氧化钛内部的Ag纳米颗粒尺寸在10~15 nm。
实施例2
本实施例的制备过程和步骤与实施例1完全相同,不同在于a步骤:
a.分别量取20 mL无水乙醇、0.1 mL 钛酸正丁酯(TBOT)溶液和0.12 mL 硝酸银(AgNO3)溶液(0.1 mol/L),放入50 mL平底烧瓶中混合搅拌10 min;
所得结果与实施例1基本相似,不同在于得到的复合材料中,Ag颗粒核心尺寸明显变大为20~50 nm。
实施例3
本实施例的制备过程和步骤与实施例1完全相同,不同在于a和b步骤:
a.分别量取30 mL无水乙醇、0.1 mL 钛酸正丁酯(TBOT)溶液和0.1 mL 硝酸银(AgNO3)溶液(0.1 mol/L),放入50 mL平底烧瓶中混合搅拌10 min;
b.将上述溶液转移到50 mL的带聚四氟乙烯内衬的高压反应釜中,在180 ℃条件下反应18 h,反应完成后,将产物从反应釜中取出,经过离心、乙醇和去离子水反复洗涤后,在60℃下烘干,即得本发明制备的Ag@TiO2复合材料。
所得结果与实施例1基本相似,不同在于得到的产物是空心核壳结构,粒径在180~200 nm之间,Ag颗粒尺寸为20 nm左右。
参见附图,图1为本发明实施例1所得Ag@TiO2纳米复合材料的XRD谱图。XRD分析:在日本RigaKu D/max-2550型X射线衍射仪上进行;采用CuKα衍射。从图1 中可知,本发明所得球状Ag@TiO2纳米复合材料具有典型的锐钛矿结构,与标准谱图(JCPDF No. 21-1272)相一致。同时,在2θ = 44.3、64.4和77.4°出现的衍射峰分别对应Ag面心立方结构的(200),(220)和(311)晶面,说明Ag纳米颗粒被成功包覆到TiO2中。
参见附图,图2为本发明实施例1所得Ag@TiO2纳米复合材料的透射电镜(TEM)图片。TEM分析:采用日本电子株式会社JEOL-200CX 型透射电子显微镜观察材料形貌。从TEM图片可以看出,制得的Ag@TiO2复合材料拥有较好的球形形貌,主要由许多TiO2小颗粒堆积组成,其粒径尺寸在200到250 nm之间。其中,氧化钛球内部的Ag颗粒尺寸在10~15 nm。
参见附图,图3为本发明实施例1所得Ag@TiO2纳米复合材料的扫描透射电镜(STEM)图片和相应的元素Map分析。STEM分析:采用日本电子株式会社JEM-2010F型透射电子显微镜观察材料形貌。从中可知,只有Ti、Ag和O元素的信号被检测到,说明产品高的化学纯度。同时可以观察到Ag颗粒均匀分散在TiO2球体的内部,进一步证实Ag纳米颗粒被成功包覆。

Claims (1)

1.一步法制备Ag@TiO2纳米复合材料的方法,其特征在于该方法的具体步骤为:
a.将钛酸正丁酯和硝酸银溶于无水乙醇中混合均匀,其中硝酸银的浓度为0.08~0.12mol/L;所述的钛酸正丁酯和硝酸银的摩尔比是22:1~35:1;
b.将步骤a所得溶液在180 ℃条件下反应12~18 h,反应完成后,产物经过离心分离、乙醇和去离子水洗涤后,烘干,即得Ag@TiO2纳米复合材料。
CN201610277277.8A 2016-05-01 2016-05-01 一步法制备Ag@TiO2纳米复合材料 Expired - Fee Related CN105834448B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610277277.8A CN105834448B (zh) 2016-05-01 2016-05-01 一步法制备Ag@TiO2纳米复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610277277.8A CN105834448B (zh) 2016-05-01 2016-05-01 一步法制备Ag@TiO2纳米复合材料

Publications (2)

Publication Number Publication Date
CN105834448A true CN105834448A (zh) 2016-08-10
CN105834448B CN105834448B (zh) 2018-08-17

Family

ID=56589848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610277277.8A Expired - Fee Related CN105834448B (zh) 2016-05-01 2016-05-01 一步法制备Ag@TiO2纳米复合材料

Country Status (1)

Country Link
CN (1) CN105834448B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793236A (zh) * 2017-05-05 2018-11-13 国家电投集团科学技术研究院有限公司 钛酸盐纳米材料及其制备方法
CN110605117A (zh) * 2019-07-30 2019-12-24 北京氦舶科技有限责任公司 一种原子级分散的Ag负载纳米TiO2催化剂的制备方法
CN110961620A (zh) * 2019-12-13 2020-04-07 武汉工程大学 一种用于sers检测的纳米材料及其制备方法和用途
CN111744474A (zh) * 2020-06-19 2020-10-09 湖南工业大学 一种纳米复合材料、其制备方法及用途
CN113600184A (zh) * 2021-08-19 2021-11-05 曹洋 一种二氧化钛包覆金属纳米材料的合成方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122206A (ja) * 2009-12-10 2011-06-23 Osaka Univ TiO2でコーティングされた銀ナノ粒子の製造方法
CN102909009A (zh) * 2012-11-16 2013-02-06 厦门大学 一种结晶银负载TiO2纳米颗粒的制备方法
CN103007973A (zh) * 2012-12-14 2013-04-03 陕西科技大学 一种银/磷酸银复合材料及其制备方法
CN103691433A (zh) * 2013-12-10 2014-04-02 北京科技大学 一种Ag掺杂TiO2材料、及其制备方法和应用
CN103816897A (zh) * 2014-03-11 2014-05-28 中国科学院合肥物质科学研究院 二氧化钛-银复合核壳结构球及其制备方法和用途
US20150238935A1 (en) * 2014-02-21 2015-08-27 Umm Al-Qura University METHOD FOR SYNTHESIZING SILVER NANOPARTICLES ON TiO2 USING HYBRID POLYMERS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122206A (ja) * 2009-12-10 2011-06-23 Osaka Univ TiO2でコーティングされた銀ナノ粒子の製造方法
CN102909009A (zh) * 2012-11-16 2013-02-06 厦门大学 一种结晶银负载TiO2纳米颗粒的制备方法
CN103007973A (zh) * 2012-12-14 2013-04-03 陕西科技大学 一种银/磷酸银复合材料及其制备方法
CN103691433A (zh) * 2013-12-10 2014-04-02 北京科技大学 一种Ag掺杂TiO2材料、及其制备方法和应用
US20150238935A1 (en) * 2014-02-21 2015-08-27 Umm Al-Qura University METHOD FOR SYNTHESIZING SILVER NANOPARTICLES ON TiO2 USING HYBRID POLYMERS
CN103816897A (zh) * 2014-03-11 2014-05-28 中国科学院合肥物质科学研究院 二氧化钛-银复合核壳结构球及其制备方法和用途

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793236A (zh) * 2017-05-05 2018-11-13 国家电投集团科学技术研究院有限公司 钛酸盐纳米材料及其制备方法
CN110605117A (zh) * 2019-07-30 2019-12-24 北京氦舶科技有限责任公司 一种原子级分散的Ag负载纳米TiO2催化剂的制备方法
CN110961620A (zh) * 2019-12-13 2020-04-07 武汉工程大学 一种用于sers检测的纳米材料及其制备方法和用途
CN111744474A (zh) * 2020-06-19 2020-10-09 湖南工业大学 一种纳米复合材料、其制备方法及用途
CN111744474B (zh) * 2020-06-19 2022-09-09 湖南工业大学 一种纳米复合材料、其制备方法及用途
CN113600184A (zh) * 2021-08-19 2021-11-05 曹洋 一种二氧化钛包覆金属纳米材料的合成方法及其应用

Also Published As

Publication number Publication date
CN105834448B (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
Bai et al. An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency
Chen et al. Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction
CN105834448A (zh) 一步法制备Ag@TiO2纳米复合材料
Zhang et al. Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity
Khan et al. Biogenic fabrication of Au@ CeO2 nanocomposite with enhanced visible light activity
Zhang et al. Titanium dioxide (TiO2) mesocrystals: Synthesis, growth mechanisms and photocatalytic properties
Cheng et al. Green synthesis of plasmonic Ag nanoparticles anchored TiO2 nanorod arrays using cold plasma for visible-light-driven photocatalytic reduction of CO2
Shangguan et al. Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer
Lyu et al. Investigation of relative stability of different facets of Ag2O nanocrystals through face-selective etching
Bi et al. Plasmonic Au/CdMoO4 photocatalyst: Influence of surface plasmon resonance for selective photocatalytic oxidation of benzylic alcohol
Huang et al. Hetero-structural NiTiO3/TiO2 nanotubes for efficient photocatalytic hydrogen generation
CN104192899B (zh) 一种制备TiO2纳米晶体颗粒的方法
Liang et al. Nanoplasmonically engineered interfaces on amorphous TiO2 for highly efficient photocatalysis in hydrogen evolution
Jiang et al. Synergetic effect of piezoelectricity and Ag deposition on photocatalytic performance of barium titanate perovskite
Chouke et al. Biosynthesized δ-Bi2O3 nanoparticles from Crinum viviparum flower extract for photocatalytic dye degradation and molecular docking
Zhang et al. Highly active, selective, and stable direct H2O2 generation by monodispersive Pd–Ag nanoalloy
CN105664929B (zh) 一种含有贵金属的纳米片及其制备方法
Tuama et al. An overview on characterization of silver/cuprous oxide nanometallic (Ag/Cu2O) as visible light photocatalytic
Meng et al. CuS/MoS 2 nanocomposite with high solar photocatalytic activity
Xu et al. Visible-light-driven 3D dendritic PtAu@ Pt core–shell photocatalyst toward liquid fuel electrooxidation
CN108786792B (zh) 一种金属/半导体复合光催化剂及其制备与应用
CN104815651B (zh) 一种贵金属/二氧化钛纳米复合物的制备方法
Chang et al. Ionic liquid/surfactant-hydrothermal synthesis of dendritic PbS@ CuS core-shell photocatalysts with improved photocatalytic performance
Zhang et al. Recent Advances in TiO2‐based Photoanodes for Photoelectrochemical Water Splitting
CN103691433A (zh) 一种Ag掺杂TiO2材料、及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180817

CF01 Termination of patent right due to non-payment of annual fee