CN105586573B - 一种可调制多层复合薄膜的制备方法 - Google Patents

一种可调制多层复合薄膜的制备方法 Download PDF

Info

Publication number
CN105586573B
CN105586573B CN201510989622.6A CN201510989622A CN105586573B CN 105586573 B CN105586573 B CN 105586573B CN 201510989622 A CN201510989622 A CN 201510989622A CN 105586573 B CN105586573 B CN 105586573B
Authority
CN
China
Prior art keywords
sputtering
targets
preparation
power
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510989622.6A
Other languages
English (en)
Other versions
CN105586573A (zh
Inventor
刘安强
袁建鹏
沈婕
侯伟骜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing General Research Institute of Mining and Metallurgy
Original Assignee
Beijing General Research Institute of Mining and Metallurgy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute of Mining and Metallurgy filed Critical Beijing General Research Institute of Mining and Metallurgy
Priority to CN201510989622.6A priority Critical patent/CN105586573B/zh
Publication of CN105586573A publication Critical patent/CN105586573A/zh
Application granted granted Critical
Publication of CN105586573B publication Critical patent/CN105586573B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种可调制多层复合薄膜的制备方法,首先将需要制备薄膜层的基片抛光,并经超声清洗后烘干预处理;将处理后的基片置于溅射室内,先进行打底层溅射,再进行复合层循环交替溅射;溅射完成后,待所述溅射室自然冷却至室温,得到所述可调制多层复合薄膜。上述制备方法工艺简单,沉积过程易于控制,薄膜沉积后无需进行热处理、二次加工,可直接作为机械零部件表面的润滑抗微动磨损防护薄膜使用。

Description

一种可调制多层复合薄膜的制备方法
技术领域
本发明涉及新材料制备技术领域,尤其涉及一种可调制多层复合薄膜的制备方法。
背景技术
近年来,钛合金因其优异性能而被广泛应用于航空航天工业中,钛合金作为精密零部件时,耐磨性成为影响其使用性能和寿命的重要因素之一。微动磨损是导致钛合金结构件表面磨损破坏的主要形式之一,由于钛合金在高温下耐磨性能差、对微动损伤十分敏感的特性,使得飞行器中各种钛合金压配合或收缩配合构件(如铆接件,螺栓、榫槽、锥套、法兰联结件,键或销固定件,弹簧密封或支承面,电插接件等)在交变应力或环境振动作用下出现微动疲劳和微动磨损损伤,将严重影响部件使用性能和寿命。研究表明微动作用通常使钛合金疲劳极限降低20%~50%,为了提高钛合金部件的使用可靠性,国内外广泛采用保护涂层来实现抗微动损伤设计。
现有技术中提高钛合金微动损伤抗力的防护涂层主要有高硬度耐磨涂层和自润滑减摩涂层,高硬度耐磨涂层的制备方法主要有热喷涂技术和表面改性技术(如表面渗氮、渗碳、等离子氮化及离子渗金属等),通过表面改性一定程度上可以提高钛合金的耐磨性,但缺点是处理过程中对钛基体热影响大,使得钛合金的疲劳强度降低,而且消弱钛合金材料微动疲劳抗力。如Ani Zhecheva等采用表面氮化工艺在钛合金表面获得2~15μm厚的TiCN改性层,其具有高硬度和良好的耐磨性,但是表面存在裂纹,使得其疲劳极限降低,热喷涂技术制备的涂层因其膜层较厚、表面粗糙,需要进行二次加工,在一定程度上限制了热喷涂方法制备的厚涂层在钛合金表面的应用。
而自润滑减摩涂层的研究主要集中在金属Ag、Cu及Cu-Ni-In合金涂层上,航空航天领域的中低温自润滑减摩涂层最有代表性的是Cu-Ni-In涂层和镀Ag层,这两种涂层在滑动摩擦过程中,具有良好的自润滑性能,可以减少Ti基合金微动损伤的破坏。用镀银作为钛合金的防护层在过去是被采用的方法之一,但由于Ag层可能存在“银脆”风险,限制了其应用,但热喷涂工艺很难实现涂层厚度和零件尺寸的精确控制,此外涂层内部存在较多孔隙且与基体界面结合强度不高,难以提升钛合金部件高温微动服役寿命。
发明内容
本发明的目的是提供一种可调制多层复合薄膜的制备方法,该制备方法工艺简单,沉积过程易于控制,薄膜沉积后无需进行热处理、二次加工,可直接作为机械零部件表面的润滑抗微动磨损防护薄膜使用。
一种可调制多层复合薄膜的制备方法,所述方法包括:
将需要制备薄膜层的基片抛光,并经超声清洗后烘干预处理;
将处理后的基片置于溅射室内,先进行打底层溅射,再进行复合层循环交替溅射;
其中,所述打底层溅射包括:
将溅射室抽真空至3.0×10-3Pa以下,通入氩气并控制压强在0.3~0.8Pa,开直流溅射电源,溅射功率为50~150W,沉积时间为10~30min,在所述基片上直流溅射沉积纯钛靶,制备出厚度约为10~20nm的打底层;
所述复合层循环交替溅射包括:在氩气环境下控制压强在0.5~1Pa范围内,分别设置3个溅射靶为CuNiIn靶、MoS2靶和Ti靶;先开启所述CuNiIn靶,沉积20~60min后关闭所述CuNiIn靶,然后再同时开启所述MoS2靶和Ti靶,沉积时间为15~50min;完成上述沉积过程为1个循环,总共沉积5~40个循环实现复合层循环交替溅射;
溅射完成后,待所述溅射室自然冷却至室温,得到所述可调制多层复合薄膜。
所述3个溅射靶的功率范围分别为:
所述CuNiIn靶直流溅射功率为200~600W;
所述MoS2靶射频溅射功率为20~120W;
所述Ti靶直流溅射功率为50~150W。
所述基片为钛合金。
所述抛光是指将所述基片抛光至光洁度小于0.05μm。
所述超声清洗是指采用丙酮溶液对抛光后的基片进行超声清洗10min,然后用无水乙醇溶液清洗。
所制备的多层复合薄膜的厚度为1~40μm。
由上述本发明提供的技术方案可以看出,上述制备方法工艺简单,沉积过程易于控制,薄膜沉积后无需进行热处理、二次加工,可直接作为机械零部件表面的润滑抗微动磨损防护薄膜使用。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例所提供的可调制多层复合薄膜的制备方法流程示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明实施例所述的工艺方法是采用物理气相沉积技术在钛合金表面获得高硬度和低摩擦系数的抗微动磨损与自润滑强韧一体的防护薄膜。下面将结合附图对本发明实施例作进一步地详细描述,如图1所示为本发明实施例所提供的可调制多层复合薄膜的制备方法流程示意图,所述方法包括:
步骤11:将需要制备薄膜层的基片抛光,并经超声清洗后烘干预处理;
在该步骤中,所述基片为钛合金,也可以为其他需要制备薄膜层的合金基材。
所述抛光是指将所述基片抛光至光洁度小于0.05μm。
所述超声清洗的过程是:采用丙酮溶液对抛光后的基片进行超声清洗10min,然后用无水乙醇溶液清洗。
步骤12:将处理后的基片置于溅射室内,先进行打底层溅射,再进行复合层循环交替溅射;
在该步骤中,所述打底层溅射包括:
将溅射室抽真空至3.0×10-3Pa以下,通入氩气并控制压强在0.3~0.8Pa,开直流溅射电源,溅射功率为50~150W,沉积时间为10~30min,在所述基片上直流溅射沉积纯钛靶,制备出厚度约为10~20nm的打底层;
所述复合层循环交替溅射包括:在氩气环境下控制压强在0.5~1Pa范围内,分别设置3个溅射靶为CuNiIn靶、MoS2靶和Ti靶;先开启所述CuNiIn靶,沉积20~60min后关闭所述CuNiIn靶,然后再同时开启所述MoS2靶和Ti靶,沉积时间为15~50min;完成上述沉积过程为1个循环,总共沉积5~40个循环实现复合层循环交替溅射。
具体实现中,上述3个溅射靶的功率范围分别为:所述CuNiIn靶直流溅射功率为200~600W;所述MoS2靶射频溅射功率为20~120W;所述Ti靶直流溅射功率为50~150W。
本实施例中可以通过控制不同溅射靶的功率、沉积时间、循环交替周期来制备出新型铜镍铟基抗微动磨损与自润滑强韧一体多层复合薄膜。
步骤13:溅射完成后,待所述溅射室自然冷却至室温,得到所述可调制多层复合薄膜。
这里,通过上述工艺步骤,所制备的多层复合薄膜的厚度为1~40μm。
下面结合具体的实例对上述制备方法的工艺过程进行详细描述:
实施例1、将钛合金基片抛光至光洁度小于0.05μm,并用丙酮、无水乙醇溶液在超声波清洗器中洗净,烘干,装入溅射室内。
首先进行打底层溅射,抽真空至3.0×10-3Pa以下,通入氩气,调整真空室内气压为0.5Pa,开启直流溅射电源,溅射Ti靶,溅射功率为50W,工作气压为0.5Pa,溅射时间约为10min,沉积厚度约10nm,关闭电源。
再进行复合层循环交替溅射,保持室内气压0.5Pa,开启电源,用射频溅射MoS2靶,功率20W,直流溅射Ti靶,功率50W,溅射时间15min,关闭MoS2靶和Ti靶电源;然后直流溅射CuNiIn靶,工作气压为0.5Pa,功率200W,溅射时间20min,关闭CuNiIn靶电源;完成上述沉积过程5个循环,待真空室温度降至室温后,打开真空室,制成厚度为5μm的多层复合薄膜。
实施例2、将钛合金基片抛光至光洁度小于0.05μm,并用丙酮、无水乙醇溶液在超声波清洗器中洗净,烘干,装入溅射室内。
首先进行打底层溅射,抽真空至3.0×10-3Pa以下,通入氩气,调整真空室内气压为0.5Pa,开启直流溅射电源,溅射Ti靶,溅射功率为60W,工作气压为0.5Pa,溅射时间约为10min,沉积厚度约12nm,关闭电源。
再进行复合层循环交替溅射,保持室内气压0.5Pa,开启电源,用射频溅射MoS2靶,功率40W,直流溅射Ti靶,功率75W,溅射时间20min,关闭MoS2靶和Ti靶电源;然后直流溅射CuNiIn靶,工作气压为0.5Pa,功率250W,溅射时间25min,关闭CuNiIn靶电源;完成上述沉积过程10个循环,待真空室温度降至室温后,打开真空室,制成厚度为10μm的多层复合薄膜。
实施例3、将钛合金基片抛光至光洁度小于0.05μm,并用丙酮、无水乙醇溶液在超声波清洗器中洗净,烘干,装入溅射室内。
首先进行打底层溅射,抽真空至3.0×10-3Pa以下,通入氩气,调整真空室内气压为0.5Pa,开启直流溅射电源,溅射Ti靶,溅射功率为80W,工作气压为0.5Pa,溅射时间约为15min,沉积厚度约14nm,关闭电源。
再进行复合层循环交替溅射,保持室内气压0.5Pa,开启电源,用射频溅射MoS2靶,功率60W,直流溅射Ti靶,功率100W,溅射时间25min,关闭MoS2靶和Ti靶电源;然后直流溅射CuNiIn靶,工作气压为0.5Pa,功率300W,溅射时间35min,关闭CuNiIn靶电源;完成上述沉积过程15个循环,待真空室温度降至室温后,打开真空室,制成厚度为15μm的多层复合薄膜。
实施例4、将钛合金基片抛光至光洁度小于0.05μm,并用丙酮、无水乙醇溶液在超声波清洗器中洗净,烘干,装入溅射室内。
首先进行打底层溅射,抽真空至3.0×10-3Pa以下,通入氩气,调整真空室内气压为0.5Pa,开启直流溅射电源,溅射Ti靶,溅射功率为100W,工作气压为0.5Pa,溅射时间约为20min,沉积厚度约15nm,关闭电源。
再进行复合层循环交替溅射,保持室内气压0.5Pa,开启电源,用射频溅射MoS2靶,功率80W,直流溅射Ti靶,功率120W,溅射时间30min,关闭MoS2靶和Ti靶电源;然后直流溅射CuNiIn靶,工作气压为0.5Pa,功率400W,溅射时间40min,关闭CuNiIn靶电源;完成上述沉积过程20个循环,待真空室温度降至室温后,打开真空室,制成厚度为25μm的多层复合薄膜。
实施例5、将钛合金基片抛光至光洁度小于0.05μm,并用丙酮、无水乙醇溶液在超声波清洗器中洗净,烘干,装入溅射室内。
首先进行打底层溅射,抽真空至3.0×10-3Pa以下,通入氩气,调整真空室内气压为0.5Pa,开启直流溅射电源,溅射Ti靶,溅射功率为120W,工作气压为0.5Pa,溅射时间约为25min,沉积厚度约18nm,关闭电源。
再进行复合层循环交替溅射,保持室内气压0.5Pa,开启电源,用射频溅射MoS2靶,功率100W,直流溅射Ti靶,功率150W,溅射时间45min,关闭MoS2靶和Ti靶电源;然后直流溅射CuNiIn靶,工作气压为0.5Pa,功率500W,溅射时间50min,关闭CuNiIn靶电源;完成上述沉积过程30个循环,待真空室温度降至室温后,打开真空室,制成厚度为30μm的多层复合薄膜。
实施例6、将钛合金基片抛光至光洁度小于0.05μm,并用丙酮、无水乙醇溶液在超声波清洗器中洗净,烘干,装入溅射室内。
首先进行打底层溅射,抽真空至3.0×10-3Pa以下,通入氩气,调整真空室内气压为0.5Pa,开启直流溅射电源,溅射Ti靶,溅射功率为150W,工作气压为0.5Pa,溅射时间约为30min,沉积厚度约20nm,关闭电源。
再进行复合层循环交替溅射,保持室内气压0.5Pa,开启电源,用射频溅射MoS2靶,功率120W,直流溅射Ti靶,功率150W,溅射时间50min,关闭MoS2靶和Ti靶电源;然后直流溅射CuNiIn靶,工作气压为0.5Pa,功率600W,溅射时间60min,关闭CuNiIn靶电源;完成上述沉积过程40个循环,待真空室温度降至室温后,打开真空室,制成厚度为40μm的多层复合薄膜。
下面在SRV-4型高温摩擦磨损实验机上对上述实施例所制备的CuNiIn-MoS2-Ti复合薄膜的摩擦性能进行测试评价,对磨件为304不锈钢,直径为10mm的钢球,试验条件为:试验载荷10N,摩擦方式为往复摩擦,行程为1mm,摩擦频率为50Hz,试验时间20min,干摩擦状态,测试温度为350℃,测试过程中自动记录摩擦系数,使用Nano Indenter DCM型纳米力学探针对复合薄膜的力学性能进行评价,表1为实施例1~6的CuNiIn-MoS2-Ti复合薄膜的平均动摩擦系数(μ);表2为实施例1~6的CuNiIn-MoS2-Ti复合薄膜的纳米显微硬度。
表1
实施例编号 1 2 3 4 5 6
摩擦系数(μ) 0.161 0.179 0.158 0.184 0.195 0.182
表2
由上述表1和2的结果可知,所制备的多层复合薄膜具有如下特点:
1、摩擦系数低,摩擦系数稳定。本实施例1~6的CuNiIn-MoS2-Ti复合薄膜在350℃干摩擦环境下摩擦系数变化较小,表现出良好的环境摩擦稳定性。经过20min的往复摩擦循环过程,其摩擦系数变化平稳、波动小。
2、硬度较高。本实施例1~6的CuNiIn-MoS2-Ti复合薄膜其纳米显微硬度分别达到了3.98、4.27、4.52、4.05、4.71和4.36GPa,可见实施例1~6的CuNiIn-MoS2-Ti复合薄膜具有良好的硬度性能。
综上所述,本发明实施例所述的制备方法采用磁控溅射,利用MoS2晶体结构具有降低摩擦系数的特性,加入CuNiIn和Ti成分,使得复合薄膜的抗微动磨损性能和硬度有了极大的提高;同时由于在溅射复合薄膜之前,在基片上溅射有一层10~20nm的打底层,进一步增强了金属基体与薄膜之间的结合强度。
上述制备方法工艺简单,沉积过程易于控制,薄膜沉积后无需进行热处理、二次加工,可直接作为机械零部件表面的润滑抗微动磨损防护薄膜使用;所制备出的多层复合薄膜纳米显微硬度达到4.7GPa,高温下(350℃)摩擦系数可小于0.2,经摩擦磨损实验测试后薄膜表面未出现裂纹、脱落现象,解决了高温条件下钛合金表面黏着磨损的问题。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (5)

1.一种可调制多层复合薄膜的制备方法,其特征在于,所述方法包括:
将需要制备薄膜层的基片抛光,并经超声清洗后烘干预处理;
将处理后的基片置于溅射室内,先进行打底层溅射,再进行复合层循环交替溅射;
其中,所述打底层溅射包括:将溅射室抽真空至3.0×10-3Pa以下,通入氩气并控制压强在0.3~0.8Pa,开直流溅射电源,溅射功率为50~150W,沉积时间为10~30min,在所述基片上直流溅射沉积纯钛靶,制备出厚度约为10~20nm的打底层;
所述复合层循环交替溅射包括:在氩气环境下控制压强在0.5~1Pa范围内,分别设置3个溅射靶为CuNiIn靶、MoS2靶和Ti靶;先开启所述CuNiIn靶,沉积20~60min后关闭所述CuNiIn靶,然后再同时开启所述MoS2靶和Ti靶,沉积时间为15~50min;完成上述沉积过程为1个循环,总共沉积5~40个循环实现复合层循环交替溅射;其中,所述3个溅射靶的功率范围分别为:所述CuNiIn靶直流溅射功率为200~600W;所述MoS2靶射频溅射功率为20~120W;所述Ti靶直流溅射功率为50~150W;
溅射完成后,待所述溅射室自然冷却至室温,得到所述可调制多层复合薄膜。
2.根据权利要求1所述可调制多层复合薄膜的制备方法,其特征在于,
所述基片为钛合金。
3.根据权利要求1所述可调制多层复合薄膜的制备方法,其特征在于,
所述抛光是指将所述基片抛光至光洁度小于0.05μm。
4.根据权利要求1所述可调制多层复合薄膜的制备方法,其特征在于,
所述超声清洗是指采用丙酮溶液对抛光后的基片进行超声清洗10min,然后用无水乙醇溶液清洗。
5.根据权利要求1所述可调制多层复合薄膜的制备方法,其特征在于,
所制备的多层复合薄膜的厚度为1~40μm。
CN201510989622.6A 2015-12-24 2015-12-24 一种可调制多层复合薄膜的制备方法 Active CN105586573B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510989622.6A CN105586573B (zh) 2015-12-24 2015-12-24 一种可调制多层复合薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510989622.6A CN105586573B (zh) 2015-12-24 2015-12-24 一种可调制多层复合薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN105586573A CN105586573A (zh) 2016-05-18
CN105586573B true CN105586573B (zh) 2018-10-16

Family

ID=55926468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510989622.6A Active CN105586573B (zh) 2015-12-24 2015-12-24 一种可调制多层复合薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN105586573B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106480419A (zh) * 2016-11-01 2017-03-08 福州大学 一种Ca3Si薄膜的制备方法
CN106765308A (zh) * 2016-11-28 2017-05-31 中国电子科技集团公司第四十八研究所 一种直插式薄膜桥点火器及其制备方法
CN108374140A (zh) * 2017-01-06 2018-08-07 中国航空工业集团公司北京航空制造工程研究所 一种双层微动防护涂层的制备方法
CN108396293B (zh) * 2018-03-15 2023-01-31 北京矿冶科技集团有限公司 抗微动磨损与耐腐蚀一体化TiAlN/CuNiIn/Cr多层复合薄膜及其制备方法
CN112647051A (zh) * 2020-12-14 2021-04-13 军事科学院系统工程研究院军需工程技术研究所 一种含Ag金属复合薄膜及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050063463A (ko) * 2003-12-22 2005-06-28 재단법인 포항산업과학연구원 윤활특성이 우수한 경질코팅 제조방법 및 경질코팅 구조
CN101654771B (zh) * 2009-09-04 2011-02-09 上海交通大学 磁控溅射制备减磨MoS2/C/Ti复合薄膜的方法
CN101906614A (zh) * 2010-06-10 2010-12-08 上海交通大学 二硫化钼基润滑耐磨复合薄膜的制备方法
CN101921984B (zh) * 2010-09-15 2012-11-21 上海交通大学 基于MoS2-TiC-C的自润滑减摩复合薄膜及其制备方法
CN102094172B (zh) * 2010-12-03 2014-01-01 无锡润鹏复合新材料有限公司 一种TiWN/MoS2复合薄膜的制备方法
CN103060765B (zh) * 2013-01-18 2015-04-22 中国科学院宁波材料技术与工程研究所 一种基体表面高硬度低磨损的MoS2复合薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MoS_2/Ti复合薄膜对Ti811合金高温摩擦磨损性能及微动疲劳行为的影响;张晓化等;《摩擦学学报》;20080515;第219-224页 *
航空发动机叶片榫头润滑及抗高温微动CuNiIn/MoS2多层涂层的制备及性能;吴贵智等;《第十届全国表面工程大会暨第六届全国青年表面工程论坛论文集》;20141028;第72页 *

Also Published As

Publication number Publication date
CN105586573A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
CN105586573B (zh) 一种可调制多层复合薄膜的制备方法
CN107034440B (zh) 一种复合类金刚石碳膜及其制备方法
CN101654771B (zh) 磁控溅射制备减磨MoS2/C/Ti复合薄膜的方法
Zalnezhad et al. Optimizing the PVD TiN thin film coating’s parameters on aerospace AL7075-T6 alloy for higher coating hardness and adhesion with better tribological properties of the coating surface
CN106086787A (zh) Ti‑TiN+MoS2/Ti叠层复合涂层刀具及其制备工艺
CN104498885B (zh) 离子辅助沉积TiN相增强Ag固体润滑膜的制备方法
CN105220120B (zh) 一种多层复合类富勒烯薄膜在汽车发动机上产业化的方法
CN105239039A (zh) 一种多层纳米复合涂层冲压模具及其制备方法
Zhang et al. Effect of TiN/Ti composite coating and shot peening on fretting fatigue behavior of TC17 alloy at 350 C
CN104060222A (zh) TiSiN-WS2/Zr-WS2涂层刀具及其制备工艺
CN109837549A (zh) 一种钛合金表面制备减摩抗微动强化层的方法
CN111218638A (zh) 一种球阀硬密封面耐磨蚀复合防护涂层及其制备方法
CN106065460B (zh) 微型挤压丝锥复合涂层及其制备工艺和制备设备
CN107699859B (zh) 轴瓦用全金属自润滑减摩涂层及其制备方法
CN110438465B (zh) 金属基体表面抗磨蚀防护涂层及其制备方法与应用
CN110468259A (zh) 一种抗磨液压泵零件的制备方法
CN101921984B (zh) 基于MoS2-TiC-C的自润滑减摩复合薄膜及其制备方法
CN105039908B (zh) 具有绝缘性能的类金刚石涂层及制备方法
CN110257779A (zh) 一种超硬纳米复合刀具及其制作方法和应用
CN110629170B (zh) 一种提高高压液压泵零件耐磨性的方法
CN110484696A (zh) 一种减摩抗磨液压泵零件的制备方法
CN107475666A (zh) 一种航空发动机叶片榫头毛化织构涂层处理方法及发动机叶片
CN103045998A (zh) 一种含有CrNiTiAlN五元涂层的制品及制备方法
CN105463372B (zh) 一种多层复合超厚自润滑硬质涂层的制备方法
CN105132853A (zh) 一种用于高温阻尼件表面的硬质高阻尼涂层制备工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant