CN104498885B - 离子辅助沉积TiN相增强Ag固体润滑膜的制备方法 - Google Patents

离子辅助沉积TiN相增强Ag固体润滑膜的制备方法 Download PDF

Info

Publication number
CN104498885B
CN104498885B CN201410730008.3A CN201410730008A CN104498885B CN 104498885 B CN104498885 B CN 104498885B CN 201410730008 A CN201410730008 A CN 201410730008A CN 104498885 B CN104498885 B CN 104498885B
Authority
CN
China
Prior art keywords
titanium alloy
fretting fatigue
preparation
tin phase
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410730008.3A
Other languages
English (en)
Other versions
CN104498885A (zh
Inventor
杜东兴
刘道新
张晓化
项定根
潘峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201410730008.3A priority Critical patent/CN104498885B/zh
Publication of CN104498885A publication Critical patent/CN104498885A/zh
Application granted granted Critical
Publication of CN104498885B publication Critical patent/CN104498885B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种离子辅助沉积TiN相增强Ag固体润滑膜的制备方法,用于解决现有方法制备的防护层抗微动疲劳性能差的技术问题。技术方案是将经过处理的钛合金TC4微动疲劳试样放入离子辅助磁控溅射设备中,抽真空后通入氩气,清洗钛合金TC4微动疲劳试样表面;开启Ag靶和Ti靶电源,制备TiN相增强Ag固体润滑膜。由于TiN相增强Ag固体润滑膜层的作用,提高了钛合金TC4的抗微动疲劳性能。经测试,钛合金TC4的微动疲劳寿命为基材的1.50钛合金TC4的2.51倍。钛合金TC4微动疲劳过程中的摩擦系数,摩擦系数数值为0.14~0.40,说明本发明方法制备的TiN相增强Ag固体润滑膜层具有显著的减摩润滑效果。

Description

离子辅助沉积TiN相增强Ag固体润滑膜的制备方法
技术领域
本发明涉及一种抗微动疲劳的方法,特别是涉及一种离子辅助沉积TiN相增强Ag固体润滑膜的制备方法。
背景技术
钛合金具有比强度高、热稳定性好、耐腐蚀性能优异等特点,因而广泛应用于航空、航天、生物医学以及其他工业领域。然而,钛合金硬度低、耐磨性能差,对微动疲劳(Fretting Fatigue,FF)损伤十分敏感,从而限制了钛合金在FF服役环境下的应用。由于解决FF损伤中碰到的抗磨与抗疲劳的措施常常是矛盾的,因而在钛合金FF控制方面多数尝试工作并未取得理想的结果[卫中山,王珉,左敦稳,李亮.钛合金的微动疲劳及其防护.材料科学与工程学报,2003,2,293-297]。例如氮化钛(TiN)硬质镀层有良好的抗磨性能,但是由于这类硬质镀层的韧性低,不利于其FF性能的改善;金属银(Ag)固体润滑镀层有较好的减摩作用,能提高其FF抗力,然而这类膜层的硬度低,耐久性较差,在提高钛合金抗FF性能方面仍不能令人满意。因此,开发新型固体润滑复合膜层改善钛合金抗微动疲劳性能的表面防护技术,是目前发展高可靠性、长寿命航空发动机装置中迫切需要解决的技术难题。
发明内容
为了克服现有方法制备的防护层抗微动疲劳性能差的不足,本发明提供一种离子辅助沉积TiN相增强Ag固体润滑膜的制备方法。该方法将经过处理的钛合金TC4微动疲劳试样放入离子辅助磁控溅射设备中,抽真空后通入氩气,轰击清洗钛合金TC4微动疲劳试样表面;同时开启Ag靶和Ti靶电源,制备TiN相增强Ag固体润滑膜。本发明方法制备的TiN相增强Ag固体润滑膜层可以提高钛合金TC4的抗微动疲劳性能。
本发明解决其技术问题所采用的技术方案是:一种离子辅助沉积TiN相增强Ag固体润滑膜的制备方法,其特点是采用以下步骤:
步骤一、将经过机械加工的钛合金TC4微动疲劳试样利用砂纸打磨至规定的尺寸及表面粗糙度,并用丙酮、酒精清洗干净,吹风干燥后备用;
步骤二、将经过步骤一处理的钛合金TC4微动疲劳试样放入离子辅助磁控溅射设备中,保持试样与靶材的距离为100mm,抽真空至极限真空度10-5
步骤三、通入流量为180sccm的氩气,使得真空炉的气压保持在1.5×10-1,采用轰击能量500V、束流80mmA的Ar+离子进行轰击清洗钛合金TC4微动疲劳试样表面15min;
步骤四、制备TiN相增强Ag固体润滑膜时氩气流量为180sccm,氮气流量为130sccm,总气压为2.3×10-1Pa。
步骤五、同时开启Ag靶和Ti靶电源,通过控制Ag靶电源400W~800W和Ti靶材电源800W来调节复合膜中成分,偏压-150V,辅助离子源轰击电源1000V,制备的膜层总厚度控制在4μm。
步骤六、钛合金TC4微动疲劳试样随炉冷却至室温。
本发明的有益效果是:该方法将经过处理的钛合金TC4微动疲劳试样放入离子辅助磁控溅射设备中,抽真空后通入氩气,轰击清洗钛合金TC4微动疲劳试样表面;同时开启Ag靶和Ti靶电源,制备TiN相增强Ag固体润滑膜。本发明方法制备的TiN相增强Ag固体润滑膜层提高了钛合金TC4的抗微动疲劳性能。经测试,钛合金TC4的微动疲劳寿命为基材的1.50钛合金TC4的2.51倍。钛合金TC4微动疲劳过程中的摩擦系数,摩擦系数数值为0.14~0.40,说明本发明方法制备的TiN相增强Ag固体润滑膜层具有显著的减摩润滑效果。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1为本发明方法所采用的微动疲劳试样尺寸示意图;
图2为采用本发明方法所获得的TiN相增强Ag固体润滑膜的微动疲劳寿命,图中r为疲劳寿命比,BM为基材;
图3为采用本发明方法所获得的不同表面状态下的摩擦系数随微动循环周次的变化曲线。
具体实施方式
以下实施例参照图1-3。
实施例1:制备TiN相增强Ag固体润滑膜Ag60%-TiN40%(Ag60),待处理的微动疲劳试样的材料为TC4钛合金,试样尺寸按照附图1机械加工,具体操作步骤为:
①将机械加工好的钛合金TC4微动疲劳试样利用砂纸打磨至规定的尺寸及表面粗糙度,放入丙酮、酒精超声波清洗,并用冷风吹干备用;②将清洗干净的试样放入离子辅助磁控溅射设备中,保持钛合金TC4微动疲劳试样与靶材的距离为100mm,抽真空至极限真空度10-5;③通入流量为180sccm的氩气,使得真空炉的气压保持在1.5×10-1,采用轰击能量500V、束流80mmA的Ar+离子进行轰击清洗试样表面约15min;④制备TiN相增强Ag固体润滑膜(Ag60)时氩气流量为180sccm,氮气流量为130sccm,总气压为2.3×10-1Pa。⑤同时开启Ag靶和Ti靶电源,通过控制Ag靶电源为400W和Ti靶材电源为800W来调节复合膜中成分,偏压-150V,辅助离子源轰击电源1000V,制备的膜层总厚度控制在4μm左右。⑥钛合金TC4微动疲劳试样随炉冷却至室温,冷却后将钛合金TC4微动疲劳试样取出。
测试Ag60复合膜层钛合金TC4微动疲劳试样的疲劳寿命,其微动疲劳寿命为基材的2.51倍。
测试Ag60复合膜层钛合金TC4微动疲劳试样的微动过程中的摩擦系数,摩擦系数数值结果为0.18~0.22,Ag60复合膜层具有显著的减摩润滑效果。
实施例2:制备TiN相增强Ag固体润滑膜Ag80%-TiN20%(Ag80),待处理的微动疲劳试样的材料为TC4钛合金,试样按图1加工,具体操作步骤为:
①将机械加工好的钛合金TC4微动疲劳试样利用砂纸打磨至规定的尺寸及表面粗糙度,放入丙酮、酒精超声波清洗,并用冷风吹干备用;②将清洗干净的钛合金TC4微动疲劳试样放入离子辅助磁控溅射设备中,保持试样与靶材的距离为100mm,抽真空至极限真空度10-5;③通入流量为180sccm的氩气,使得真空炉的气压保持在1.5×10-1,采用轰击能量500V、束流80mmA的Ar+离子进行轰击清洗试样表面约15min;④制备TiN相增强Ag固体润滑膜(Ag80)时氩气流量为180sccm,氮气流量为130sccm,总气压为2.3×10-1Pa。⑤同时开启Ag靶和Ti靶电源,通过控制Ag靶电源为600W和Ti靶材电源为800W来调节复合膜中成分,偏压-150V,辅助离子源轰击电源1000V,制备的膜层总厚度控制在4μm左右。⑥钛合金TC4微动疲劳试样随炉冷却至室温,冷却后将钛合金TC4微动疲劳试样取出。
测试Ag80复合膜层钛合金TC4微动疲劳试样的疲劳寿命,其微动疲劳寿命为基材的2.36倍。
测试Ag80复合膜层钛合金TC4微动疲劳试样的微动过程中的摩擦系数,摩擦系数数值结果为0.24~0.40,Ag80复合膜层具有显著的减摩润滑效果。
实施例3:制备TiN相增强Ag固体润滑膜Ag90%-TiN10%(Ag90),待处理的微动疲劳试样的材料为TC4钛合金,试样按图1加工,具体操作步骤为:
①将机械加工好的钛合金TC4微动疲劳试样利用砂纸打磨至规定的尺寸及表面粗糙度,放入丙酮、酒精超声波清洗,并用冷风吹干备用;②将清洗干净的钛合金TC4微动疲劳试样放入离子辅助磁控溅射设备中,保持试样与靶材的距离为100mm,抽真空至极限真空度10-5;③通入流量为180sccm的氩气,使得真空炉的气压保持在1.5×10-1,采用轰击能量500V、束流80mmA的Ar+离子进行轰击清洗试样表面约15min;④制备TiN相增强Ag固体润滑膜(Ag90)时氩气流量为180sccm,氮气流量为130sccm,总气压为2.3×10-1Pa。⑤同时开启Ag靶和Ti靶电源,通过控制Ag靶电源为800W和Ti靶材电源为800W来调节复合膜中成分,偏压-150V,辅助离子源轰击电源1000V,制备的膜层总厚度控制在4μm左右。⑥钛合金TC4微动疲劳试样随炉冷却至室温,冷却后将钛合金TC4微动疲劳试样取出。
测试Ag90复合膜层钛合金TC4微动疲劳试样的疲劳寿命,其微动疲劳寿命为基材的1.50倍。
测试Ag90复合膜层钛合金TC4微动疲劳试样的微动过程中的摩擦系数,摩擦系数数值结果为0.14~0.37,Ag90复合膜层具有显著的减摩润滑效果。

Claims (1)

1.一种离子辅助沉积TiN相增强Ag固体润滑膜的制备方法,其特征在于包括以下步骤:
步骤一、将经过机械加工的钛合金TC4微动疲劳试样利用砂纸打磨至规定的尺寸及表面粗糙度,并用丙酮、酒精清洗干净,吹风干燥后备用;
步骤二、将经过步骤一处理的钛合金TC4微动疲劳试样放入离子辅助磁控溅射设备中,保持试样与靶材的距离为100mm,抽真空至极限真空度10-5Pa;
步骤三、通入流量为180sccm的氩气,使得真空炉的气压保持在1.5×10-1Pa,采用轰击能量500V、束流80mmA的Ar+离子进行轰击清洗钛合金TC4微动疲劳试样表面15min;
步骤四、制备TiN相增强Ag固体润滑膜时氩气流量为180sccm,氮气流量为130sccm,总气压为2.3×10-1Pa;
步骤五、同时开启Ag靶和Ti靶电源,通过控制Ag靶电源400W~800W和Ti靶材电源800W来调节复合膜中成分,偏压-150V,辅助离子源轰击电源1000V,制备的膜层总厚度控制在4μm;
步骤六、钛合金TC4微动疲劳试样随炉冷却至室温。
CN201410730008.3A 2014-12-01 2014-12-01 离子辅助沉积TiN相增强Ag固体润滑膜的制备方法 Active CN104498885B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410730008.3A CN104498885B (zh) 2014-12-01 2014-12-01 离子辅助沉积TiN相增强Ag固体润滑膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410730008.3A CN104498885B (zh) 2014-12-01 2014-12-01 离子辅助沉积TiN相增强Ag固体润滑膜的制备方法

Publications (2)

Publication Number Publication Date
CN104498885A CN104498885A (zh) 2015-04-08
CN104498885B true CN104498885B (zh) 2017-01-04

Family

ID=52940335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410730008.3A Active CN104498885B (zh) 2014-12-01 2014-12-01 离子辅助沉积TiN相增强Ag固体润滑膜的制备方法

Country Status (1)

Country Link
CN (1) CN104498885B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603375B (zh) * 2016-03-07 2018-02-09 天津师范大学 磁控溅射技术制备的生物性TiN/Ag纳米多层薄膜及应用
CN105862001B (zh) * 2016-04-29 2019-04-05 天津师范大学 一种TiN-Ag纳米复合涂层及其制备方法与应用
CN108018529A (zh) * 2017-11-09 2018-05-11 南京工业大学 一种铝基燃料电池双极板表面复合涂层及其制备方法
CN108165863B (zh) * 2017-12-07 2019-09-20 中国科学院兰州化学物理研究所 一种自润滑Si3N4/Ag复合材料
CN116174546B (zh) * 2023-04-28 2023-07-14 佛山高谱机械科技有限公司 一种基于导电与自润滑复合作用的管材热弯曲方法

Also Published As

Publication number Publication date
CN104498885A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
CN104498885B (zh) 离子辅助沉积TiN相增强Ag固体润滑膜的制备方法
CN104131250B (zh) 一种梯度成分设计的纳米复合刀具涂层及其制备方法
Zalnezhad et al. Optimizing the PVD TiN thin film coating’s parameters on aerospace AL7075-T6 alloy for higher coating hardness and adhesion with better tribological properties of the coating surface
CN106191794A (zh) 钛合金表面超硬减摩耐磨复合膜层的覆层方法及钛合金材料
CN105839061A (zh) γ-TiAl合金表面的NiCoCrAlY/ZrO2复合涂层及制备方法
KR20140115418A (ko) 알루미늄 다이캐스팅 금형용 코팅재 및 이의 제조방법
CN106884149A (zh) 水环境耐磨涂层、其制备方法及应用
CN105586573B (zh) 一种可调制多层复合薄膜的制备方法
CN103978748B (zh) 一种中高温自润滑多弧离子镀多元梯度工具涂层及其制备方法
CN103029366A (zh) 一种含有NiCrN三元涂层的制品及制备方法
CN109402564A (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN104694893A (zh) 碳基减摩耐磨涂层及其制备方法
CN109837549A (zh) 一种钛合金表面制备减摩抗微动强化层的方法
Cao et al. Tribological and mechanical behaviors of engine bearing with CuSn10 layer and h-BN/graphite coating prepared by spraying under different temperatures
CN104264116B (zh) 一种在X80管线钢基材表面制备AlTiCrNiTa高熵合金涂层的工艺
CN106929799B (zh) 耐高温防护涂层及其制备方法与应用
CN104593720A (zh) 航空发动机压气机叶片抗沙尘冲蚀复合涂层及其制备方法
CN101294284A (zh) 一种耐冲蚀抗疲劳等离子表面复合强化方法
CN103552311B (zh) 一种用于单晶高温合金的防护涂层及其制备方法
CN108251803A (zh) TiB2自润滑涂层及其制备方法和耐磨构件
CN109576643A (zh) 一种TiSiVN多组元复合梯度刀具涂层及其制备方法
CN203938726U (zh) 碳基减摩耐磨涂层及工件
CN102094172B (zh) 一种TiWN/MoS2复合薄膜的制备方法
CN105063713A (zh) 一种航天器用铝合金表面复合膜及制备方法
CN103849834A (zh) 基于二硼化钛的复合刀具涂层及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant