CN105568233B - 一种实现m相二氧化钒纳米线择优取向排列生长的制备方法 - Google Patents

一种实现m相二氧化钒纳米线择优取向排列生长的制备方法 Download PDF

Info

Publication number
CN105568233B
CN105568233B CN201511034533.2A CN201511034533A CN105568233B CN 105568233 B CN105568233 B CN 105568233B CN 201511034533 A CN201511034533 A CN 201511034533A CN 105568233 B CN105568233 B CN 105568233B
Authority
CN
China
Prior art keywords
target
substrate
10min
cleaned
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511034533.2A
Other languages
English (en)
Other versions
CN105568233A (zh
Inventor
郑跃
王成迁
张坚发
熊伟明
邢未未
张惠艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201511034533.2A priority Critical patent/CN105568233B/zh
Publication of CN105568233A publication Critical patent/CN105568233A/zh
Application granted granted Critical
Publication of CN105568233B publication Critical patent/CN105568233B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明公开了一种实现M相二氧化钒纳米线择优取向排列生长的制备方法。本发明通过优化脉冲激光沉积技术方法实现了二氧化钒纳米线的择优取向排列生长。通过选择激光器和靶材,选择衬底,溅射通过简单的温度、氧压和沉积时间得到长度不同的VO2(M)纳米线阵列。该方法工艺十分简单,对设备要求低,重现性好,可控程度高,无毒害,符合环境要求。本发明采用脉冲激光沉积技术,操作简单,不会产生有毒气氛,也不会对实验人员造成伤害。本发明可以得到择优取向排列的VO2(M)纳米线,为VO2(M)纳米线组装和集成奠定了基础。

Description

一种实现M相二氧化钒纳米线择优取向排列生长的制备方法
技术领域
本发明涉及M相二氧化钒纳米线阵列的制备技术。
背景技术
在众多金属-绝缘体相变材料中,M相二氧化钒的相变温度最接近室温(∼68℃)。并且在相变前后,VO2(M)的结构由单斜(monoclinic)转变为金红石(rutile),电阻会有3-5个数量级的可逆突变,同时伴随有相变滞后现象。基于这一优异的可逆相变特性,VO2可以被开发并产生很多非常有前景的应用。因此VO2(M)也成为近几年研究最热的金属氧化物材料之一。另外,随着纳米技术的发展,研究人员发现由于小尺寸表面效应的影响,纳米材料表现出许多体材料所不具有的特殊的物理、化学和生物特性。其中,一维纳米材料,如纳米线、纳米棒、纳米带等,由于其独特的单一晶体结构,常常表现出非常独特的力学、电学、光学和磁学性质。利用一维纳米材料独有的这些特性,可以设计和制造各种性能优异和功能奇特的新型微电子器件。同时,更重要的是纳米线的研究和应用也非常符合电子器件微型化和智能化的发展趋势。
2005年,Guiton等人用化学气相沉积技术第一次生长出了形貌结构优异的VO2(M)纳米线。之后,基于Guiton的方法,Cheng等人发现可以在未抛光的无定形的石英表面生长出大量交错排布的纳米线,并且纳米线朝着空间各个方向生长,形成不受基底限制的自由状态(free standing)。在我们之前的研究中,利用脉冲激光沉积技术(PLD)快速生长出了大量M相二氧化钒纳米线。
以上方法生长的二氧化钒纳米线都是无规则分布在基底上边,很显然这不利于二氧化钒纳米线的大规模集成和应用。如果想要大规模利用纳米线来组装和集成微电子器件,就需要纳米线有规律的排布。
发明内容
本发明的目的在于克服现有技术的不足,提供一种实现M相二氧化钒纳米线择优取向排列生长的制备方法。
为了实现上述目的,本发明采用如下技术方案:
一种M相二氧化钒纳米线阵列的制备方法,包括如下步骤:
(1)选择激光器和靶材:激光器选用248nm的KrF准分子激光器,靶材选用VO2(M)靶材;
(2)清洗衬底:衬底选择石英晶体或蓝宝石晶体,先用丙酮超声清洗5-10min,然后用去离子水超声清洗5-10min,再用乙醇超声清洗5-10min,最后用去离子水超声清洗5-10min,之后用N2吹干并置于样品台上;
(3)溅射:溅射时将腔体内的本底真空抽至1.0×10-4Pa以上,样品台升温至750℃,升温速率20℃/min,然后通过气体流量计控制送入腔体内O2的含量,使腔体内的氧压控制在8Pa,衬底与靶材的间距控制在5cm;调节激光能量为300mj,激光频率1Hz,沉积50min;溅射过程中靶材匀速转动,样品台保持不动;溅射完毕后保温退火30min,最后自然降至室温。
作为优选,在上述制备方法,所述靶材为纯度99.9%的VO2(M)靶材。
作为优选,在上述制备方法,所述石英晶体或蓝宝石晶体的取向为<11-20>。本发明采用取向<11-20>的石英和蓝宝石晶体作为生长衬底,其晶格常数与M相二氧化钒的匹配度比较高。
作为优选,在上述制备方法,步骤(2)所述衬底需距离羽辉中心3cm。
与现有技术相比,本发明具有如下有益效果:
本发明通过优化脉冲激光沉积技术方法实现了二氧化钒纳米线的择优取向排列生长。通过选择激光器和靶材,选择衬底,溅射通过简单的温度、氧压和沉积时间得到长度不同的VO2(M)纳米线阵列。该方法工艺十分简单,对设备要求低,重现性好,可控程度高,无毒害,符合环境要求。本发明采用脉冲激光沉积技术,操作简单,不会产生有毒气氛,也不会对实验人员造成伤害。本发明可以得到择优取向排列的VO2(M)纳米线,为VO2(M)纳米线组装和集成奠定了基础。一维纳米线择优取向阵列是实现纳米线器件组装、集成和应用的基础,M相的二氧化钒纳米线在68℃附近有一个非常明显的结构相变,伴随着相变,其电阻率在相变前后有3-5个数量级的突变。利用这个性质,可以制作基于M相二氧化钒纳米线的传感器、存储器、光电开关和红外辐射探测器等。
附图说明
图1为不同衬底条件下VO2(M)纳米线的XRD测试结果图;
图2为生长在石英衬底上边择优取向排列的VO2(M)纳米线图;
图3为生长在蓝宝石衬底上边择优取向排列的VO2(M)纳米线图;
图4为低温低压下生长在(a)石英晶体和(b)蓝宝石晶体衬底的SEM形貌图。
具体实施方式
实施例1
脉冲激光沉积方法生长择优取向排列的M相二氧化钒纳米线时要选择合适的激光器和靶材,激光器选用248nm的KrF准分子激光器,靶材选用纯度为99.9%的VO2(M)靶材。纳米线生长之前首先对衬底进行清洗,衬底选择取向为<11-20>的石英晶体,清洗过程如下:先用丙酮超声清洗5-10min,然后用去离子水超声清洗5-10min,再用乙醇超声清洗5-10min,最后用去离子水超声清洗5-10min,之后用N2吹干并置于样品台上,需要注意的是衬底需距离羽辉中心3cm。溅射时将腔体内的本底真空抽至1.0×10-4Pa以上,样品台升温至750℃,升温速率20℃/min,然后通过气体流量计控制送入腔体内O2的含量,使腔体内的氧压控制在8Pa,衬底与靶材的间距控制在5cm。调节激光部分的参数,激光能量为300mj,激光频率1Hz,沉积50min。溅射过程中靶材匀速转动,样品台保持不动。溅射完毕后保温退火30min,最后自然降至室温。图2是生长在石英衬底上边择优取向排列的VO2(M)纳米线的扫描电镜图片,可以看出纳米线呈现良好的取向并工整排列。
实施例2
脉冲激光沉积方法生长择优取向排列的M相二氧化钒纳米线时要选择合适的激光器和靶材,激光器选用248nm的KrF准分子激光器,靶材选用纯度为99.9%的VO2(M)靶材。纳米线生长之前首先对衬底进行清洗,衬底选择取向为<11-20>的蓝宝石晶体,清洗过程如下:先用丙酮超声清洗5-10min,然后用去离子水超声清洗5-10min,再用乙醇超声清洗5-10min,最后用去离子水超声清洗5-10min,之后用N2吹干并置于样品台上,需要注意的是衬底需距离羽辉中心3cm。溅射时将腔体内的本底真空抽至1.0×10-4Pa以上,样品台升温至750℃,升温速率20℃/min,然后通过气体流量计控制送入腔体内O2的含量,使腔体内的氧压控制在6Pa,衬底与靶材的间距控制在5cm。调节激光部分的参数,激光能量为300mj,激光频率1Hz,沉积50min。溅射过程中靶材匀速转动,样品台保持不动。溅射完毕后保温退火30min,最后自然降至室温。图3是生长在蓝宝石衬底上边择优取向排列的VO2(M)纳米线,可以看出纳米线呈现良好的排布阵列。
实施例3
脉冲激光沉积方法生长择优取向排列的M相二氧化钒纳米线时要选择合适的激光器和靶材,激光器选用248nm的KrF准分子激光器,靶材选用纯度为99.9%的VO2(M)靶材。纳米线生长之前首先对衬底进行清洗,衬底选择取向为<11-20>的石英晶体,清洗过程如下:先用丙酮超声清洗5-10min,然后用去离子水超声清洗5-10min,再用乙醇超声清洗5-10min,最后用去离子水超声清洗5-10min,之后用N2吹干并置于样品台上,需要注意的是衬底需距离羽辉中心3cm。溅射时将腔体内的本底真空抽至1.0×10-4Pa以上,样品台升温至650℃,升温速率20℃/min,然后通过气体流量计控制送入腔体内O2的含量,使腔体内的氧压控制在5Pa,衬底与靶材的间距控制在5cm。调节激光部分的参数,激光能量为300mj,激光频率1Hz,沉积50min。溅射过程中靶材匀速转动,样品台保持不动。溅射完毕后保温退火30min,最后自然降至室温。图4(a)是低温低压下生长在石英晶体衬底的SEM形貌图片,在低温低压下纳米线很难生长出具有规则排列的阵列。
实施例4
脉冲激光沉积方法生长择优取向排列的M相二氧化钒纳米线时要选择合适的激光器和靶材,激光器选用248nm的KrF准分子激光器,靶材选用纯度为99.9%的VO2(M)靶材。纳米线生长之前首先对衬底进行清洗,衬底选择取向为<11-20>的蓝宝石晶体,清洗过程如下:先用丙酮超声清洗5-10min,然后用去离子水超声清洗5-10min,再用乙醇超声清洗5-10min,最后用去离子水超声清洗5-10min,之后用N2吹干并置于样品台上,需要注意的是衬底需距离羽辉中心3cm。溅射时将腔体内的本底真空抽至1.0×10-4Pa以上,样品台升温至650℃,升温速率20℃/min,然后通过气体流量计控制送入腔体内O2的含量,使腔体内的氧压控制在5Pa,衬底与靶材的间距控制在5cm。调节激光部分的参数,激光能量为300mj,激光频率1Hz,沉积50min。溅射过程中靶材匀速转动,样品台保持不动。溅射完毕后保温退火30min,最后自然降至室温。图4(b)是低温低压下生长在蓝宝石晶体衬底的SEM形貌图片,在低温低压下纳米线很难生长出具有规则排列的阵列。

Claims (1)

1.一种M相二氧化钒纳米线阵列的制备方法,其特征在于包括如下步骤:
(1)选择激光器和靶材:激光器选用248nm的KrF准分子激光器,靶材选用VO2(M)靶材;
(2)清洗衬底:衬底选择石英晶体或蓝宝石晶体,先用丙酮超声清洗5-10min,然后用去离子水超声清洗5-10min,再用乙醇超声清洗5-10min,最后用去离子水超声清洗5-10min,之后用N2吹干并置于样品台上;
(3)溅射:溅射时将腔体内的本底真空抽至1.0×10-4Pa以上,样品台升温至750℃,升温速率20℃/min,然后通过气体流量计控制送入腔体内O2的含量,使腔体内的氧压控制在8Pa,衬底与靶材的间距控制在5cm;调节激光能量为300mj,激光频率1Hz,沉积50min;溅射过程中靶材匀速转动,样品台保持不动;溅射完毕后保温退火30min,最后自然降至室温;
所述靶材为纯度99.9%的VO2(M)靶材;
所述石英晶体或蓝宝石晶体的取向为<11-20>;
步骤(2)所述衬底需距离羽辉中心3cm。
CN201511034533.2A 2015-12-31 2015-12-31 一种实现m相二氧化钒纳米线择优取向排列生长的制备方法 Active CN105568233B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511034533.2A CN105568233B (zh) 2015-12-31 2015-12-31 一种实现m相二氧化钒纳米线择优取向排列生长的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511034533.2A CN105568233B (zh) 2015-12-31 2015-12-31 一种实现m相二氧化钒纳米线择优取向排列生长的制备方法

Publications (2)

Publication Number Publication Date
CN105568233A CN105568233A (zh) 2016-05-11
CN105568233B true CN105568233B (zh) 2018-06-15

Family

ID=55878844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511034533.2A Active CN105568233B (zh) 2015-12-31 2015-12-31 一种实现m相二氧化钒纳米线择优取向排列生长的制备方法

Country Status (1)

Country Link
CN (1) CN105568233B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107190235B (zh) * 2017-05-03 2019-11-08 中山大学 一种实现多种二氧化钒低维结构的脉冲激光沉积的制备方法
CN108892172B (zh) * 2018-08-23 2020-05-01 电子科技大学 一种高相变潜热的vo2粉体的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102616849A (zh) * 2012-03-20 2012-08-01 大连民族学院 一种液相法直接合成m相二氧化钒纳米颗粒的方法
CN103409768A (zh) * 2013-08-29 2013-11-27 中国科学院合肥物质科学研究院 M相二氧化钒纳米粉体的制备方法
CN104071843A (zh) * 2013-03-30 2014-10-01 中国科学院合肥物质科学研究院 单分散的m相二氧化钒纳米颗粒的制备方法
CN104762605A (zh) * 2015-04-15 2015-07-08 哈尔滨工业大学深圳研究生院 一种使用脉冲激光沉积技术快速生长大量m相二氧化钒纳米线的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102616849A (zh) * 2012-03-20 2012-08-01 大连民族学院 一种液相法直接合成m相二氧化钒纳米颗粒的方法
CN104071843A (zh) * 2013-03-30 2014-10-01 中国科学院合肥物质科学研究院 单分散的m相二氧化钒纳米颗粒的制备方法
CN103409768A (zh) * 2013-08-29 2013-11-27 中国科学院合肥物质科学研究院 M相二氧化钒纳米粉体的制备方法
CN104762605A (zh) * 2015-04-15 2015-07-08 哈尔滨工业大学深圳研究生院 一种使用脉冲激光沉积技术快速生长大量m相二氧化钒纳米线的方法

Also Published As

Publication number Publication date
CN105568233A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN108950684A (zh) 一种制备单晶金属箔的方法
CN106987818B (zh) 一种蜂窝状TiO2-Ag纳米复合物及其制备方法
CN105568233B (zh) 一种实现m相二氧化钒纳米线择优取向排列生长的制备方法
CN105821391B (zh) 一种垂直基底生长硒化钨纳米片薄膜材料的可控快速制备方法
CN107287578A (zh) 一种大范围均匀双层二硫化钼薄膜的化学气相沉积制备方法
CN109023261B (zh) 一种石墨烯促进结晶的可转移钙钛矿氧化物压电织构薄膜的制备方法
CN108546919A (zh) 一种利用脉冲激光沉积制备独立分散铁酸钴纳米柱的方法
CN105671491B (zh) 采用蒸发镀膜可控制备多级次Bi‑Sb‑Te倾斜柱阵列的方法
CN103710746A (zh) 纳米结构碲单晶的制备方法
CN109881157B (zh) 一种周期性调控二氧化钒薄膜相变性质的方法
CN106082337A (zh) Vo2(m)纳米线有序阵列及其制备方法
CN108611677A (zh) 一种自然图案化单层硒化铜二维原子晶体材料及制备方法
CN107604310A (zh) 一种氧化镍‑钛酸钡纳米复合铁电薄膜材料及其制备方法与应用
CN103864460A (zh) 一种有序氧化钨纳米线阵列结构的制备方法
CN107190235B (zh) 一种实现多种二氧化钒低维结构的脉冲激光沉积的制备方法
CN106185897B (zh) 一种在多种基底上可控制备石墨烯纳米带的方法
Thodeti et al. Synthesis and characterization of ZnO nanostructures by oxidation technique
CN103882399A (zh) 基于柔性基底具有相变特性纳米氧化钒功能薄膜的制备方法
CN101550025B (zh) 一种具有高电致应变特性的锆酸铅基反铁电薄膜及其制备方法
CN106744724B (zh) 一种三碲化四铋纳米柱阵列膜及其制备方法
CN112647044B (zh) 基于可控卷曲二氧化钒薄膜的微纳致动器及其制备方法
Hojabri et al. Optical properties of nano-crystalline zirconia thin films prepared at different post-oxidation annealing times
KR20140128735A (ko) 이온 주입법에 의한 그래핀의 두께 조절 방법 및 그래핀의 제조방법
CN109797367B (zh) 一种锆钛酸铅/氧化镍铁电超晶格薄膜材料及其制备方法
CN114134461B (zh) 一种具有网状结构的钨铋酸薄膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant