CN105565261B - 定向自组装模板转移方法 - Google Patents

定向自组装模板转移方法 Download PDF

Info

Publication number
CN105565261B
CN105565261B CN201610067780.0A CN201610067780A CN105565261B CN 105565261 B CN105565261 B CN 105565261B CN 201610067780 A CN201610067780 A CN 201610067780A CN 105565261 B CN105565261 B CN 105565261B
Authority
CN
China
Prior art keywords
cushion
block copolymer
silicon
gas
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610067780.0A
Other languages
English (en)
Other versions
CN105565261A (zh
Inventor
孟令款
闫江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201610067780.0A priority Critical patent/CN105565261B/zh
Publication of CN105565261A publication Critical patent/CN105565261A/zh
Application granted granted Critical
Publication of CN105565261B publication Critical patent/CN105565261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明提供了一种定向自组装模板转移方法,包括:提供半导体衬底,在所述半导体衬底上形成掩模层;在所述掩模层上形成缓冲层;在所述缓冲层上形成嵌段共聚物;对所述嵌段共聚物进行定向自组装,分别形成由所述嵌段共聚物的第一组分和第二组分构成的第一区域和第二区域;选择性去除所述第一区域并保留所述第二区域以形成预定图案;利用所述预定图案对所述缓冲层进行刻蚀以形成缓冲层图案;以及以所述缓冲层图案为掩模,对所述掩模层进行刻蚀,以形成掩模层图案。在本发明的定向自组装模板转移方法中引入了由非晶硅或多晶硅构成的缓冲层,降低了刻蚀过程中对嵌段共聚物分子弱刻蚀特性的高度依赖,因此能够得到高保真和重复性好的刻蚀结构。

Description

定向自组装模板转移方法
技术领域
本发明涉及集成电路制造领域,更具体地说,涉及一种利用嵌段共聚物定向自组装技术制造纳米尺度图形的方法。
背景技术
当前,硅基CMOS集成电路技术节点已跨过微米、亚微米、深亚微米阶段进入到了纳米时代,国际主要半导体厂商美国Intel公司在2012年便正式推出了革命性的包含三维多栅晶体管结构(Finfet)的22nm微处理器。中国台湾的TSMC公司从2012年开始正式量产28纳米的高K金属栅集成电路芯片。目前面向基于三维多栅架构的16/14nm节点的工艺研发工作也已全面开展,并已有商用产品推出。
光刻技术是支撑上述集成电路器件更新换代的核心制造技术之一,每一代新的集成电路的出现,总是以光刻工艺实现更小特征尺寸为主要技术标志的。目前,工业界采用193nm光刻,结合浸没式光刻技术、双(多)重图形曝光技术,已经将193nm光学光刻技术延伸到了32nm、20nm甚至到16/14nm节点。然而,极高的工艺开发成本、工艺复杂性及光刻本身的物理限制,制约着现有的光刻技术的进一步发展,尤其在面临更小尺寸的图形制作时存在很大的局限性。因此,业内急需一种能够兼顾精度与成本的解决方案。
定向自组装(Directed Self-assembly,DSA)是一种潜力巨大的自下而上(Bottomup)的纳米图形加工技术。使用嵌段共聚物(Block Copolymer)材 料通过DSA技术能够在高度有序的二维薄膜上形成规则的纳米结构。而传统的光学曝光技术很难在这个尺度上进行图案化加工。因此,利用DSA技术替代传统光学曝光技术进行微纳电子器件加工,具有成本低廉、图形分辨率高、边缘粗糙度低等优点,在大面积规则图案制作、通孔制作方面有其独特的优势,在近几年已经引起广泛关注。
通过构建自组装模板制备纳米结构及纳米器件已经成为当前的研究热点。这种方法的关键在于先利用嵌段共聚物自组装技术制备模板(模板制备),进而形成光刻图形,然后用干法刻蚀技术将其转移到衬底上(模板转移),从而可以用来制备不同尺寸可控的纳米结构阵列和纳米器件。通过改变嵌段共聚物的链长、组成、退火条件等,使其在薄膜、孔、槽中进行定向自组装,可以形成不同的图案,如球状、柱状、层状等。
嵌段共聚物自组装的表面形态与其厚度紧密相关,因此嵌段共聚物材料的厚度一般控制在50nm以下,这对于刻蚀而言是一个很薄的厚度。由于易于制备,PS-b-PMMA是被最广泛研究的嵌段共聚物材料。每个嵌段都具有很窄的分子量分布范围,PS和PMMA的表面能很相近,而且PMMA本身就是一个标准的光刻胶。这种材料之所以引人注目,是由于采用氧等离子体刻蚀将PMMA从模板上选择地去除,而仅留下PS,从而可以用来形成光刻图形。然后,以PS作为掩模层,再进行接下来的刻蚀。另外,为了增强图形的抗蚀性,业界又开发了原子层沉积Al2O3(ALD Al2O3)增强的转移技术,将图形转移到下面的掩模(一般是SiO2)上,或直接进行衬底的刻蚀。以Al2O3作为掩模层刻蚀硅衬底,这种技术能够极大的降低刻蚀对嵌段共聚物的依赖。然而,在Al2O3向下层SiO2转移过程中,产生的附产物易于沉积在底部,导致掩模层难以彻底打开,因此往往需要大量的过 刻蚀及必要的清洗过程,使得较难控制。
本发明提供了一种新的定向自组装模板转移方法,不需要复杂的工艺过程,易于制备,有利于实现大规模生产。
发明内容
为了解决现有技术中存在的问题,本发明提供了一种定向自组装模板转移方法,包括以下步骤:
1)提供半导体衬底,在所述半导体衬底上形成掩模层;
2)在所述掩模层上形成缓冲层;
3)在所述缓冲层上形成嵌段共聚物;
4)对所述嵌段共聚物进行定向自组装,分别形成由所述嵌段共聚物的第一组分和第二组分构成的第一区域和第二区域;
5)选择性地去除所述第一区域并保留所述第二区域以形成预定图案(即光刻图形);
6)利用所述预定图案对所述缓冲层进行刻蚀以形成缓冲层图案;以及
7)以所述缓冲层图案为掩模,对所述掩模层进行刻蚀,以形成掩模层图案。
根据本发明的定向自组装模板转移方法,进一步包括:利用所述掩模层图案对所述衬底进行刻蚀,形成衬底图案。
根据本发明的定向自组装模板转移方法,其中,所述缓冲层为多晶硅或非晶硅。
根据本发明的定向自组装模板转移方法,其中,所述掩模层是氧化硅、氮化硅、旋涂的非晶碳(SOC),CVD沉积的非晶碳、硅基抗反射材料Si ARC中的一种,或者是氧化硅/氮化硅、Si ARC/SOC/氧化硅或氮化硅的复合结构。
根据本发明的定向自组装模板转移方法,其中,刻蚀所述缓冲层的气体 为以下之一或其组合:碳氟基气体,卤基气体、SF6。
根据本发明的定向自组装模板转移方法,其中,所述卤基气体为以下之一或其组合:Cl2、HBr。
根据本发明的定向自组装模板转移方法,其中,刻蚀所述掩模层的气体为碳氟基气体和氧化性气体的组合气体。
根据本发明的定向自组装模板转移方法,其中,所述碳氟基气体为以下之一或其组合:CF4、CHF3、CH2F2、CH3F、C3F6、C4F6、C4F8。
根据本发明的定向自组装模板转移方法,其中,所述氧化性气体为以下之一或组合:O2、CO。
根据本发明的定向自组装模板转移方法,其中,所述半导体衬底是体硅、SOI、Ge、GeOI、应变硅、GeSi等硅基或锗基四族材料中的一种,或者是III、V族非硅基材料。
根据本发明的定向自组装模板转移方法,在硬掩模层与嵌段共聚物层之间形成了由非晶硅或多晶硅构成的缓冲层。由于缓冲层对嵌段共聚物中的PS具有较高的抗蚀性,因此在刻蚀过程中先将PS层图案转移到缓冲层上形成缓冲层图案,然后再将缓冲层图案转移到下面的硬掩模层上。由于在本发明的定向自组装模板转移方法中引入了由非晶硅或多晶硅构成的缓冲层,降低了刻蚀过程中对嵌段共聚物分子弱刻蚀特性的高度依赖,因此能够得到高保真和重复性好的刻蚀结构。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。在附图中:
图1是根据本发明的一个实施方式进行刻蚀之前的半导体结构示意图;
图2是根据本发明的一个实施方式去除嵌段共聚物层第一区域后的半导体结构示意图;
图3是根据本发明的一个实施方式刻蚀形成缓冲层图案后的半导体结构示意图;
图4是根据本发明的一个实施方式刻蚀形成硬掩模层图案后的半导体 结构示意图;以及
图5是根据本发明的一个实施方式对半导体衬底进行刻蚀后的半导体结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施例作详细描述。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
下面结合附图和实施例,对本发明作进一步详细说明。
如图1所示,提供半导体衬底100。该半导体衬底100可以是硅基或锗基材料,例如体硅、SOI、Ge、GeOI、应变硅、GeSi中的一种,优选为体硅衬底,还可以是III、V族材料或其他衬底材料。
在半导体衬底100上采用化学气相沉积或其他方法形成硬掩模层101。该硬掩模层101可以是氧化硅、氮化硅、旋涂的非晶碳(SOC),CVD沉积的非晶碳、硅基抗反射材料(SiARC)中的一种,或者是氧化硅/氮化硅、Si ARC/SOC/氧化硅或氮化硅的复合结构,或是由其他电介质材料组合而成的复合结构,以满足不同线宽尺寸对转移的要求。当然,也可以采用其他薄膜形成该硬掩模层,本发明对此不作严格限定。
然后,在硬掩模层101上形成缓冲层104。该缓冲层104可以是非晶硅或多晶硅。可以通过已知的沉积工艺,例如CVD、原子层沉积、外延等,在硬掩模层101上外延形成非晶硅或多晶硅的缓冲层104。
随后,利用嵌段共聚物定向自组装技术在缓冲层104上形成嵌段共聚物层105。可以采用已有的DSA技术,例如制图外延法(Graphoepitaxy)或者表面化学图案(SurfaceChemical Pattern)法,形成嵌段共聚物层105,本发明对形成嵌段共聚物的DSA技术不做具体限定。通过改变嵌段共聚物的链长、组成、退火条件等,使其在薄膜、孔、槽中进行定向自组装,可 以形成不同的嵌段共聚物层图案,如球状、柱状、层状等。本发明对嵌段共聚物层的图案不做具体限定。
根据本发明的一个实施方式,嵌段共聚物层105可以由二元嵌段共聚物形成。然而,该嵌段共聚物层105也可以由多元嵌段共聚物形成。该嵌段共聚物可以选自PS-b-PMMA、PS-b-PSSi、PS-b-PDMS或者PS-b-PVP等二元嵌段共聚物或其他多元共聚物,但本发明不限于此。作为一个例子,在本发明中采用二嵌段共聚物PS-b-PMMA形成嵌段共聚物层105。然而,在其他例子中,可以采用任何适当的嵌段共聚物形成嵌段共聚物层105。此处,作为一个例子,嵌段共聚物层105包括由第一组分PMMA构成的第一区域103和由第二组分PS构成的第二区域102。
接下来,如图2所示,去除由第一组分PMMA构成的第一区域103,保留由第二组分PS构成的第二区域102,形成嵌段共聚物图案。可以采用氧等离子体刻蚀等适当方法去除第一区域103,本发明对此不做具体限定。
随后,如图3所示,以嵌段共聚物的第二组分构成的第二区域102为掩模,刻蚀缓冲层104,形成缓冲层图案。缓冲层104可以由非晶硅或多晶硅形成。可以采用任何适当的刻蚀工艺,例如等离子体刻蚀、离子铣、反应离子刻蚀、高密度等离子体刻蚀等干法刻蚀工艺,对缓冲层104进行刻蚀。本发明对此不做具体限定。
接着,如图4所示,以缓冲层图案为掩模,对硬掩模层101进行刻蚀。可以采用等子体干法刻蚀技术将缓冲层的图形转移到下面的硬掩模101上,形成硬掩模层图案。
至此,完成了根据本发明的定向自组装模板转移方法的所有步骤。
可选的是,根据本发明的定向自组装模板转移方法还可以进一步包括以硬掩模层图案为掩模,对半导体衬底100进行刻蚀的步骤。具体来说,可以采用等离子体刻蚀等干法刻蚀技术对半导体衬底100进行刻蚀,形成衬底图案。此处的衬底图案可以是为槽、孔、洞、线型及其他规则或非规则图形或图案。在此处形成的半导体结构的基础上,可以根据已有的半导体制造工艺,形成源漏区、栅极等半导体结构,最终形成所需的半导体器件。
在现有技术中,通常以Al2O3作为掩模层,使得掩模层图案向下层SiO2 层转移过程中产生的附产物易于沉积在底部,导致掩模层难以彻底打开,因此往往需要大量的过刻蚀及必要的清洗过程,使得较难控制。
根据本发明的定向自组装模板转移方法,在硬掩模层101与嵌段共聚物层105之间形成了由非晶硅或多晶硅构成的缓冲层104。由于缓冲层104具有对PS较高的抗蚀性,因此在刻蚀过程中先将PS层图案转移到缓冲层104上形成缓冲层图案,然后再将缓冲层图案转移到下面的硬掩模层上。由于在本发明的定向自组装模板转移方法中引入了由非晶硅或多晶硅构成的缓冲层,降低了刻蚀过程中对嵌段共聚物分子弱刻蚀特性的高度依赖,因此能够得到高保真和重复性好的刻蚀结构。
根据本发明的定向自组装模板转移方法克服了现有技术中的上述缺陷,简化了工艺过程且易于制备,有利于降低成本并实现大规模生产。
虽然关于示例实施例及其优点已经详细说明,应当理解在不脱离本发明的精神和所附权利要求限定的保护范围的情况下,可以对这些实施例进行各种变化、替换和修改。对于其他例子,本领域的普通技术人员应当容易理解在保持本发明保护范围内的同时,工艺步骤的次序可以变化。
此外,本发明的应用范围不局限于说明书中描述的特定实施例的工艺、结构、制造、物质组成、手段、方法及步骤。从本发明的公开内容,作为本领域的普通技术人员将容易理解,对于目前已存在或者以后即将开发出的工艺、结构、制造、物质组成、手段、方法或步骤,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、结构、制造、物质组成、手段、方法或步骤包含在其保护范围内。

Claims (10)

1.一种定向自组装模板转移方法,包括:
1)提供半导体衬底,在所述半导体衬底上形成掩模层;
2)在所述掩模层上形成缓冲层,所述缓冲层为多晶硅或非晶硅;
3)在所述缓冲层上形成嵌段共聚物;
4)对所述嵌段共聚物进行定向自组装,分别形成由所述嵌段共聚物的第一组分和第二组分构成的第一区域和第二区域;
5)选择性去除所述第一区域并保留所述第二区域以形成预定图案;
6)利用所述预定图案对所述缓冲层进行刻蚀以形成缓冲层图案;以及
7)以所述缓冲层图案为掩模,对所述掩模层进行刻蚀,以形成掩模层图案。
2.根据权利要求1所述的方法,进一步包括:利用所述掩模层图案对所述衬底进行刻蚀,形成衬底图案。
3.根据权利要求1或2所述的方法,其中,所述掩模层是氧化硅、氮化硅、旋涂的非晶碳(SOC)或CVD沉积的非晶碳、硅基抗反射材料Si ARC中的一种,或者是氧化硅和氮化硅的复合结构、Si ARC和SOC和氧化硅的复合结构或Si ARC和SOC和氮化硅的复合结构。
4.根据权利要求1或2所述的方法,其中,刻蚀所述缓冲层的气体为以下之一或其组合:碳氟基气体,卤基气体、SF6
5.根据权利要求4所述的方法,其中,所述卤基气体为以下之一或其组合:Cl2、HBr。
6.根据权利要求1所述的方法,其中,刻蚀所述掩模层的气体为碳氟基气体和氧化性气体的组合气体。
7.根据权利要求6所述的方法,其特征在于,所述碳氟基气体为以下之一或其组合:CF4、CHF3、CH2F2、CH3F、C3F6、C4F6、C4F8
8.根据权利要求6所述的方法,其中,所述氧化性气体为以下之一或其组合:O2、CO。
9.根据权利要求1或2所述的方法,其中,所述半导体衬底是硅基或锗基四族材料或者是III、V族非硅基材料。
10.根据权利要求9所述的方法,其中,所述硅基或锗基四族材料是以下材料中的一种:体硅、SOI、Ge、GeOI、应变硅、GeSi。
CN201610067780.0A 2016-01-29 2016-01-29 定向自组装模板转移方法 Active CN105565261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610067780.0A CN105565261B (zh) 2016-01-29 2016-01-29 定向自组装模板转移方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610067780.0A CN105565261B (zh) 2016-01-29 2016-01-29 定向自组装模板转移方法

Publications (2)

Publication Number Publication Date
CN105565261A CN105565261A (zh) 2016-05-11
CN105565261B true CN105565261B (zh) 2018-02-16

Family

ID=55875983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610067780.0A Active CN105565261B (zh) 2016-01-29 2016-01-29 定向自组装模板转移方法

Country Status (1)

Country Link
CN (1) CN105565261B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3967114B2 (ja) * 2001-11-22 2007-08-29 株式会社東芝 加工方法
US8021897B2 (en) * 2009-02-19 2011-09-20 Micron Technology, Inc. Methods of fabricating a cross point memory array
KR20120081661A (ko) * 2010-12-20 2012-07-20 에스케이하이닉스 주식회사 자기조립단분자층을 이용한 포토마스크의 형성방법
CN103177936A (zh) * 2011-12-26 2013-06-26 中芯国际集成电路制造(北京)有限公司 半导体器件制造方法
EP2733533B1 (en) * 2012-11-14 2018-02-28 IMEC vzw Etching method using block-copolymers
KR102105067B1 (ko) * 2013-03-15 2020-04-27 삼성전자주식회사 반도체 소자의 미세 패턴 형성 방법

Also Published As

Publication number Publication date
CN105565261A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN105565260B (zh) 嵌段共聚物自组装制造纳米结构的方法
US8557613B2 (en) Methods for designing, fabricating, and predicting shape formations in a material
US7855148B2 (en) Methods of isolating array features during pitch doubling processes and semiconductor device structures having isolated array features
US10211051B2 (en) Method of reverse tone patterning
US9466534B1 (en) Cointegration of directed self assembly and sidewall image transfer patterning for sublithographic patterning with improved design flexibility
US20120238097A1 (en) Method for fabricating fine line
CN108321079A (zh) 半导体结构及其形成方法
US9659824B2 (en) Graphoepitaxy directed self-assembly process for semiconductor fin formation
CN106486343A (zh) 用于集成电路图案化的方法
CN104658892A (zh) 用于集成电路图案化的方法
US20150031207A1 (en) Forming multiple gate length transistor gates using sidewall spacers
CN109545790A (zh) 三维存储器的沟道孔的形成方法
JP2015534726A (ja) シリコンエッチング法
CN111261586B (zh) 一种中孔半导体纳米结构的制作方法
US7935638B2 (en) Methods and structures for enhancing perimeter-to-surface area homogeneity
US20170271163A1 (en) Block patterning method enabling merged space in sram with heterogeneous mandrel
CN107424923A (zh) 一种自限制精确刻蚀硅的方法
CN105565261B (zh) 定向自组装模板转移方法
Meng et al. A novel nanofabrication technique of silicon-based nanostructures
Zheng et al. Sub-lithographic patterning via tilted ion implantation for scaling beyond the 7-nm technology node
CN110534415A (zh) 一种多尺寸栅极及其制造方法
CN106553993A (zh) 与cmos工艺兼容的纳米结构制备方法
CN108091553B (zh) 掩模图形的形成方法
CN103681451A (zh) 沟槽结构的制造方法
CN109494149A (zh) 半导体结构的制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant