CN105555444A - 通过图像分析监控激光束的能量密度的方法和相应装置 - Google Patents

通过图像分析监控激光束的能量密度的方法和相应装置 Download PDF

Info

Publication number
CN105555444A
CN105555444A CN201480051428.7A CN201480051428A CN105555444A CN 105555444 A CN105555444 A CN 105555444A CN 201480051428 A CN201480051428 A CN 201480051428A CN 105555444 A CN105555444 A CN 105555444A
Authority
CN
China
Prior art keywords
laser beam
image
parameter
reference substrate
supervising
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480051428.7A
Other languages
English (en)
Other versions
CN105555444B (zh
Inventor
西里尔·鲍迪蒙特
朱利恩·富凯
迪迪尔·莫纳特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of CN105555444A publication Critical patent/CN105555444A/zh
Application granted granted Critical
Publication of CN105555444B publication Critical patent/CN105555444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/286Optical filters, e.g. masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • B23K2101/35Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本发明涉及一种使用激光束(3)的参数监控激光束(3)的能量密度的方法(S),包括以下步骤:将激光束(3)定期施加到基准衬底,并在各个施加期间测量所得的光强度(S4);识别在至少两次测量之间基准衬底上的光强度变化(S6,S7,S8);并且,在光强度变化高于给定阈值时,测定激光束(3)的能量密度的不稳定参数(S8)。

Description

通过图像分析监控激光束的能量密度的方法和相应装置
技术领域
本发明涉及通过选择性激光熔化(SLM)制造零件的领域,选择性激光熔化即能够在可控的气氛中通过大功率激光器逐渐局部地(即,选择性地)熔化金属粉末制造金属零件的增材制造的技术。
背景技术
选择性激光熔化是一种能够根据模制零件的模型的三维CAD数据通过将粉末状材料沉积成层来制造成型体(例如产品原型或组件原型)的方法。将若干层粉末依次沉积在彼此之上,使得在沉积下一层之前,通过大功率(200W~几kW)的聚焦激光束施加到与成型体的模型的给定横截面区域对应的粉末层的给定区域上,将每个粉末层加热到给定温度。按照模型的给定横向表面的CAD数据,将激光束导引到各个粉末层上面,使得各个粉末层附接到下层。通过重复提供粉末并通过激光熔化粉末能够逐渐增厚该零件并获得所需形状。
这种激光选择性熔化方法的实例尤其在文件FR2970887和US6215093中已有所描述。
为了获得具有冶金质量并呈现涡轮发动机领域中所特别采用公差的尺寸的零件,必要的是激光束的能量密度在制造平面(粉末床)中和在暴露于激光期间保持恒定。
能量密度取决于三个参数:激光束的功率、速度和尺寸。
目前,通过独立地测量这三个参数来间接得到激光束的能量密度的监控。不过,这种监控具有需要通过不同的设备连续进行单独测量的缺点。除了在工业中应用冗长且困难,激光束的能量密度的这种监控并不是鲁棒性的,测量经历由所使用的设备的漂移而被失真的风险。这些设备是进一步具体的并且为了使用通常需要训练和特殊技能,进一步地,这些设备昂贵、易碎和应用时间长,并且必须定时检查。最后,整个制造空间对于这些测量是不可能的。
在文件EP1466718中,已经提出了一种用于通过热视觉系统(诸如红外照相机)所获取的目标区域的图像来控制目标区域(诸如粉末床)的温度的方法。然后,将由此确定的温度与所需温度进行比较,这能够提高粉末床的整体温度的控制。然而,这种方法决不允许确定激光束的能量密度是否稳定,或其所依赖的参数之一是否不稳定。事实上,问题仅仅是调节激光束的温度,以便避免粉末床的温度差异,这将有损于人们所寻求制造的部件的质量。
文件DE10320085对此描述了一种用于通过选择性熔化制造零件的方法,在该方法期间调节光密度以提高该零件的最终密度。特别是通过测量待熔化的粉末的厚度的CCD照相机和测定它的温度的高温计来调节光密度的适应。因此,这个文件不涉及控制激光束的能量密度的稳定性。
最后,文件DE102010027910涉及一种通过激光熔化制造零件的方法,在其期间,定期测量激光器的功率,以便检测关于预期的功率值的可能偏差。因此,这个文件仅提出了测量对激光束的能量密度起作用的参数之一,而其它参数未被测定。
因此,这些文件都没有提出一种以简单且节约成本的方式用于检测能量密度的参数漂移的可靠且快速的方式。
发明内容
因此,本发明的目的是提出克服现有技术的缺点的一种用于监控激光束的能量密度的方法和一种相关联的监控装置,这允许与现有技术相比以节约成本并可工业化的方式快速检测一部分参数(激光束的功率、速度和尺寸)的漂移,并且这在整个生产空间中。
为此,本发明提出了一种根据激光束的至少两个参数监控所述激光束的能量密度的方法,所述方法包括以下步骤:
将所述激光束定期施加到基准衬底上,并在各个施加期间测量在所述基准衬底上所得的光强度;
识别在至少两次测量之间所述基准衬底上的光强度变化;以及
在所述光强度变化大于给定阈值时,确定所述激光束的能量密度的不稳定参数。
上述监控方法的某些优选但非限定性的特征如下:
所述激光束的能量密度由三个参数监控,所述三个参数尤其包括所述激光束的功率、速度和尺寸;
施加并定期测量所述基准衬底上的光强度的步骤包括以下子步骤:
(i)施加所述激光束到基准衬底上并获取所述基准衬底上的激光束的图像,以便获得基准图像;
(ii)测定所述基准图像中的激光束的施加点处的光强度,以及
(iii)定期施加所述激光束到所述基准衬底上并获取所述基准衬底上的激光束的图像,以便获得监控图像,并且在所述监控图像中的激光束的施加点处测定所述基准衬底上的光强度,并且
识别所述光强度变化的步骤包括以下子步骤:
(iv)比较由此获得的监控图像的光强度与所述基准图像的光强度,以及
(v)由此推断所述激光束的能量密度变化;
所述光强度通过测量所述基准图像的灰度级和所述监控图像的灰度级进行测定;
所述基准图像的灰度级和所述监控图像的灰度级在多个点处进行测量,使得所述光强度通过对各个图像的各个点中的强度分布求平均值进行测定;
在将所述激光束施加到基准表面上以获取所述基准图像之前,所述监控方法进一步包括初始步骤,在所述初始步骤期间,测定所述参数的初始值,并且,在所述光强度变化大于给定阈值时,所述方法进一步包括以下子步骤:测定所述激光束的参数值并比较所述激光束的参数值与所述参数的初始值,以便识别所述不稳定参数,以及调整所述激光器以便使所述不稳定参数重新稳定;
一旦调整了所述激光器,则用所述激光束再重复所述步骤(i)~(iii),以便勾勒出新的基准图像;以及
所述初始步骤也进行再重复。
本发明也提出了一种根据激光束的至少两个参数监控所述激光束的能量密度的装置,所述参数包括所述激光束的功率、速度和/或尺寸,所述装置能够监控根据如上所述的激光束的能量密度,并且,所述装置包括:
图像采集系统,被配置用于获取所述基准衬底上的激光束的图像,以及
图像处理系统,被设置用于比较由所述图像采集系统获取的不同的图像的光强度,并识别在至少两次测量之间所述基准衬底上的光强度变化,以及
数据处理机构,被设置用于由所述光强度变化确定所述激光束的至少一个参数是否不稳定。
监控装置的特定优选但非限制性特征如下:
所述基准衬底包括均匀的涂层;
所述基准衬底包括铝合金板;
所述铝合金板经阳极化处理,并且包括阳极化层;
所述阳极化层是黑色的;
所述阳极化层的厚度为所述铝合金板的厚度的0.5%~3%,优选为所述铝合金板的厚度的约1%;
所述铝合金板的厚度为约1mm,而所述阳极化层的厚度为约0.01mm。
附图说明
通过阅读下文中参考以非限定性示例给出的附图进行的详细说明,本发明的其它特征、目的和优点将更加明显,在附图中:
图1是表示根据本发明监控激光束的能量密度的方法的示例性实施方式的各个步骤的流程图;
图2是示出图像的强度分布(即,灰度级对距离(以像素计))的实例的曲线图;
图3示出了激光束的能量密度下降的实例;并且
图4示意性示出了根据本发明的一种监控激光束的能量密度的装置的实例。
具体实施方式
为了在制造平面中和在暴露到激光器功率期间监控激光束3的能量密度的恒定性,本发明提出了一种用于由激光束3的至少两个参数监控能量密度的方法S,包括以下步骤:
将所述激光束3定期施加到基准衬底7上,并在各个施加期间测量在所述基准衬底上所得的光强度S4;
识别在至少两次测量之间所述基准衬底7上的光强度变化S6,S7,S8;以及
在所述光强度变化大于给定阈值时,确定所述激光束3的能量密度的不稳定参数S8。
本发明是基于这样的事实:通过将激光束3施加到给定衬底上所获得的光强度代表这个激光器2的能量密度。因此,能够专门限制在基准衬底7上获得的光强度的测量参数的数目,然后由此推断出激光器3的能量密度变化,并因此推断其参数中的至少一个参数的不稳定性,以使得测量的数目和测量它们的难度与现有技术相比大大降低。因此,方法S的施用更快且更容易。
此外,方法S可以通过监控能量密度的装置1进行施用,包括常见设备,而不需要或几乎不需要培训或特殊技能,诸如:
图像采集系统4,被配置用于获取基准衬底7上的激光束3的图像,以及
图像处理系统5,被设置用于比较由图像采集系统4获取的不同的图像的光强度,并识别在至少两次测量之间所述基准衬底7上的光强度变化,以及
数据处理机构6,被设置用于由所述光强度变化确定所述激光束3的至少一个参数是否不稳定。
例如,图像采集系统4可以是扫描仪、照相机或另外的摄像机,而图像处理系统5可以包括图像处理软件包,并且数据处理装置6可以包括中央单元,该中央单元可选地连接到适于显示方法S的结果的界面设备6。
此外,能够监控激光束3的能量密度的激光束3的参数选自激光束3的功率、速度和尺寸。优选地,在监控方法S期间检测这三个参数。
将光强度与基准光强度比较,基准光强度对应于基准衬底7上的光强度,其代表在它的参数稳定时在相同或类似的条件下测定的激光束3的能量密度。
基准光强度可以如下进行测量。
在第一步骤S1期间,用具体的设备以常规方式测量参数(光束的功率、速度和/或尺寸)。如果所获得的测量结果不相符,则修正激光器2,并再次进行测量以检查修正后的参数的一致性。
然后,例如,在数据处理装置6中,记录所获得的测量结果。
然后确定基准光强度。
为此,将激光束3施加到基准衬底7上,并且通过图像采集系统4(例如扫描仪)获取基准衬底7上的光束的图像(步骤S2),然后获得基准图像。
然后,可以用图像处理系统5将基准图像转换成灰度级。图像处理系统5例如可以特别是通过产生在每个点处的强度分布来在几个点处测量这个基准图像中暴露于激光束3的表面的灰度级(图2)。最后,基准光强度可以通过产生暴露的表面的全部点上的灰度级的平均值Mx进行测定(步骤S3)。
然后,数据处理装置6可以记录与基准光束的参数的测量相关的基准光强度。
然后,通过将激光束3定期施加到基准衬底7上,并且通过在这个基准衬底7上的激光束3的落点处监控在与基准光强度相同的条件下测量并测定的光强度随时间的变化,以快速、容易且不太昂贵的方式,可以定期进行激光束3的能量密度的监控。事实上,足以例如周期性定期重复光强度的测量。
为此,在给定时间之后,将激光器的光束施加到相同的基准衬底7上,或者至少施加到相同或类似的基准衬底7上。优选地,在相同条件(相对于基准衬底7的高度、位置和倾斜度等)下,施加激光束以产生基准图像。
通过图像采集系统4(例如扫描仪)获取基准衬底7上的光束的图像(步骤S4),然后获得监控图像。
然后,以与基准图像相似的方式处理监控图像,以获得易于比较的数据。因此,可以通过图像处理系统5将监控图像转换成灰度级,图像处理系统5尤其是通过产生在各个点处的强度分布来测量在几个点处这个图像中的暴露于激光束3中的表面的灰度级。最后,监控图像的光强度可以通过暴露表面的全部点上的灰度级的平均值Mx进行测定(步骤S5)。
然后,将监控图像的光强度与基准光强度进行比较,在数据处理装置6(步骤S6)中预先确定并记录这种激光束3的基准光强度。
在监控图像中的光强度和基准光强度之间的差值小于给定阈值时,能量密度被认为是稳定的。因此,激光器2未被调整,并且可以根据监控激光束3的能量密度所选择的周期性来计划下一次监控(步骤S7)。
例如,通过模拟光束的能量密度下降到可接受的限值并通过测量基准衬底7上光束的这种能量密度的所得光强度,可以实验设置给定的阈值。
因此,在下一个监控期间,用数据处理装置6中记录的基准光强度的值和参数值重复步骤S4~S6。
另一方面,在监控图像的光强度和基准光强度之间的差值达到或超过给定阈值时,能量密度降低(图3)。在这种情况下,通过用具体设备以常规方式测量每个参数,人们然后搜索不稳定的能量密度的参数(步骤S8)。
一旦确定了不稳定参数,则可以修正激光器2(S9)。
然后,根据上述步骤S1~S3,可以进行基准光强度的新测量并记录新的参数值,然后通过继续监控激光束3的能量密度可以重复进行方法S。当然,应理解的是,这种监控是通过比较监控图像的光强度与新的基准强进行的,以便将激光器2的调整考虑在内。
或者,也能够保留基准光强度而无需再次进行新的测量,在这种情况下,监控通过比较监控图像的光强度与最初确定的基准光强度进行的。
基准衬底7优选包括具有对接受到的能量敏感的均匀涂层的表面。这尤其可以是阳极化的铝合金板,阳极化层尤其可以是黑色的。因此,这样的阳极化的铝合金板7允许通过均匀涂层来提高监控的质量。事实上,在将激光施加到包含阳极化层的铝合金板7上时,激光局部地熔化阳极化层。在激光束的能量密度充足时,然后获得金属光辉,因此在获取图像时获得最大的光强度(S2,S4)。另一方面,在束的能量密度降低时,获得了灰色色调。
在一个实施方式中,铝合金板7的厚度为约0.5mm~约2mm,通常为约1mm,并且被具有给定阳极化厚度的阳极化层覆盖。例如,阳极化层的厚度可以为铝板的厚度的0.5%~3%,优选为铝板的厚度的约1%~2%,通常为铝板的厚度的1%。如果必要的话,可对阳极化厚度的值以及其质量进行历时监控,以便保证基准衬底7的鲁棒性。
当然,可以使用其它基准衬底7,只要它们允许在足够的精度下检测光强度变化。
此外,进行监控能量密度所根据的频率可以是恒定的,或者根据监控图像的光强度和基准光强度之间的差异而变化。

Claims (15)

1.一种根据激光束(3)的至少两个参数监控所述激光束(3)的能量密度的方法(S),所述方法(S)包括以下步骤:
将所述激光束(3)定期施加到基准衬底(7)上,并在各个施加期间测量在所述基准衬底上所得的光强度(S4);
识别在至少两次测量之间所述基准衬底(7)上的光强度变化(S6,S7,S8);以及
在所述光强度变化大于给定阈值时,确定所述激光束(3)的能量密度的不稳定参数(S8)。
2.根据权利要求1所述的监控方法(S),其中,所述激光束(3)的能量密度由三个参数监控,所述三个参数尤其包括所述激光束(3)的功率、速度和尺寸。
3.根据权利要求1或2所述的监控方法(S),其中,施加并定期测量所述基准衬底(7)上的光强度的步骤包括以下子步骤:
(i)将所述激光束(3)施加到基准衬底上并获取所述基准衬底上的激光束(3)的图像,以便获得基准图像(S2);
(ii)在所述基准图像中的激光束(3)的施加点处测定光强度(S3),以及
(iii)将所述激光束(3)定期施加到所述基准衬底(7)上并获取所述基准衬底(7)上的激光束(3)的图像,以便获得监控图像(S4),并且在所述监控图像中的激光束(3)的施加点处测定所述基准衬底(7)上的光强度(S5),并且
识别所述光强度变化的步骤包括以下子步骤:
(iv)比较由此获得的监控图像的光强度与所述基准图像的光强度(S6),以及
(v)由此推断所述激光束(3)的能量密度变化(S7,S8)。
4.根据权利要求3所述的监控方法(S),其中,所述光强度通过测量所述基准图像的灰度级和所述监控图像的灰度级进行测定(S3,S5)。
5.根据权利要求4所述的监控方法(S),其中,所述基准图像的灰度级和所述监控图像的灰度级在多个点处进行测量,使得所述光强度通过对各个图像的各个点中的强度分布求平均值进行测定。
6.根据权利要求3~5中任一项所述的监控方法(S),在将所述激光束(3)施加到基准表面上以获取所述基准图像(S2)之前,所述监控方法(S)进一步包括初始步骤(S1),在所述初始步骤期间,测定所述参数的初始值,并且,在所述初始步骤中,在所述光强度变化大于给定阈值时,所述方法(S)进一步包括以下子步骤:
测定所述激光束(3)的参数值并比较所述激光束的参数值与所述参数的初始值,以便识别所述不稳定参数,以及
调整所述激光器(2)以便使所述不稳定参数重新稳定(S9)。
7.根据权利要求6所述的监控方法(S),其中,一旦调整了所述激光器,则用所述激光束(3)再重复所述步骤(i)~(iii),以便勾勒出新的基准图像。
8.根据权利要求7所述的监控方法(S),其中,所述初始步骤(S1)也进行再重复。
9.一种根据激光束(3)的至少两个参数监控所述激光束(3)的能量密度的装置(1),所述参数包括所述激光束(3)的功率、速度和/或尺寸,其特征在于,所述装置能够监控根据权利要求1~8中任一项所述的激光束(3)的能量密度,并且,其特征在于,所述装置包括:
图像采集系统(4),被配置用于获取所述基准衬底(7)上的激光束(3)的图像,以及
图像处理系统(5),被设置用于比较由所述图像采集系统(5)获取的不同的图像的光强度,并识别在至少两次测量之间所述基准衬底(7)上的光强度变化,以及
数据处理机构(6),被设置用于由所述光强度变化确定所述激光束(3)的至少一个参数是否不稳定。
10.权利要求9所述的监控装置(1),其中,所述基准衬底(7)包括均匀的涂层。
11.权利要求9或10所述的监控装置(1),其中,所述基准衬底(7)包括铝合金板。
12.权利要求11所述的监控装置(1),其中,所述铝合金板经阳极化处理,并且包括阳极化层。
13.根据权利要求12所述的监控装置(1),其中,所述阳极化层是黑色的。
14.根据权利要求12或13所述的监控装置(1),其中,所述阳极化层的厚度为所述铝合金板(7)的厚度的0.5%~3%,优选为所述铝合金板(7)的厚度的约1%。
15.根据权利要求14所述的监控装置(1),其中,所述铝合金板(7)的厚度为约1mm,而所述阳极化层的厚度为约0.01mm。
CN201480051428.7A 2013-09-18 2014-09-17 通过图像分析监控激光束的能量密度的方法和相应装置 Active CN105555444B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1358963 2013-09-18
FR1358963A FR3010785B1 (fr) 2013-09-18 2013-09-18 Procede de controle de la densite d'energie d'un faisceau laser par analyse d'image et dispositif correspondant
PCT/FR2014/052312 WO2015040327A1 (fr) 2013-09-18 2014-09-17 Procédé de contrôle de la densité d'énergie d'un faisceau laser par analyse d'image et dispositif correspondant

Publications (2)

Publication Number Publication Date
CN105555444A true CN105555444A (zh) 2016-05-04
CN105555444B CN105555444B (zh) 2017-12-29

Family

ID=49510406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480051428.7A Active CN105555444B (zh) 2013-09-18 2014-09-17 通过图像分析监控激光束的能量密度的方法和相应装置

Country Status (9)

Country Link
US (1) US10434598B2 (zh)
EP (1) EP3046703B1 (zh)
JP (1) JP6533789B2 (zh)
CN (1) CN105555444B (zh)
BR (1) BR112016005829B8 (zh)
CA (1) CA2923846C (zh)
FR (1) FR3010785B1 (zh)
RU (1) RU2675185C2 (zh)
WO (1) WO2015040327A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881462A (zh) * 2017-01-23 2017-06-23 华中科技大学 一种针对激光选区熔化成形缺陷的在线检测与优化系统
CN108602124A (zh) * 2016-08-31 2018-09-28 唯因弗Sys株式会社 三维打印机的成型工艺监控装置以及具备其的三维打印机
CN108760059A (zh) * 2018-07-09 2018-11-06 Oppo广东移动通信有限公司 激光投射器的检测方法、检测装置及检测系统
CN109080134A (zh) * 2018-07-25 2018-12-25 沈阳精合数控科技开发有限公司 通过调节激光功率控制成型速度的打印方法及装置
CN109982808A (zh) * 2016-11-22 2019-07-05 松下知识产权经营株式会社 激光加工装置以及激光加工方法
CN110970326A (zh) * 2018-10-01 2020-04-07 三星显示有限公司 激光照射装置及其驱动方法
CN111132820A (zh) * 2017-09-26 2020-05-08 西门子股份公司 用于监视相同对象的3d打印作业系列的对象的质量的方法和装置
CN111629883A (zh) * 2018-04-06 2020-09-04 惠普发展公司,有限责任合伙企业 配置增材制造系统
CN114326326A (zh) * 2021-12-30 2022-04-12 深圳市先地图像科技有限公司 一种激光直接成像设备功率控制方法、系统及相关设备
CN115632704A (zh) * 2022-09-21 2023-01-20 深圳越登智能技术有限公司 一种线激光的能量分布测试方法、装置、设备及介质

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2546016B (en) 2014-06-20 2018-11-28 Velo3D Inc Apparatuses, systems and methods for three-dimensional printing
US10786948B2 (en) 2014-11-18 2020-09-29 Sigma Labs, Inc. Multi-sensor quality inference and control for additive manufacturing processes
US10207489B2 (en) * 2015-09-30 2019-02-19 Sigma Labs, Inc. Systems and methods for additive manufacturing operations
US10843266B2 (en) * 2015-10-30 2020-11-24 Seurat Technologies, Inc. Chamber systems for additive manufacturing
WO2017079091A1 (en) 2015-11-06 2017-05-11 Velo3D, Inc. Adept three-dimensional printing
JP2017088992A (ja) * 2015-11-17 2017-05-25 住友電工焼結合金株式会社 3d造形用のベースプレート
DE102015015353A1 (de) * 2015-12-01 2017-06-01 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor
CN108698126A (zh) 2015-12-10 2018-10-23 维洛3D公司 精湛的三维打印
WO2017143077A1 (en) 2016-02-18 2017-08-24 Velo3D, Inc. Accurate three-dimensional printing
EP3492244A1 (en) 2016-06-29 2019-06-05 VELO3D, Inc. Three-dimensional printing system and method for three-dimensional printing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
DE102016222186B3 (de) * 2016-11-11 2018-04-12 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Kalibrieren zweier Scannereinrichtungen jeweils zur Positionierung eines Laserstrahls in einem Bearbeitungsfeld und Bearbeitungsmaschine zum Herstellen von dreidimensionalen Bauteilen durch Bestrahlen von Pulverschichten
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
US10369629B2 (en) 2017-03-02 2019-08-06 Veo3D, Inc. Three-dimensional printing of three-dimensional objects
US20180281237A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
US11532760B2 (en) 2017-05-22 2022-12-20 Howmedica Osteonics Corp. Device for in-situ fabrication process monitoring and feedback control of an electron beam additive manufacturing process
KR102340573B1 (ko) * 2017-08-01 2021-12-21 시그마 랩스, 인코포레이티드 적층식 제조 작업 중 방사 열 에너지를 측정하는 시스템 및 방법
TWI642536B (zh) * 2017-10-30 2018-12-01 國立成功大學 進行粉床熔融成型製程的方法
DE102018127678A1 (de) 2017-11-07 2019-05-09 Sigma Labs, Inc. Verfahren und Systeme zum Qualitätsrückschluss und zur Qualitätskontrolle bei additiven Herstellungsverfahren
DE102018127695A1 (de) 2017-11-07 2019-05-09 Sigma Labs, Inc. Korrektur von nicht-bildgebenden thermischen Messvorrichtungen
US11622092B2 (en) 2017-12-26 2023-04-04 Pixart Imaging Inc. Image sensing scheme capable of saving more power as well as avoiding image lost and also simplifying complex image recursive calculation
US11405581B2 (en) 2017-12-26 2022-08-02 Pixart Imaging Inc. Motion detection methods and image sensor devices capable of generating ranking list of regions of interest and pre-recording monitoring images
US10645351B2 (en) * 2017-12-26 2020-05-05 Primesensor Technology Inc. Smart motion detection device and related determining method
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US11305380B2 (en) 2018-01-22 2022-04-19 Branson Ultrasonics Corporation Method of determining intensity of laser light delivered to a weld area by laser delivery bundles
CN112004635B (zh) 2018-02-21 2022-04-05 西格马实验室公司 用于增材制造的系统和方法
EP3542994B1 (en) * 2018-03-23 2021-08-18 United Grinding Group Management AG Doctor blade device
EP3542928A1 (en) * 2018-03-23 2019-09-25 United Grinding Group Management AG Additive manufacturing device
US11117195B2 (en) 2018-07-19 2021-09-14 The University Of Liverpool System and process for in-process electron beam profile and location analyses
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
JP6848010B2 (ja) 2019-06-11 2021-03-24 株式会社ソディック 積層造形装置
KR102470505B1 (ko) * 2020-02-21 2022-11-25 미쓰비시덴키 가부시키가이샤 가공 에너지의 제어 방법 및 레이저 가공 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320085A1 (de) * 2002-05-03 2004-02-26 Bego Medical Ag Verfahren zum Herstellen von Produkten durch Freiform-Lasersintern oder -schmelzen (Unterlagen in P: 103 20 281,1)
EP1466718A2 (en) * 2003-04-09 2004-10-13 3D Systems, Inc. Sintering using thermal image feedback
CN1688408A (zh) * 2002-08-28 2005-10-26 P.O.M.集团公司 用于多层dmd处理的零件几何形状独立的实时闭环焊池温度控制系统
CN101678613A (zh) * 2007-11-27 2010-03-24 Eos有限公司电镀光纤系统 借助激光烧结制造三维物体的方法
CN102105291A (zh) * 2009-04-06 2011-06-22 Eos有限公司电镀光纤系统 校准辐照装置的方法和装置
DE102010027910A1 (de) * 2010-04-19 2011-10-20 Bayerische Motoren Werke Aktiengesellschaft Rapid Technologie System mit einem einen Lichtstrahl emittierenden Laser
CN202639328U (zh) * 2011-12-21 2013-01-02 西安铂力特激光成形技术有限公司 激光立体成形金属零件质量追溯装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2804027B2 (ja) * 1987-07-13 1998-09-24 ファナック 株式会社 レーザ出力補正方式
US5283416A (en) * 1992-06-26 1994-02-01 Trw Inc. Laser process monitoring and evaluation
US5427733A (en) * 1993-10-20 1995-06-27 United Technologies Corporation Method for performing temperature-controlled laser sintering
JPH09296294A (ja) * 1996-05-02 1997-11-18 Sky Alum Co Ltd 耐光性に優れ照射マーキング性を有する黒色アルマイト部材
DE19649865C1 (de) 1996-12-02 1998-02-12 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Formkörpers
US6060685A (en) * 1997-10-23 2000-05-09 Trw Inc. Method for monitoring laser weld quality via plasma light intensity measurements
JP2000114619A (ja) * 1998-10-06 2000-04-21 Dainippon Printing Co Ltd レーザマーキング装置
US7061959B2 (en) * 2001-04-18 2006-06-13 Tcz Gmbh Laser thin film poly-silicon annealing system
KR100865410B1 (ko) * 2002-03-28 2008-10-24 위시스 테크놀로지 파운데이션, 인크. 진정 및 운동실조 효과가 감소된 항불안제
TW200414280A (en) * 2002-09-25 2004-08-01 Adv Lcd Tech Dev Ct Co Ltd Semiconductor device, annealing method, annealing apparatus and display apparatus
JP3999701B2 (ja) * 2003-05-30 2007-10-31 オリンパス株式会社 分光分析装置
US7391515B2 (en) * 2004-10-05 2008-06-24 Gerald Walter Budd Automated visual inspection system for the detection of microbial growth in solutions
JP2007054881A (ja) * 2005-08-26 2007-03-08 Miyachi Technos Corp レーザ加工モニタリング装置
US7888621B2 (en) * 2006-09-29 2011-02-15 International Paper Co. Systems and methods for automatically adjusting the operational parameters of a laser cutter in a package processing environment
CN101209641A (zh) * 2006-12-29 2008-07-02 深圳富泰宏精密工业有限公司 激光雕刻系统及方法
JP5188718B2 (ja) * 2007-01-31 2013-04-24 株式会社ジャパンディスプレイイースト 表示装置の製造方法
JP2008264789A (ja) * 2007-04-16 2008-11-06 Sumitomo Heavy Ind Ltd レーザ加工装置、その調整方法、およびプログラム
US8778147B2 (en) * 2008-05-12 2014-07-15 General Electric Company Method and tool for forming non-circular holes using a selectively coated electrode
US8017905B2 (en) * 2008-08-29 2011-09-13 Wavelight Ag Method for energy calibration of a pulsed laser system
US20100140236A1 (en) * 2008-12-04 2010-06-10 General Electric Company Laser machining system and method
US8379679B2 (en) * 2010-02-11 2013-02-19 Electro Scientific Industries, Inc. Method and apparatus for reliably laser marking articles
FR2970887B1 (fr) 2011-02-01 2013-12-20 Snecma Dispositif de frittage et fusion par laser comprenant un moyen de chauffage de la poudre par induction
US8441625B2 (en) * 2011-03-02 2013-05-14 The United States Of America As Represented By The Secretary Of The Navy Laser beam profile measurement
US9555582B2 (en) * 2013-05-07 2017-01-31 Google Technology Holdings LLC Method and assembly for additive manufacturing
TW201442812A (zh) * 2013-05-14 2014-11-16 Hon Hai Prec Ind Co Ltd 雷射加工機台及其校正方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320085A1 (de) * 2002-05-03 2004-02-26 Bego Medical Ag Verfahren zum Herstellen von Produkten durch Freiform-Lasersintern oder -schmelzen (Unterlagen in P: 103 20 281,1)
CN1688408A (zh) * 2002-08-28 2005-10-26 P.O.M.集团公司 用于多层dmd处理的零件几何形状独立的实时闭环焊池温度控制系统
EP1466718A2 (en) * 2003-04-09 2004-10-13 3D Systems, Inc. Sintering using thermal image feedback
CN101678613A (zh) * 2007-11-27 2010-03-24 Eos有限公司电镀光纤系统 借助激光烧结制造三维物体的方法
CN102105291A (zh) * 2009-04-06 2011-06-22 Eos有限公司电镀光纤系统 校准辐照装置的方法和装置
DE102010027910A1 (de) * 2010-04-19 2011-10-20 Bayerische Motoren Werke Aktiengesellschaft Rapid Technologie System mit einem einen Lichtstrahl emittierenden Laser
CN202639328U (zh) * 2011-12-21 2013-01-02 西安铂力特激光成形技术有限公司 激光立体成形金属零件质量追溯装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602124A (zh) * 2016-08-31 2018-09-28 唯因弗Sys株式会社 三维打印机的成型工艺监控装置以及具备其的三维打印机
CN108602124B (zh) * 2016-08-31 2021-06-22 唯因弗Sys株式会社 三维打印机的成型工艺监控装置以及具备其的三维打印机
CN109982808A (zh) * 2016-11-22 2019-07-05 松下知识产权经营株式会社 激光加工装置以及激光加工方法
CN106881462A (zh) * 2017-01-23 2017-06-23 华中科技大学 一种针对激光选区熔化成形缺陷的在线检测与优化系统
CN111132820B (zh) * 2017-09-26 2022-09-23 西门子股份公司 用于监视相同对象的3d打印作业系列的对象的质量的方法和装置
CN111132820A (zh) * 2017-09-26 2020-05-08 西门子股份公司 用于监视相同对象的3d打印作业系列的对象的质量的方法和装置
US11724459B2 (en) 2018-04-06 2023-08-15 Hewlett-Packard Development Company, L.P. Configuring an additive manufacturing system
CN111629883A (zh) * 2018-04-06 2020-09-04 惠普发展公司,有限责任合伙企业 配置增材制造系统
CN108760059A (zh) * 2018-07-09 2018-11-06 Oppo广东移动通信有限公司 激光投射器的检测方法、检测装置及检测系统
CN109080134A (zh) * 2018-07-25 2018-12-25 沈阳精合数控科技开发有限公司 通过调节激光功率控制成型速度的打印方法及装置
CN110970326A (zh) * 2018-10-01 2020-04-07 三星显示有限公司 激光照射装置及其驱动方法
CN114326326A (zh) * 2021-12-30 2022-04-12 深圳市先地图像科技有限公司 一种激光直接成像设备功率控制方法、系统及相关设备
CN115632704A (zh) * 2022-09-21 2023-01-20 深圳越登智能技术有限公司 一种线激光的能量分布测试方法、装置、设备及介质
CN115632704B (zh) * 2022-09-21 2023-11-03 深圳越登智能技术有限公司 一种线激光的能量分布测试方法、装置、设备及介质

Also Published As

Publication number Publication date
CN105555444B (zh) 2017-12-29
FR3010785A1 (fr) 2015-03-20
EP3046703B1 (fr) 2019-07-17
CA2923846C (fr) 2021-08-24
RU2675185C2 (ru) 2018-12-17
BR112016005829B8 (pt) 2021-10-26
US10434598B2 (en) 2019-10-08
RU2016114822A (ru) 2017-10-20
JP2016540895A (ja) 2016-12-28
US20160228987A1 (en) 2016-08-11
WO2015040327A1 (fr) 2015-03-26
BR112016005829B1 (pt) 2021-09-08
RU2016114822A3 (zh) 2018-06-28
CA2923846A1 (fr) 2015-03-26
BR112016005829A2 (zh) 2017-08-01
JP6533789B2 (ja) 2019-06-19
FR3010785B1 (fr) 2015-08-21
EP3046703A1 (fr) 2016-07-27

Similar Documents

Publication Publication Date Title
CN105555444A (zh) 通过图像分析监控激光束的能量密度的方法和相应装置
US10753955B2 (en) Systems and method for advanced additive manufacturing
US10747202B2 (en) Systems and method for advanced additive manufacturing
US11511373B2 (en) Sensing and control of additive manufacturing processes
US11027535B2 (en) Systems and method for advanced additive manufacturing
US10821508B2 (en) System and methods for enhancing the build parameters of a component
US10821512B2 (en) Systems and methods for controlling microstructure of additively manufactured components
CN102470439B (zh) 制造三维物体的方法和设备
US20190001658A1 (en) Systems and method for advanced additive manufacturing
CN107584760B (zh) 用于制造三维制造物体的三维制造方法和装置
US10674101B2 (en) Imaging devices for use with additive manufacturing systems and methods of imaging a build layer
JP2024037833A (ja) ビルド面のグリッド領域における放射熱エネルギー密度の測定
KR20190026966A (ko) 적층 제조에서의 z-높이 측정 및 조정을 위한 시스템 및 방법
CN108838397B (zh) 一种激光增材制造在线监测方法
CN110978503B (zh) 积层制造系统与方法及特征撷取方法
JP2020203484A (ja) 付加製造機械制御の方法およびシステム
CN114101707B (zh) 激光增材制造功率控制方法、系统、介质及电子设备
CN108608119B (zh) 一种激光增材制造在线监测方法
Lutzke et al. Experimental comparison of phase-shifting fringe projection and statistical pattern projection for active triangulation systems
CN113118456A (zh) 用于估算3d打印过程中形成的3d打印物体高度的方法和装置,及3d打印系统
WO2021112859A1 (en) Porosity prediction
KR101682407B1 (ko) 측정 데이터를 스무딩하기 위한 최적 기준 데이터 수의 결정 방법 및 측정 데이터의 보정 방법
JP2018095911A (ja) 3次元積層装置及びその粉体温度制御方法
US9129368B2 (en) Thermal image smoothing method, surface temperature-measuring method, and surface temperature-measuring device
Metzner et al. Evaluation of reflection properties of sheet bulk metal formed parts by pixel wise analysis of camera images provided for triangulation measurement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant