CN105553262B - 一种提高dc/dc升压变换器转换效率的方法 - Google Patents

一种提高dc/dc升压变换器转换效率的方法 Download PDF

Info

Publication number
CN105553262B
CN105553262B CN201510961076.5A CN201510961076A CN105553262B CN 105553262 B CN105553262 B CN 105553262B CN 201510961076 A CN201510961076 A CN 201510961076A CN 105553262 B CN105553262 B CN 105553262B
Authority
CN
China
Prior art keywords
mos
ldmos
type
mos device
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510961076.5A
Other languages
English (en)
Other versions
CN105553262A (zh
Inventor
黄胜明
黄鑫
冯多力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU RUIGE ELECTRONIC TECHNOLOGY Co Ltd
Original Assignee
SUZHOU RUIGE ELECTRONIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU RUIGE ELECTRONIC TECHNOLOGY Co Ltd filed Critical SUZHOU RUIGE ELECTRONIC TECHNOLOGY Co Ltd
Priority to CN201510961076.5A priority Critical patent/CN105553262B/zh
Publication of CN105553262A publication Critical patent/CN105553262A/zh
Application granted granted Critical
Publication of CN105553262B publication Critical patent/CN105553262B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Dc-Dc Converters (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种不会发生闩锁效应的提高DC/DC升压变换器转换效率的方法,除了原有的HS‑LDMOS器件外,再增加一个面积很小的HS‑LDMOS1器件,HS‑LDMOS1的源极S1及栅极G1分别和HS‑LDMOS的源极S及栅极G相连接;HS‑LDMOS1的漏极D1则和N型深阱的欧姆接触区N+相连接,在这两个器件的体区(P‑Body)到D1之间形成寄生二极管Diso;在HS‑LDMOS的漏极D一侧N型外延层里紧靠N型深阱N+接触区的地方添加一个P+区,使之和N+接触区组成一个高压二极管HV‑Diode。本发明主要应用于DC/DC升压变换器。

Description

一种提高DC/DC升压变换器转换效率的方法
技术领域
本发明涉及到一种DC/DC升压变换器,尤其涉及到一种提高DC/DC升压变换器转换效率的方法。
背景技术
众所周知,由于具有较高的转换效率和较好的可靠性,DC/DC变换器广泛应用于消费类电子产品和工业产品中。同步整流DC/DC变换器是电源管理电路应用的主要拓扑。在相同面积的情况下,P沟道MOSFET的导通电阻是N沟道MOSFET的2.5倍,为了提高电源管理电路的转换效率,开关和同步整流器件通常都应用N沟道器件的拓扑越来越受欢迎,特别是在电压高于12V的应用领域。图1所示是一个同步整流BOOST升压拓扑,下部的LS-LDMOS是开关器件,上部的HS-LDMOS是同步整流器件、且都是N型横向DMOS器件。由于任何时刻上、下两个器件不能同时导通,因此,它们的开关驱动信号高电平之间要留有死区(Dead-Time)。当LS-LDMOS导通时,电感电流线性增加,当LS-LDMOS截止时,在死区里电感电流流经HS-LDMOS的体二极管Db,到输出电容Cout上,提供负载电流。死区过后,HS-LDMOS导通,起到同步整流以及减小Db上功耗的作用。与此同时,电感电流开始下降。缩短死区时间有利于提高转换效率。利用典型的BCD工艺制造的HS-LDMOS器件的剖面结构如图2所示,在其版图设计上,用于HS-LDMOS源极隔离用的N型深阱(Deep-NWell)通常和其漏极D相连接,如图2(a)所示。这样,从P-Body的P+接触区、深阱接触区N+到P型衬底(P-Sub)形成了一个寄生的PNP双极晶体管。在上述提及的死区时间里,由于电流从HS-LDMOS的源极S经Db流向其漏极D,即S极的电位比D极的电位高出一个二极管的正向压降的电压,导致寄生PNP处于导通状态,从HS-LDMOS的源极向P型衬底注入电流,即此时器件的漏电流增加,造成能量损失。如果把N型深阱和HS-LDMOS的源极相连接,如图2(b)所示,在死区寄生PNP不会导通。但当LS-LDMOS处于导通、HS-LDMOS处于截止状态时,HS-LDMOS的源极和N型深阱被下拉至接近于地电位,如果该器件周围有高于PN结正向压降的P型区域存在,会导致其它可能到该N型深阱的寄生电流通路,特别是可能会诱发潜在的闩锁效应(Latch-up)。因此,对于这种连接,周围的版图设计需要至少三个P+/N+/P+环进行隔离,防止可能的Latch-up。这样一来,版图面积将会增加。
发明内容
本发明所要解决的技术问题是:提供一种不会发生闩锁效应的提高DC/DC升压变换器转换效率的方法。
为解决上述技术问题,本发明所采用的技术方案为:一种提高DC/DC升压变换器转换效率的方法,其步骤为:在DC/DC变换升压拓扑结构中的上端MOS器件采用N型的MOS或LDMOS器件,并将该N型的MOS或LDMOS器件动态隔离。
作为一种优选方案,在所述的一种提高DC/DC升压变换器转换效率的方法中,在DC/DC变换升压拓扑结构中的上端MOS器件采用N型LDMOS器件。
作为一种优选方案,在所述的一种提高DC/DC升压变换器转换效率的方法中,所述的上端MOS器件动态隔离的具体方法为:在上端MOS器件的体区到左侧的深阱欧姆连接区N+之间增加一个N型LDMOS器件、作为上端辅助MOS器件,上端辅助MOS器件的源极与上端MOS的源极相连,上端辅助MOS器件的栅极与上端MOS的栅极相连;上端辅助MOS器件的漏极与N型深阱的欧姆连接区N+相连接,从而在这上端MOS器件的体区与上端辅助MOS器件的漏极之间形成寄生二极管,在上端辅助MOS器件的漏极的右侧N型外延层里紧靠N型深阱N+连接区处设置一个P+区,使该P+区和右侧的深阱区的N+接触区组成一个高压二极管,所述上端MOS器件的体区与漏极之间形成一个体区二极管。
本发明的有益效果是:本发明除了原有的上端MOS器件(由N沟道MOS器件或者N沟道横向双扩散金属氧化物半导体器件即N型LDMOS)外,又增加一个面积很小的上端辅助MOS器件(由N沟道MOS器件或者N沟道横向双扩散金属氧化物半导体器件即N型LDMOS构成),形成N型深阱非固定连接结构,从而有效地避免了闩锁效应的发生,并提高了DC/DC升压变换器的转换效率。
附图说明
图1是典型的同步整流Boost升压拓扑及功率器件驱动信号时序图。
图2是HS-LDMOS的剖面结构图,其中:(a)N型深阱和漏极相连,(b)N型深阱和源极相连。其中,从P-Body的P+接触区、深阱接触区N+到P型衬底(P-Sub)形成了一个寄生的PNP双极晶体管。
图3是本发明所述的HS-LDMOS的N型深阱的动态连接剖面结构图。
图4是图3所示的HS-LDMOS的N型深阱动态连接的等效电路图。
具体实施方式
下面结合附图,详细描述本发明所述的可提高DC/DC升压变换器转换效率的方法的具体实施方案:
如图3所示,其等效电路如图4所示,本发明所述的一种可提高DC/DC升压变换器转换效率的方法,除了原来的上端MOS器件(N沟道横向双扩散金属氧化物半导体器件)即图3和图4中的HS-LDMOS器件外,还增加一个面积很小的上端输助MOS器件(N沟道横向双扩散金属氧化物半导体器件)即图3和图4中的HS-LDMOS1器件,HS-LDMOS1的源极S1与HS-LDMOS的源极S相连,HS-LDMOS1的栅极G1与HS-LDMOS的栅极G相连接,HS-LDMOS1的漏极D1则与左侧N型深阱的欧姆接触区N+相连接,从而在HS-LDMOS的体区(P-Body)与HS-LDMOS1的漏极D1之间形成寄生二极管Diso,除此之外,在HS-LDMOS的漏极D一侧N型外延层里紧靠N型深阱N+接触区处设置一个P+区,使得该P+区和右侧的深阱区的N+接触区组成一个高压二极管HV-Diode,所述HS-LDMOS的漏极与体区(P-Body)形成体区二极管Db。在死区时间里,尽管二极管Db导通,HS-LDMOS的漏极D比其源极S低一个二极管压降,但是,从寄生二极管Diso到Vout也即HS-LDMOS的漏极D的电流通路被HV-Diode阻断,这样,寄生二极管Diso上无电流通过,左侧的N型深阱的电位高于HS-LDMOS的漏极电位,上述提及的寄生的双极PNP晶体管不会导通。死区过后,当HS-LDMOS的栅极是高电平时,N型深阱通过HS-LDMOS1和HS-LDMOS的源极连接在一起。当HS-LDMOS和HS-LDMOS1截止、LS-LDMOS导通时,尽管两个器件的源极S和S1被下拉至地电位,此时HS-LDMOS的漏极仍处于整个系统的最高电位(输出电压),HV-Diode处于正向偏置状态,而寄生二极管Diso处于反偏状态,因此,HV-Diode中无电流,N型深阱的电位接近于此时的最高电位Vout。这样,寄生的双极PNP晶体管的漏电将被抑制,而且不会带来其它问题。
综上所述,仅为本发明的较佳实施例而已,并非用来限定本发明实施的范围,凡依本发明权利要求范围所述的形状、构造、特征及精神所作的均等变化与修饰,均应包括在本发明的权利要求范围内。

Claims (1)

1.一种提高DC/DC升压变换器转换效率的方法,其特征在于:在DC/DC变换升压拓扑结构中的上端MOS器件采用N型的MOS或LDMOS器件,并将该N型的MOS或LDMOS器件动态隔离;
所述的上端MOS器件动态隔离的具体方法为:在上端MOS器件的体区到左侧的深阱欧姆连接区N+之间增加一个N型LDMOS器件作为上端辅助MOS器件,上端辅助MOS器件的源极与上端MOS的源极相连,上端辅助MOS器件的栅极与上端MOS的栅极相连;上端辅助MOS器件的漏极与左侧的N型深阱的欧姆连接区N+相连接,从而在该上端MOS器件的体区与上端辅助MOS器件的漏极之间形成寄生二极管,在上端MOS器件的漏极的右侧N型外延层里紧靠N型深阱N+连接区处设置一个P+区,使该P+区和右侧的深阱区的N+接触区组成一个高压二极管,所述上端MOS器件的体区与漏极之间形成一个体区二极管。
CN201510961076.5A 2015-08-24 2015-12-21 一种提高dc/dc升压变换器转换效率的方法 Active CN105553262B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510961076.5A CN105553262B (zh) 2015-08-24 2015-12-21 一种提高dc/dc升压变换器转换效率的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510522549 2015-08-24
CN2015105225491 2015-08-24
CN201510961076.5A CN105553262B (zh) 2015-08-24 2015-12-21 一种提高dc/dc升压变换器转换效率的方法

Publications (2)

Publication Number Publication Date
CN105553262A CN105553262A (zh) 2016-05-04
CN105553262B true CN105553262B (zh) 2018-02-16

Family

ID=55832248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510961076.5A Active CN105553262B (zh) 2015-08-24 2015-12-21 一种提高dc/dc升压变换器转换效率的方法

Country Status (1)

Country Link
CN (1) CN105553262B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065247B (zh) * 2022-08-18 2022-11-15 深圳市微源半导体股份有限公司 升压变换电路及升压变换器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202231691U (zh) * 2011-09-28 2012-05-23 深圳市联德合微电子有限公司 Ligbt输出级集成电路
CN103021860A (zh) * 2011-09-21 2013-04-03 新加坡商格罗方德半导体私人有限公司 沟渠晶体管
CN103457463A (zh) * 2012-06-01 2013-12-18 台湾积体电路制造股份有限公司 用于开关电路器件的结构和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2223091T3 (es) * 1997-04-04 2005-02-16 Aventis Pharma Deutschland Gmbh Derivados de propanolamina hipolipidemicos.
US7126314B2 (en) * 2005-02-04 2006-10-24 Micrel, Incorporated Non-synchronous boost converter including switched schottky diode for true disconnect
US7898026B2 (en) * 2009-03-23 2011-03-01 Force Mos Technology Co., Ltd. LDMOS with double LDD and trenched drain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103021860A (zh) * 2011-09-21 2013-04-03 新加坡商格罗方德半导体私人有限公司 沟渠晶体管
CN202231691U (zh) * 2011-09-28 2012-05-23 深圳市联德合微电子有限公司 Ligbt输出级集成电路
CN103457463A (zh) * 2012-06-01 2013-12-18 台湾积体电路制造股份有限公司 用于开关电路器件的结构和方法

Also Published As

Publication number Publication date
CN105553262A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN102460709B (zh) 电力变换装置
CN106341051A (zh) 电力变换装置及驱动装置
US20110006361A1 (en) Integrated Power Supplies and Combined High-Side Plus Low-Side Switches
JP2015019370A (ja) 逆導通igbtおよびゲートドライバ回路を有する電子回路
CN105122452B (zh) 半导体装置
JP2010027709A (ja) 半導体装置
JP6072445B2 (ja) 半導体装置およびそれを用いた電力変換装置
KR20130060143A (ko) 반도체 스위치 및 전력 변환 장치
JP2018032871A (ja) 集積回路のためのモノリシックセルおよび特にモノリシック転流セル
JP4995873B2 (ja) 半導体装置及び電源回路
CN203800053U (zh) 半导体器件及包括该半导体器件的集成装置
JP5932623B2 (ja) 半導体装置およびそれを用いた電力変換装置
CN107482051A (zh) 一种变禁带宽度的超结vdmos器件
CN108111023A (zh) 用于半桥二极管的控制电路
CN105553262B (zh) 一种提高dc/dc升压变换器转换效率的方法
JP6413467B2 (ja) 半導体装置
WO2016132417A1 (ja) 半導体集積回路
JP5962843B2 (ja) 半導体装置
JP2008282999A (ja) 半導体装置
JP5259671B2 (ja) 半導体装置
CN106663658A (zh) 半导体集成电路
CN102970019A (zh) 一种单片集成功率半导体器件的固体继电器
CN1136712A (zh) Mis门复合半导体装置及其驱动方法以及电源转换装置
CN106487220B (zh) 切换式转换器以及升压装置
KR101203089B1 (ko) 반도체장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant