CN105504326A - 一种石墨烯叠层复合掺杂方法 - Google Patents

一种石墨烯叠层复合掺杂方法 Download PDF

Info

Publication number
CN105504326A
CN105504326A CN201511025137.3A CN201511025137A CN105504326A CN 105504326 A CN105504326 A CN 105504326A CN 201511025137 A CN201511025137 A CN 201511025137A CN 105504326 A CN105504326 A CN 105504326A
Authority
CN
China
Prior art keywords
coating
doping
graphene
target substrate
oxygenant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201511025137.3A
Other languages
English (en)
Inventor
姜浩
马金鑫
黄德萍
弋天宝
徐鑫
高翾
李占成
史浩飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing Institute of Green and Intelligent Technology of CAS
Priority to CN201511025137.3A priority Critical patent/CN105504326A/zh
Publication of CN105504326A publication Critical patent/CN105504326A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种石墨烯叠层复合掺杂方法,步骤如下:步骤一,配制氧化剂涂布液;步骤二,在目标基底表面涂布氧化剂溶液,并加热干燥形成氧化剂涂层;步骤三,将涂布有氧化剂的目标基底置于密闭容器中,加热到一定温度;步骤四,将导电高分子前驱体加热气化,与载气混合通入密闭容器,小分子前驱体吸附在氧化涂层上聚合形成掺杂涂层;步骤五,用去离子水浸泡掺杂涂层并烘干;步骤六,将石墨烯转移到带有掺杂涂层的目标基底。进一步,在上述石墨烯上重复上述步骤二至步骤五形成第二掺杂涂层。本发明在目标基底表面原位形成一层厚度均匀可控的掺杂涂层,掺杂效果均匀;此外,掺杂涂层本身稳定,转移后位于石墨烯与目标基底之间,掺杂效果稳定持久。

Description

一种石墨烯叠层复合掺杂方法
技术领域
本发明属于石墨烯生产技术领域,尤其涉及一种石墨烯叠层复合掺杂方法。
背景技术
石墨烯是近十年发现的新型二维碳纳米材料,具有优异的力、热、光、电等方面性能。其中,极高的透过率及超高的载流子迁移率,使其可作为全新的透明导电材料而备受工业界关注。
目前,对于二维连续的石墨烯薄膜产品,电学性能是其核心关键性能。现有较为成熟的化学气相沉积法(CVD)制备的石墨烯薄膜方阻较高,不能直接使用,必须对其进行掺杂以降低方阻。当前主流掺杂方法大多是以小分子为掺杂剂,例如乙二胺、硝酸、氯金酸等,通过物理吸附使其附着在石墨烯表面达到掺杂目的。然而,物理吸附的小分子掺杂剂与石墨烯作用力弱,易迁移和挥发,放置过程中导致石墨烯方阻持续增加,严重限制了石墨烯的实际应用。
发明内容
本发明的目的就是为了克服上述背景技术的不足,提供一种石墨烯叠层复合掺杂方法,能够实现均匀、稳定、持久的掺杂效果。
本发明所涉及的一种石墨烯叠层复合方法,其步骤如下:
步骤一,配制氧化剂涂布液,其组成为氧化剂和惰性有机溶剂;其中氧化剂为对甲苯磺酸铁,用量范围为0.1~5%wt;惰性溶剂为乙醇、异丙醇、正丁醇、乳酸乙酯、乙二醇单乙醚、乙二醇单丁醚中的一种或几种;
步骤二,在目标基底001表面涂布氧化剂溶液,并加热干燥形成氧化剂涂层002,涂层厚度为1~30nm,形成由目标基底001、氧化剂涂层002依次组成的复合结构;
步骤三,将涂布有氧化剂涂层002的目标基底001置于密闭容器中加热,温度为50~130℃;
步骤四,将导电高分子前驱体加热气化,与载气混合通入密闭容器,小分子前驱体吸附在氧化剂涂层002上聚合形成第一掺杂涂层003,形成目标基底001/第一掺杂涂层003的复合结构;所述导电高分子前驱体为吡咯和3,4-乙撑二氧噻吩(EDOT);所述载气为氮气或氩气,载气用量体积百分比为80~99%;所述混合气体流量为10~100sccm,通气时间为20~60min;
步骤五,用去离子水浸泡第一掺杂涂层003并烘干;
步骤六,将石墨烯004转移到带有第一掺杂涂层003的目标基底001,得到由目标基底001/第一掺杂涂层003/石墨烯004依次组成的复合结构。
进一步,在所述由目标基底001/第一掺杂涂层003/石墨烯004依次组成的复合结构上重复上述步骤二至步骤五可形成第二掺杂涂层005,得到由目标基底001/第一掺杂涂层003/石墨烯004/第二掺杂涂层005依次组成的复合结构。进一步提升掺杂效果,同时对石墨烯起到一定封装保护效果。
本发明的有益效果是:采用气相氧化聚合方法,在目标基底表面原位形成一层厚度均匀的掺杂涂层,适合大面积生产;此外,掺杂涂层本身稳定,转移后位于石墨烯与目标基底之间,掺杂效果均匀稳定。
附图说明
图1为本发明一种石墨烯叠层复合掺杂方法的步骤流程图;
图2为本发明中所述目标基底/氧化剂涂层依次组成的复合结构示意图;
图3为本发明中所述目标基底/第一掺杂涂层的复合结构示意图;
图4为本发明中所述目标基底/第一掺杂涂层/石墨烯依次组成的复合结构示意图;
图5为本发明中所述目标基底/第一掺杂涂层/石墨烯/第二掺杂涂层依次组成的复合结构示意图;
附图中,各标号所代表的部件列表如下:
001为目标基底,002为氧化剂涂层,003为第一掺杂涂层,004为石墨烯,005为第二掺杂涂层。
具体实施方式
下面结合附图和实施例对本发明进一步说明。所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例一
本实施例步骤如下:
步骤一,称取1.5g对甲苯磺酸铁溶于350g无水乙醇、600g乙二醇和450g乳酸乙酯组成的混合溶液,搅拌均匀后配成氧化剂涂布液;
步骤二,采用滚涂法将掺杂涂布液涂布于目标基底PET001,干燥后得到膜厚约30nm的氧化剂涂层002;
步骤三,将涂布有氧化剂涂层002的PET基底001置于密闭容器中,加热到60℃;
步骤四,将3,4-乙撑二氧噻吩小分子单体加热气化,以氩气为载气通入密闭容器中。氩气体积百分数为99%,流量为100sccm,通气40min后在目标基底PET001表面形成第一掺杂涂层003;
步骤五,将第一掺杂涂层003浸于去离子水浸洗,取出烘干;
步骤六,在第一掺杂层003上转移石墨烯004。
本实施例中,制备的石墨烯方阻均值为197±15欧方,140℃加热90min,并于室温下方阻30天后平均方阻为203±13欧方,掺杂效果均匀稳定。
实施例二
本实施例步骤如下:
步骤一,称取1g对甲苯磺酸铁溶于60g异丙醇、75g正丁醇和10g乙二醇单丁醚组成的混合溶剂,混合均匀后配成氧化剂涂布液;
步骤二,将掺杂涂布液涂布于光学级PET基底001,干燥后得到膜厚约10nm的氧化剂涂层002;
步骤三,将涂布有氧化剂涂层002的PET基底001置于密闭容器中,加热到90℃;
步骤四,将吡咯小分子单体加热气化,以氮气为载气通入密闭容器中。氮气体积百分数为95%,流量为50sccm,通气30min后在目标基底PET表面形成第一掺杂涂层003;
步骤五,将第一掺杂涂层003浸于去离子水浸洗,取出烘干;
步骤六,在第一掺杂层003上转移石墨烯004。
重复步骤二至步骤五,在已转移石墨烯004表面形成第二掺杂涂层005。
本实施例中,制备的石墨烯方阻均值为187±21欧方,140℃加热90min,并于室温下方阻30天后平均方阻为179±22欧方,掺杂效果均匀稳定。
实施例三
本实施例步骤如下:
步骤一,称取0.3g对甲苯磺酸铁溶于50g甲醇、60g异丙醇、170g正丁醇、8g乙二醇单甲醚和5g乙二醇单丁醚组成的混合溶剂,混合均匀后配成氧化剂涂布液;
步骤二,将掺杂涂布液涂布于光学级PET基底001,干燥后得到膜厚约5nm的氧化剂涂层002;
步骤三,将涂布有氧化剂涂层002的PET基底001置于密闭容器中,加热到50℃;
步骤四,将噻吩小分子单体加热气化,以氩气为载气通入密闭容器中。氩气体积百分数为90%,流量为30sccm,通气60min后在目标基底PET001表面形成第一掺杂涂层003;
步骤五,将第一掺杂涂层003浸于去离子水浸洗,取出烘干;
步骤六,在第一掺杂层003上转移石墨烯004。
本实施例中,制备的石墨烯方阻均值为226±19欧方,140℃加热90min,并于室温下方阻30天后平均方阻为223±17欧方,掺杂效果均匀稳定。
实施例四
本实施例步骤如下:
步骤一,称取2.0g对甲苯磺酸铁溶于1400g正丁醇,搅拌均匀后配成氧化剂涂布液;
步骤二,采用滚涂法将掺杂涂布液涂布于目标基底PET001,干燥后得到膜厚约1nm的氧化剂涂层002;
步骤三,将涂布有氧化剂涂层002的PET基底001置于密闭容器中,加热到130℃;
步骤四,将3,4-乙撑二氧噻吩小分子单体加热气化,以氮气为载气通入密闭容器中。氩气体积百分数为80%,流量为10sccm,通气20min后在目标基底PET001表面形成第一掺杂涂层003;
步骤五,将第一掺杂涂层003浸于去离子水浸洗,取出烘干;
步骤六,在第一掺杂层003上转移石墨烯004。
本实施例中,制备的石墨烯方阻均值为233±25欧方,140℃加热90min,并于室温下方阻30天后平均方阻为239±22欧方,掺杂效果均匀稳定。
实施例五
本实施例步骤如下:
步骤一,称取1.9g对甲苯磺酸铁溶于300g乙醇、500g异丙醇、600g正丁醇、10g乙二醇单丁醚组成的混合溶剂中,搅拌均匀后配成氧化剂涂布液;
步骤二,采用滚涂法将掺杂涂布液涂布于目标基底PET001,干燥后得到膜厚约20nm的氧化剂涂层002;
步骤三,将涂布有氧化剂涂层002的PET基底001置于密闭容器中,加热到100℃;
步骤四,将3,4-乙撑二氧噻吩小分子单体加热气化,以氮气为载气通入密闭容器中。氩气体积百分数为85%,流量为40sccm,通气60min后在目标基底PET001表面形成第一掺杂涂层003;
步骤五,将第一掺杂涂层003浸于去离子水浸洗,取出烘干;
步骤六,在第一掺杂层003上转移石墨烯004。
本实施例中,制备的石墨烯方阻均值为173±21欧方,140℃加热90min,并于室温下方阻30天后平均方阻为176±22欧方,掺杂效果均匀稳定。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种石墨烯叠层复合掺杂方法,其特征在于,该方法步骤如下:
步骤一,配制氧化剂涂布液,其组成为氧化剂和惰性有机溶剂;其中氧化剂为对甲苯磺酸铁,用量范围为0.1~5%wt;惰性溶剂为乙醇、异丙醇、正丁醇、乳酸乙酯、乙二醇单乙醚、乙二醇单丁醚中的一种或几种;
步骤二,在目标基底(001)表面涂布氧化剂溶液,并加热干燥形成氧化剂涂层(002),涂层厚度为1~30nm,形成由目标基底(001)/氧化剂涂层(002)依次组成的复合结构;
步骤三,将涂布有氧化剂涂层(002)的目标基底(001)置于密闭容器中加热,温度为50~130℃;
步骤四,将导电高分子前驱体加热气化,与载气混合通入密闭容器,小分子前驱体吸附在氧化剂涂层(002)上聚合形成第一掺杂涂层(003),形成目标基底(001)/第一掺杂涂层(003)的复合结构;所述导电高分子前驱体为吡咯和3,4-乙撑二氧噻吩(EDOT);所述载气为氮气或氩气,载气用量体积百分比为80~99%;所述混合气体流量为10~100sccm,通气时间为20~60min;
步骤五,用去离子水浸泡第一掺杂涂层(003)并烘干;
步骤六,将石墨烯(004)转移到带有第一掺杂涂层(003)的目标基底(001),得到由目标基底(001)/第一掺杂涂层(003)/石墨烯(004)依次组成的复合结构。
2.根据权利要求1所述的一种石墨烯叠层复合掺杂方法,其特征在于,在所述由目标基底(001)/第一掺杂涂层(003)/石墨烯(004)依次组成的复合结构上重复上述步骤二至步骤五可形成第二掺杂涂层(005),得到由目标基底(001)/第一掺杂涂层(003)/石墨烯(004)/第二掺杂涂层(005)依次组成的复合结构。
CN201511025137.3A 2015-12-30 2015-12-30 一种石墨烯叠层复合掺杂方法 Pending CN105504326A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511025137.3A CN105504326A (zh) 2015-12-30 2015-12-30 一种石墨烯叠层复合掺杂方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511025137.3A CN105504326A (zh) 2015-12-30 2015-12-30 一种石墨烯叠层复合掺杂方法

Publications (1)

Publication Number Publication Date
CN105504326A true CN105504326A (zh) 2016-04-20

Family

ID=55712667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511025137.3A Pending CN105504326A (zh) 2015-12-30 2015-12-30 一种石墨烯叠层复合掺杂方法

Country Status (1)

Country Link
CN (1) CN105504326A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106115672A (zh) * 2016-06-23 2016-11-16 无锡格菲电子薄膜科技有限公司 一种cvd法制备的石墨烯的转移方法
CN106297968A (zh) * 2016-08-26 2017-01-04 中国科学院上海硅酸盐研究所 一种高膜厚高电导率的pedot薄膜及其制备方法
CN108101027A (zh) * 2017-12-29 2018-06-01 重庆墨希科技有限公司 大面积cvd石墨烯掺杂转移方法
CN114974902A (zh) * 2022-06-22 2022-08-30 西安交通大学 一种气相法制备固态阀金属电解电容器固态阴极的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103289063A (zh) * 2013-06-14 2013-09-11 电子科技大学 一种制造聚噻吩基氧化石墨烯还原复合材料的方法
CN103642058A (zh) * 2013-11-15 2014-03-19 中国科学院理化技术研究所 制备电导率提高的导电聚合物柔性薄膜的方法
CN103824615A (zh) * 2014-02-18 2014-05-28 南京邮电大学 气相聚合聚3,4-乙撑二氧噻吩和石墨烯叠层柔性透明电极的方法
CN104556003A (zh) * 2014-12-22 2015-04-29 重庆墨希科技有限公司 一种石墨烯的保护掺杂方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103289063A (zh) * 2013-06-14 2013-09-11 电子科技大学 一种制造聚噻吩基氧化石墨烯还原复合材料的方法
CN103642058A (zh) * 2013-11-15 2014-03-19 中国科学院理化技术研究所 制备电导率提高的导电聚合物柔性薄膜的方法
CN103824615A (zh) * 2014-02-18 2014-05-28 南京邮电大学 气相聚合聚3,4-乙撑二氧噻吩和石墨烯叠层柔性透明电极的方法
CN104556003A (zh) * 2014-12-22 2015-04-29 重庆墨希科技有限公司 一种石墨烯的保护掺杂方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106115672A (zh) * 2016-06-23 2016-11-16 无锡格菲电子薄膜科技有限公司 一种cvd法制备的石墨烯的转移方法
CN106115672B (zh) * 2016-06-23 2018-09-25 无锡格菲电子薄膜科技有限公司 一种cvd法制备的石墨烯的转移方法
CN106297968A (zh) * 2016-08-26 2017-01-04 中国科学院上海硅酸盐研究所 一种高膜厚高电导率的pedot薄膜及其制备方法
CN108101027A (zh) * 2017-12-29 2018-06-01 重庆墨希科技有限公司 大面积cvd石墨烯掺杂转移方法
CN108101027B (zh) * 2017-12-29 2020-01-31 重庆墨希科技有限公司 大面积cvd石墨烯掺杂转移方法
CN114974902A (zh) * 2022-06-22 2022-08-30 西安交通大学 一种气相法制备固态阀金属电解电容器固态阴极的方法

Similar Documents

Publication Publication Date Title
Yoon et al. Foldable perovskite solar cells using carbon nanotube‐embedded ultrathin polyimide conductor
Jin et al. Solution-processed transparent coordination polymer electrode for photovoltaic solar cells
Lu et al. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells
Bhattacharyya et al. Vapor phase oxidative synthesis of conjugated polymers and applications
Park et al. Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells
CN105666977A (zh) 一种石墨烯涂布型掺杂方法
CN105504326A (zh) 一种石墨烯叠层复合掺杂方法
CN103396573B (zh) 一种复合纳米薄膜的制备方法
CN104861189B (zh) 一种原位合成聚3,4‑乙撑二氧噻吩/纳米金属银透明导电涂层的方法
CN104992781B (zh) 一种石墨烯基三元复合材料的制备方法
CN102718408A (zh) 一种制造气体敏感薄膜的方法
CN104556003B (zh) 一种石墨烯的保护掺杂方法
CN105624755B (zh) 一种石墨烯电化学复合掺杂方法
CN103738946B (zh) 一种大面积多功能石墨烯薄膜的制备方法
Jang et al. Synchronous vapor-phase polymerization of poly (3, 4-ethylenedioxythiophene) and poly (3-hexylthiophene) copolymer systems for tunable optoelectronic properties
Hong et al. Rational design and evaluation of UV curable nano-silver ink applied in highly conductive textile-based electrodes and flexible silver-zinc batteries
CN111073395A (zh) 一种透明电热油墨及其制备方法、电热膜
TW200905963A (en) Membrane-electrode bonding agent, proton conducting membrane with bonding layer, membrane-electrode assembly, solid polymer fuel cell, and method for producing membrane-electrode assembly
KR20110095751A (ko) 그래핀의 층간에 도펀트를 포함하는 다층 그래핀, 이를 포함하는 박막 및 투명전극
Sun et al. Copper (II) chloride doped graphene oxides as efficient hole transport layer for high-performance polymer solar cells
Yun et al. Simultaneous increases in electrical conductivity and work function of ionic liquid treated PEDOT: PSS: In-depth investigation and thermoelectric application
Li et al. Electrochemical preparation of polythiophene in acetonitrile solution with boron fluoride–ethyl ether as the electrolyte
TWI570477B (zh) Organic conductive film
TW201322279A (zh) 透明導電膜與其形成方法
KR102090832B1 (ko) 유기 도전막

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160420