CN105489607A - 晶体管及其制造方法 - Google Patents

晶体管及其制造方法 Download PDF

Info

Publication number
CN105489607A
CN105489607A CN201510002839.3A CN201510002839A CN105489607A CN 105489607 A CN105489607 A CN 105489607A CN 201510002839 A CN201510002839 A CN 201510002839A CN 105489607 A CN105489607 A CN 105489607A
Authority
CN
China
Prior art keywords
bit line
line contact
doping
injected
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510002839.3A
Other languages
English (en)
Inventor
李宗翰
施能泰
胡耀文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Inotera Memories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inotera Memories Inc filed Critical Inotera Memories Inc
Publication of CN105489607A publication Critical patent/CN105489607A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

一种晶体管及其制造方法,所述方法包括下列步骤:提供一基材,基材上形成有两个沟槽,两个沟槽之间定义出一位元线接点,每一个沟槽的一侧定义出一电容接点;设置一介电层于每一个沟槽内;设置一导电材料于每一个介电层上,以形成一栅极结构于每一个沟槽内;注入低剂量的掺杂至基材的位元线接点以及两个电容接点,以形成一漏极区于每一个电容接点;以及,再一次注入低剂量的掺杂至基材的位元线接点,以形成一平区于位元线接点,平区具有实质上均匀分布的掺杂浓度,平区的顶端是高于每一个栅极结构的顶端,平区的底端是低于每一个栅极结构的底端。

Description

晶体管及其制造方法
技术领域
本发明有关于一种晶体管及其制造方法,且特别是关于一种具有位元线接点的晶体管及其制造方法,且所述位元线接点具有掺杂浓度均匀分布的平区。
背景技术
一般而言,动态随机存取内存是利用一个电容来储存每一个位元的数据。电容能够被充电或放电来代表一个二进制位元(bit)是1还是0。位元线经由一个场效晶体管电性连接于电容,以读写电容内储存的数据。场效晶体管藉由允许或阻止位元线与电容之间的载子通道的电流流通,来控制位元线对电容数据的存取。具体来说,位元线连接至晶体管的源极区,电容连接至晶体管的漏极区,而栅极位于源极区与漏极区之间。字元线连接至栅极,以控制栅极的电压,进而通过允许或阻止载子通道的电流流通来控制位元线与电容之间的电性连接。
为了使动态随机存取内存具有更高的单元密度,上述的电子单元被配置成更紧凑。这容易造成一些问题,例如相邻的电子单元之间容易产生互扰。具体而言,经由字元线传送至栅极的讯号,可能会影响邻近栅极的电压大小。当两个邻近栅极之间的区域具有不适当的掺杂浓度分布,这样的问题尤其严重。
现有的技术中,源极区和漏极区是通过实施一次高剂量的掺杂注入而形成。接着,可通过对载子通道与漏极区之间的边界实施低剂量的掺杂注入,来降低热载子效应并减少漏电流,亦即,形成轻掺杂区(lightlydopeddrain)。源极区的高浓度掺杂有助于实现位元线和由栅极控制的载子通道之间的电性连接。但是,若将源极区设置于两个紧密配置的栅极之间,源极区的掺杂浓度过高可能导致字元线间耦合现象的问题发生。反之,若源极区的掺杂浓度过低,除了可能导致位元线与载子信道之间的电性连接不足,也可能导致字元线干扰(wordlinedisturb)的问题发生。据此,源极区整体的掺杂浓度分布是动态随机存取内存性能优劣的关键之一。然而,一次高剂量掺杂注入的结果,容易在源极区形成不均匀的掺杂浓度分布,例如,在源极区某些部分可具有较佳的掺杂浓度,但是在源极区其他部分具有过高或过低的掺杂浓度。因此,如何在源极区形成一个掺杂浓度实质上均匀分布的区域,同时形成一个相对低掺杂浓度的漏极区以减少漏电现象,是本技术领域所欲解决的课题之一。
发明内容
本发明实施例提供一种晶体管,所述晶体管包括两个栅极结构、设置于所述两个栅极结构之间的一位元线接点(包括一源极区)以及两个电容接点(包括漏极区)。所述位元线接点具有一掺杂浓度实质上均匀分布的区域,以降低两个栅极结构之间可能产生的字元线间耦合和字元线干扰。相对于位元线接点的掺杂浓度而言,两个所述电容接点可具有较低的掺杂浓度,以减少栅极诱导漏极漏电流。此外,一种制造晶体管的方法在此提出。
本发明实施例提供一种晶体管,所述晶体管位于一基材上。所述晶体管包括一位元线接点、两个电容接点以及两个沟槽。在每一个所述沟槽内,一介电层覆盖所述沟槽的内侧表面,一栅极结构设置于所述介电层上。所述位元线接点包括一平区,所述平区是通过注入低剂量的掺杂至所述基材至少两次所形成。两个所述电容接点分别位于两个所述沟槽的一侧,每一个所述电容接点与所述位元线接点分别位于对应的所述沟槽的相对两侧。每一个所述电容接点包括一漏极区,每一个所述漏极区是通过注入低剂量的掺杂至所述基材一次所形成。每一个所述沟槽是形成于所述基材上,且每一个所述沟槽是位于所述位元线接点与对应的所述电容接点之间。所述平区的顶端是高于每一个所述栅极结构的顶端,所述平区的底端是低于每一个所述栅极结构的底端。所述平区具有实质上均匀分布的掺杂浓度,所述平区的掺杂浓度是大于所述位元线接点之中位于所述平区下方的其他区域的掺杂浓度,且所述平区的掺杂浓度是大于每一个所述电容接点的掺杂浓度。
在本发明一实施例中,所述晶体管连接于一位元线、两个字元线以及两个电容结构。所述位元线连接于所述位元线接点,两个所述字元线分别连接于两个所述栅极结构,两个所述电容结构分别相邻于两个所述电容接点。
本发明实施例还提供一种晶体管的制造方法,所述晶体管的制造方法包括下列步骤:提供一基材,所述基材上形成有两个沟槽,其中两个所述沟槽之间定义出一位元线接点,每一个所述沟槽的相对于所述位元线接点的一侧定义出一电容接点;设置一介电层于每一个所述沟槽内;设置一导电材料于每一个所述介电层上,藉以形成一栅极结构于每一个所述沟槽内;注入低剂量的掺杂至所述基材的所述位元线接点以及两个所述电容接点,藉以形成一漏极区于每一个所述电容接点;以及,再一次注入低剂量的掺杂至所述基材的所述位元线接点,藉以形成一平区于所述位元线接点,所述平区具有实质上均匀分布的掺杂浓度,所述平区的顶端是高于每一个所述栅极结构的顶端,所述平区的底端是低于每一个所述栅极结构的底端。
在本发明一实施例中,所述晶体管的制造方法进一步包括:将一位元线连接至所述位元线接点,将两个字元线分别连接至两个所述栅极结构,且形成两个电容结构分别相邻于两个所述电容接点。
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所附图式仅提供参考与说明用,并非用来对本发明加以限制者。
附图说明
图1为本发明第一实施例的晶体管的制造方法的步骤流程图;
图2为本发明第一实施例的晶体管的位元线接点的掺杂浓度曲线图;
图3为本发明第一实施例的晶体管的侧视示意图;
图4为本发明第二实施例的晶体管的制造方法的步骤流程图;
图5为本发明第二实施例的晶体管的位元线接点的掺杂浓度曲线图;
图6为本发明第三实施例的晶体管在制造过程中的侧视示意图。
具体实施方式
(第一实施例)
请参图1,本发明的第一实施例提供一种晶体管的制造方法,所述晶体管的制造方法包括以下步骤。首先,如图1的步骤S1,提供基材1,基材1上形成有两个沟槽2,其中两个沟槽2之间定义出位元线接点3,每一个沟槽2的相对于位元线接点3的一侧定义出电容接点4。接着,如图1的步骤S3,设置介电层21于每一个沟槽2内,每一个介电层21覆盖对应的沟槽2的内侧表面。然后,如图1的步骤S5,设置一导电材料于每一个介电层21上,藉以形成栅极结构22于每一个沟槽2内。
接着,如图1的步骤S7,注入低剂量的掺杂至基材1的位元线接点3及两个电容接点4。以本具体实施例而言,所述注入低剂量的掺杂至基材1的位元线接点3及两个电容接点4的步骤,例如是以1.9e13掺杂原子/立方公分(dopantatoms/cm3)的掺杂剂量及25千电子伏特(KeV)的掺杂能量,注入磷掺杂至基材1的位元线接点3及两个电容接点4,但本发明并不以此为限。
接着,如图1的步骤S9,再一次注入低剂量的掺杂至基材1的位元线接点3。以本具体实施例而言,所述再一次注入低剂量的掺杂至基材1的位元线接点3的步骤,例如是以5e12至5e13掺杂原子/立方公分的掺杂剂量及35千电子伏特的掺杂能量,注入磷掺杂至基材1的位元线接点3,但本发明并不以此为限。
请参图2,第一次掺杂曲线C1显示出上述「以1.9e13掺杂原子/立方公分的掺杂剂量及25千电子伏特的掺杂能量注入磷掺杂至位元线接点3及两个电容接点4」的步骤中,掺杂浓度与深度的关系。第二次掺杂曲线C2显示出上述「以5e12至5e13掺杂原子/立方公分的掺杂剂量及35千电子伏特的掺杂能量,注入磷掺杂至位元线接点3」的步骤中,掺杂浓度与深度的关系。两次掺杂加成之曲线C3,显示出上述两次掺杂的掺杂浓度之加成与深度的关系。具体来说,藉由上述两个步骤对基材1进行两次掺杂之后,基材1的每一个电容接点4的掺杂浓度分布可对应于第一次掺杂曲线C1,基材1的位元线接点3的掺杂浓度分布可对应于两次掺杂加成之曲线C3。
基材1的每一个电容接点4仅被掺杂一次,藉以形成漏极区41于每一个电容接点4,因此,漏极区41可具有相对而言较低的掺杂浓度,以降低栅极诱导漏极漏电流(gateinduceddrainleakage)。
经由上述步骤,位元线接点3的两次低剂量的掺杂注入,可具有不同的掺杂能量。因此,位元线接点3的两次低剂量的掺杂注入,会具有不同的掺杂深度,如图2中的第一次掺杂曲线C1和第二次掺杂曲线C2所示。值得注意的是,图2中的第一次掺杂曲线C1和第二次掺杂曲线C2,由深度轴向上来测量,分别具有较窄的曲线图形。相对而言,两次掺杂加成之曲线C3,由深度轴向上来测量,具有较宽的曲线图形。具体来说,在图2中,于深度X至深度Y的范围内,第一次掺杂曲线C1的斜率皆小于零,第二次掺杂曲线C2的斜率皆大于零;并且,于深度X至深度Y范围内,在任意一点固定深度,第一次掺杂曲线C1的斜率的绝对值小于第二次掺杂曲线C2的斜率的绝对值。因此,于深度X至深度Y范围内,两次掺杂加成之曲线C3的斜率皆大于零;并且,于深度X至深度Y范围内,在任意一点固定深度,曲线C3的斜率的绝对值小于第二次掺杂曲线C2的斜率的绝对值。同理可知,在图2中,于深度Y至深度Z的范围内,两次掺杂加成之曲线C3的斜率皆小于零;并且,于深度Y至深度Z范围内,在任意一点固定深度,曲线C3的斜率的绝对值小于第一次掺杂曲线C1的斜率的绝对值。也就是说,通过两次不同掺杂深度的掺杂注入所获得的掺杂浓度曲线,在较大深度范围内的任意一点固定深度,皆具有较小斜率绝对值。换言之,通过两次不同掺杂深度的掺杂注入,可形成一个掺杂浓度实质上均匀分布的区域,如图3中所示形成于位元线接点3的平区32。
详细而言,平区32的顶端是位于每一个栅极结构22的顶端上方,且平区32的底端是位于每一个栅极结构22的底端下方。平区32可作为晶体管的源极区,并且具有实质上均匀分布的掺杂浓度,亦即,在平区32的任何深度上都不存在过高或者过低的掺杂浓度。藉此,字元线间的耦合现象(wordlinecoupling)得以减少,且两个栅极结构22之间的字元线干扰(wordlinedisturb)得以降低。较佳地,在宽度方向上,平区32是从位元线接点3与其中一个沟槽2之间的边界,延伸至位元线接点3与其中另一个沟槽2之间的边界。
位元线接点3之中,位于平区32下方的其他区域可作为晶体管的载子通道的一部分。所述载子通道可由对应的栅极结构22控制,栅极结构22可以通过制造或消除平区32和对应的电容接点4之间的所述载子通道,从而允许或者阻碍电流在平区32和对应的电容接点4之间流通。位元线接点3之中位于平区32下方的其他区域的掺杂浓度,是小于平区的掺杂浓度。
请参图3,另一方面,本发明的第一实施例还提供一种根据上述方法所制造出来的晶体管。所述晶体管包括位元线接点3、两个电容接点4以及两个形成于基材1上的沟槽2。在每一个沟槽2内,介电层21覆盖沟槽2的内侧表面,栅极结构22设置于介电层21上。每一个沟槽2位于位元线接点3和对应的其中一个电容接点4之间。通过对沟槽2内的栅极结构22施加电压,可控制位元线接点3和电容接点4之间的载子通道的电流流通。每一个和电容接点4包括一个漏极区41。位元线接点3包括平区32,平区32具有实质上均匀分布的掺杂浓度,平区32的顶端是位于每一个栅极结构22的顶端上方,且平区32的底端是位于每一个栅极结构22的底端下方。平区32的掺杂浓度是大于位元线接点3之中位于平区32下方的其他区域的掺杂浓度,且平区32的掺杂浓度是大于每一个漏极区41的掺杂浓度。
此外,所述晶体管可连接于位元线BL、两个字元线WL以及两个电容结构CU。位元线BL可连接于位元线接点3,两个字元线WL分别连接于两个栅极结构22,两个电容结构CU分别相邻于两个电容接点4。然而,本发明并不以此为限。
(第二实施例)
请参图4,本发明的第二实施例提供一种晶体管的制造方法,所述晶体管的制造方法包括上述第一实施例所提供的晶体管的制造方法的步骤,且在注入低剂量的掺杂至基材1的位元线接点3以及两个电容接点4的步骤与再一次注入低剂量的掺杂至基材1的位元线接点3的步骤之间,更进一步包括:又一次注入低剂量的掺杂至基材1的位元线接点3(如图4的步骤S8)。注入至位元线接点3的又一次所述低剂量的掺杂注入的掺杂深度,是小于注入至位元线接点3以及两个电容接点4的所述低剂量的掺杂注入的掺杂深度。亦即,所述「又一次注入低剂量的掺杂至基材1的位元线接点3」的步骤的掺杂深度,是小于「注入低剂量的掺杂至基材1的位元线接点3以及两个电容接点4」的步骤的掺杂深度。以本具体实施例而言,所述又一次注入低剂量的掺杂至基材1的位元线接点3的步骤,例如是以1e13掺杂原子/立方公分的掺杂剂量及10千电子伏特的掺杂能量,注入磷掺杂至基材1的位元线接点3,但本发明并不以此为限。
请参图5,上述三次低剂量的掺杂注入会具有不同的掺杂深度,如图5中的曲线C1、曲线C2及曲线C4所示。三次掺杂加成之曲线C5,显示出上述三次掺杂(「以1.9e13掺杂原子/立方公分的掺杂剂量及25千电子伏特的掺杂能量注入磷掺杂」、「以5e12至5e13掺杂原子/立方公分的掺杂剂量及35千电子伏特的掺杂能量注入磷掺杂」以及「以1e13掺杂原子/立方公分的掺杂剂量及10千电子伏特的掺杂能量注入磷掺杂」)的掺杂浓度之加成与深度的关系。在位元线接点3之中,位于平区32上方的区域31的掺杂浓度得以增加,以增加位元线接点3与位元线BL之间的电性连接。值得注意的是,位元线接点3的区域31没有位于两个栅极结构22之间,因此,不会造成字元线间的耦合现象,也不会造成两个栅极结构22之间产生字元线干扰。
(第三实施例)
请参图6,本发明的第三实施例提供一种晶体管的制造方法,所述晶体管的制造方法包括上述第一实施例所提供的晶体管的制造方法的步骤,且于所述再一次注入低剂量的掺杂至基材1的位元线接点3的步骤中,所述低剂量的掺杂注入是通过基材1上的氧化层5(例如覆盖层)。经由硬质遮罩HM图案化的光阻层PR,可设置于氧化层5上。光阻层PR的图案暴露出一部分的氧化层5,氧化层5之中被光阻层PR的图案所暴露出来的部分,可对应于位元线接点3的位置。氧化层5的材料较致密,因此,于所述再一次注入低剂量的掺杂至基材1的位元线接点3的步骤中,通过氧化层5的掺杂注入较不易产生通道效应(channelingeffect),亦或散射(scattering)。藉此,掺杂深度可获得更精准的控制。此外,因掺杂注入过程中的破坏所产生的缺陷得以减少。
以上所述仅为本发明的实施例,其并非用以限定本发明的专利保护范围。任何熟习相像技艺者,在不脱离本发明的精神与范围内,所作的更动及润饰的等效替换,仍为本发明的专利保护范围内。
【符号说明】
基材1
沟槽2
介电层21
栅极结构22
位元线接点3
平区32
区域31
电容接点4
漏极区41
氧化层5
光阻层PR
硬质遮罩HM
位元线BL
字元线WL
电容结构CU
曲线C1~C5
深度X、Y、Z
步骤S1、S3、S5、S7、S8、S9。

Claims (16)

1.一种晶体管,位于一基材上,其特征在于,该晶体管包括:
两个沟槽,形成于所述基材上,在每一个所述沟槽内:一介电层覆盖所述沟槽的内侧表面;以及一栅极结构设置于所述介电层上;
一位元线接点,位于两个所述沟槽之间,所述位元线接点包括一平区,所述平区是通过注入低剂量的掺杂至所述基材至少两次所形成;以及
两个电容接点,分别位于两个所述沟槽的一侧,每一个电容接点与所述位元线接点分别位于对应的所述沟槽的相对两侧,每一个电容接点包括一漏极区,每一个所述漏极区是通过注入低剂量的掺杂至所述基材一次所形成;
其中,所述平区的顶端是高于每一个所述栅极结构的顶端,所述平区的底端是低于每一个所述栅极结构的底端,所述平区具有实质上均匀分布的掺杂浓度,所述平区的掺杂浓度是大于所述位元线接点之中位于所述平区下方的其他区域的掺杂浓度,且所述平区的掺杂浓度是大于每一个所述电容接点的掺杂浓度。
2.根据权利要求1所述的晶体管,其中注入至所述基材的所述位元线接点的两次所述低剂量的掺杂注入,具有不同的掺杂深度。
3.根据权利要求2所述的晶体管,其中注入至所述基材的所述位元线接点的两次所述低剂量的掺杂注入,具有不同的掺杂剂量。
4.根据权利要求3所述的晶体管,其中注入至所述基材的所述位元线接点的两次所述低剂量的掺杂注入分别为:
以1.9e13掺杂原子/立方公分的掺杂剂量及25千电子伏特的掺杂能量,注入磷掺杂至所述基材的所述位元线接点;以及
以5e12至5e13掺杂原子/立方公分的掺杂剂量及35千电子伏特的掺杂能量,注入磷掺杂至所述基材的所述位元线接点。
5.根据权利要求2所述的晶体管,其中所述平区是进一步通过又一次注入低剂量的掺杂至所述基材的所述位元线接点所形成,注入至所述位元线接点的又一次所述低剂量的掺杂注入的掺杂深度,是分别小于注入至所述位元线接点的两次所述低剂量的掺杂注入的掺杂深度。
6.根据权利要求1所述的晶体管,其中注入至所述基材的所述位元线接点的两次所述低剂量的掺杂注入,是通过所述基材上的一氧化层。
7.根据权利要求1所述的晶体管,其中所述平区在宽度方向上,是从所述位元线接点与其中一个所述沟槽之间的边界,延伸至所述位元线接点与其中另一个所述沟槽之间的边界。
8.根据权利要求1所述的晶体管,其中所述晶体管连接于一位元线、两个字元线以及两个电容结构,所述位元线连接于所述位元线接点,两个所述字元线分别连接于两个所述栅极结构,两个所述电容结构分别相邻于两个所述电容接点。
9.一种晶体管的制造方法,其特征在于,包括:
提供一基材,所述基材上形成有两个沟槽,其中两个所述沟槽之间定义出一位元线接点,每一个所述沟槽的相对于所述位元线接点的一侧定义出一电容接点;
设置一介电层于每一个所述沟槽内;
设置一导电材料于每一个所述介电层上,藉以形成一栅极结构于每一个所述沟槽内;
注入低剂量的掺杂至所述基材的所述位元线接点以及两个所述电容接点,藉以形成一漏极区于每一个所述电容接点;以及
再一次注入低剂量的掺杂至所述基材的所述位元线接点,藉以形成一平区于所述位元线接点,所述平区具有实质上均匀分布的掺杂浓度,所述平区的顶端是高于每一个所述栅极结构的顶端,所述平区的底端是低于每一个所述栅极结构的底端。
10.根据权利要求9所述的晶体管的制造方法,其中注入至所述位元线接点的再一次所述低剂量的掺杂注入的掺杂深度,大于注入至所述位元线接点以及两个所述电容接点的所述低剂量的掺杂注入的掺杂深度。
11.根据权利要求10所述的晶体管的制造方法,其中注入至所述位元线接点的再一次所述低剂量的掺杂注入的掺杂剂量,不同于注入至所述位元线接点以及两个所述电容接点的所述低剂量的掺杂注入的掺杂剂量。
12.根据权利要求11所述的晶体管的制造方法,其中注入低剂量的掺杂至所述基材的所述位元线接点以及两个所述电容接点的步骤,是以1.9e13掺杂原子/立方公分的掺杂剂量及25千电子伏特的掺杂能量,注入磷掺杂至所述基材;再一次注入低剂量的掺杂至所述基材的所述位元线接点的步骤,是以5e12至5e13掺杂原子/立方公分的掺杂剂量及35千电子伏特的掺杂能量,注入磷掺杂至所述基材。
13.根据权利要求10所述的晶体管的制造方法,在注入低剂量的掺杂至所述基材的所述位元线接点以及两个所述电容接点的步骤与再一次注入低剂量的掺杂至所述基材的所述位元线接点的步骤之间,更进一步包括:又一次注入低剂量的掺杂至所述基材的所述位元线接点,其中注入至所述位元线接点的又一次所述低剂量的掺杂注入的掺杂深度,小于注入至所述位元线接点以及两个所述电容接点的所述低剂量的掺杂注入的掺杂深度。
14.根据权利要求9所述的晶体管的制造方法,其中注入至所述位元线接点的再一次所述低剂量的掺杂注入,是通过所述基材上的一氧化层。
15.根据权利要求9所述的晶体管的制造方法,其中所述平区在宽度方向上,是从所述位元线接点与其中一个所述沟槽之间的边界,延伸至所述位元线接点与其中另一个所述沟槽之间的边界。
16.根据权利要求9所述的晶体管的制造方法,其中更进一步包括:将一位元线连接至所述位元线接点,将两个字元线分别连接至两个所述栅极结构,且形成两个电容结构分别相邻于两个所述电容接点。
CN201510002839.3A 2014-10-08 2015-01-05 晶体管及其制造方法 Pending CN105489607A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/509,151 2014-10-08
US14/509,151 US20160104782A1 (en) 2014-10-08 2014-10-08 Transistor structure and method of manufacturing the same

Publications (1)

Publication Number Publication Date
CN105489607A true CN105489607A (zh) 2016-04-13

Family

ID=55656023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510002839.3A Pending CN105489607A (zh) 2014-10-08 2015-01-05 晶体管及其制造方法

Country Status (3)

Country Link
US (1) US20160104782A1 (zh)
CN (1) CN105489607A (zh)
TW (1) TW201614842A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023029227A1 (zh) * 2021-09-06 2023-03-09 长鑫存储技术有限公司 半导体结构及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225158B1 (en) * 1998-05-28 2001-05-01 International Business Machines Corporation Trench storage dynamic random access memory cell with vertical transfer device
US20050104138A1 (en) * 2003-10-09 2005-05-19 Sanyo Electric Co., Ltd. Semiconductor device and manufacturing method thereof
CN1933115A (zh) * 2005-09-14 2007-03-21 尔必达存储器株式会社 制造半导体器件的方法
CN101465352A (zh) * 2007-12-20 2009-06-24 海力士半导体有限公司 用以降低邻近栅极间的干扰的半导体器件及其制造方法
CN101996950A (zh) * 2009-08-11 2011-03-30 海力士半导体有限公司 半导体器件及其制造方法
US20110133270A1 (en) * 2005-06-24 2011-06-09 Micron Technology, Inc. Memory device with recessed construction between memory constructions
CN102339830A (zh) * 2010-07-15 2012-02-01 海力士半导体有限公司 半导体器件及其制造方法
US20120211813A1 (en) * 2011-02-21 2012-08-23 Elpida Memory, Inc. Semiconductor device and method of forming the same
US20130029465A1 (en) * 2011-07-29 2013-01-31 Inotera Memories, Inc. Manufacturing method of memory structure
US20130043519A1 (en) * 2011-08-19 2013-02-21 Samsung Electronics Co., Ltd. Semiconductor devices using shaped gate electrodes

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225158B1 (en) * 1998-05-28 2001-05-01 International Business Machines Corporation Trench storage dynamic random access memory cell with vertical transfer device
US20050104138A1 (en) * 2003-10-09 2005-05-19 Sanyo Electric Co., Ltd. Semiconductor device and manufacturing method thereof
US20110133270A1 (en) * 2005-06-24 2011-06-09 Micron Technology, Inc. Memory device with recessed construction between memory constructions
CN1933115A (zh) * 2005-09-14 2007-03-21 尔必达存储器株式会社 制造半导体器件的方法
CN101465352A (zh) * 2007-12-20 2009-06-24 海力士半导体有限公司 用以降低邻近栅极间的干扰的半导体器件及其制造方法
CN101996950A (zh) * 2009-08-11 2011-03-30 海力士半导体有限公司 半导体器件及其制造方法
CN102339830A (zh) * 2010-07-15 2012-02-01 海力士半导体有限公司 半导体器件及其制造方法
US20120211813A1 (en) * 2011-02-21 2012-08-23 Elpida Memory, Inc. Semiconductor device and method of forming the same
US20130029465A1 (en) * 2011-07-29 2013-01-31 Inotera Memories, Inc. Manufacturing method of memory structure
US20130043519A1 (en) * 2011-08-19 2013-02-21 Samsung Electronics Co., Ltd. Semiconductor devices using shaped gate electrodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023029227A1 (zh) * 2021-09-06 2023-03-09 长鑫存储技术有限公司 半导体结构及其制造方法

Also Published As

Publication number Publication date
US20160104782A1 (en) 2016-04-14
TW201614842A (en) 2016-04-16

Similar Documents

Publication Publication Date Title
US7709875B2 (en) Memory cell comprising one MOS transistor with an isolated body having an improved read sensitivity
TWI252555B (en) Deep trench isolation of embedded dram for improved latch-up immunity
CN1897282A (zh) 包括具有隔离体的一个mos晶体管的存储单元
KR20060104794A (ko) 리세스 채널 트랜지스터 구조를 갖는 단일 트랜지스터플로팅 바디 디램 셀 및 그 제조방법
CN102214578A (zh) 半导体器件及其制造方法
US9355728B2 (en) Very dense nonvolatile memory bitcell
KR100612710B1 (ko) 개선된 수직 mosfet dram 셀 간 분리 구조체 및방법
TW200416999A (en) Semiconductor storage device
CN101174649A (zh) 半导体集成器件和该半导体集成器件的制造方法
US9001580B1 (en) Asymmetric dense floating gate nonvolatile memory with decoupled capacitor
CN100431138C (zh) 制造快闪存储装置的方法
CN105489607A (zh) 晶体管及其制造方法
CN101714529A (zh) 半导体器件及制造该半导体器件的方法
KR100668752B1 (ko) 비대칭접합이온주입을 이용한 반도체 메모리소자의제조방법
CN101901810B (zh) 记忆体元件以及制造与操作记忆体元件的方法
US8698233B2 (en) Buried word line and connection pad for memory device
CN208819878U (zh) 半导体器件
CN109860276A (zh) 半导体器件及其形成方法
CN103928468B (zh) 闪存结构
CN104600071B (zh) 掩模型只读存储器及制造方法
WO2012136055A1 (zh) 一种抑制闪存编程干扰的工艺方法
Cho et al. Stretched tunnelling body contact structure for suppressing the FBE in a vertical cell DRAM
KR100866745B1 (ko) 반도체 소자의 테스트 패턴 형성방법
Min et al. Study on the sub-threshold margin characteristics of the extremely scaled 3-D DRAM cell transistors
JP2006245415A (ja) 半導体記憶装置及びその製造方法、並びに携帯電子機器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20170308

Address after: Idaho

Applicant after: Micron Technology, Inc.

Address before: Taiwan, China

Applicant before: Inotera Memories, Inc.

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20160413

RJ01 Rejection of invention patent application after publication