CN105489559B - 一种微波功率管用氮化铝基板及其制造方法 - Google Patents

一种微波功率管用氮化铝基板及其制造方法 Download PDF

Info

Publication number
CN105489559B
CN105489559B CN201510859169.7A CN201510859169A CN105489559B CN 105489559 B CN105489559 B CN 105489559B CN 201510859169 A CN201510859169 A CN 201510859169A CN 105489559 B CN105489559 B CN 105489559B
Authority
CN
China
Prior art keywords
aluminium nitride
microwave power
nitride substrate
technique
manufacture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510859169.7A
Other languages
English (en)
Other versions
CN105489559A (zh
Inventor
陈寰贝
夏庆水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN201510859169.7A priority Critical patent/CN105489559B/zh
Publication of CN105489559A publication Critical patent/CN105489559A/zh
Application granted granted Critical
Publication of CN105489559B publication Critical patent/CN105489559B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

本发明是一种微波功率管用氮化铝基板,其结构表层金属布线;孔侧壁金属化;底面接地满金属化,在表层金属化上进行多管芯的焊接与互联,通过孔侧壁金属化与底面满金属化满足接地的需求;利用多层共烧工艺,选用氮化铝陶瓷作为陶瓷基体材料,钨作为金属化材料,采用孔侧壁金属化工艺形成上下层间互联,采用化学镀镍、化学镀金工艺对表层钨金属线路层进行镀覆。优点:相对于有机基板不足10W/mK及氧化铝基板30W/mK左右的热导率,该基板的热导率提高至170 W/mK,能够满足高功率密度微波器件的封装需求。并且采用孔侧壁金属化工艺与化学镀镍、化学镀金工艺,适合高效率批量生产。

Description

一种微波功率管用氮化铝基板及其制造方法
技术领域
本发明是一种微波功率管用氮化铝基板及其制造方法,乃是针对SiC功率管或GaN功率管的高功率密度微波基板制造方法,属于微波功率管技术领域。
背景技术
随着SiC功率管或GaN功率管的迅速发展,器件的发热量迅速增加,会造成器件温度迅速升高,从而影响芯片的工作状态。因此,对互联基板散热性提出了更高的要求。而目前普遍使用较广的以高分子为基材以及氧化铝陶瓷为基材的两类基板,而随着器件功率的不断增大,两类基板已经很难满足使用要求。
对于高分子类基板,其由于成本低,便于成型,在封装互联领域应用最为广泛。但是其热导率低也非常的低,一般该类型热导率都低于1W/mK。一些高分子基板会通过在树脂中添加氮化铝粉体等进行改性,但是热导率都低于10W/mK。因此,对于SiC功率管或GaN功率管而言,越来越难以满足其使用要求。
对于氧化铝陶瓷基板,也是比较成熟的封装互联产品。其热导率一般在30W/mK左右。相对高分子基板,其热导率有了较大提升,能够满足一部分微波功率管的使用。但是,随着微波功率管的功率进一步提高,器件的体积不断缩小,单位功率密度迅速增加,30W/mK热导率也不能满足其使用。一些器件,采用氧化铝陶瓷加钨铜底座等方式,改进其散热性能,得到了较好效果。但是,这些产品结构需要采用陶瓷加金属底座封接方式,不利于器件体积减小。
氮化铝陶瓷,具有优良的散热性能。其热导率高达170W/mK以上。并且热膨胀系数也与芯片材料接近,能够形成良好的匹配。同时作为介质材料,其介电常数、介电损耗与氧化铝接近,满足微波传输的要求。因此,有着良好的应用前景。
发明内容
本发明提出的是一种微波功率管用氮化铝基板及其制造方法,其目的是获得一种高热导率基板以用于微波功率器件的封装互联,解决该类型器件的散热问题。
本发明的技术解决方案:一种微波功率管用氮化铝基板,其结构是表层金属布线;孔侧壁金属化;底面接地满金属化,在表层金属化上进行多管芯的焊接与互联,通过孔侧壁金属化与底面满金属化满足接地的需求,基板上的管芯发热量,通过氮化铝陶瓷,能够有效传递出去,以保证工作状态下的温度稳定性。
其制造方法,包括如下工艺步骤:
1)将混合均匀的氮化铝粉体、粘结剂、分散剂及溶剂通过流延设备,获得厚度均一的氮化铝生瓷带;
2)将几层上述生瓷带,通过干压机叠压成一层氮化铝生瓷块;
3)对层压后的生瓷带利用机械冲孔冲出孔侧壁金属化所需的孔及定位孔;
4)利用丝网印刷方式及钨金属化浆料进行表层金属化与底面金属化;
5)通过生切获得单个生瓷瓷件;
6)烧结获得单个熟瓷瓷件;
7)化学镀镍、化学镀金工艺对钨金属化进行镀覆,获得微波功率管用氮化铝基板。
本发明的优点:
1)利用氮化铝陶瓷及多层共烧工艺,获得多层布线高热导率陶瓷基板,解决SiC功率管或GaN功率管的封装互联散热问题,并能容易实现多管芯一体化设计,有效的减小器件的体积。
2)先层压,后冲孔,孔侧壁金属化,能够容易实现基板的多层互联。化学镀镍金工艺,容易实现孤岛金属化的镀镍镀金,避免压丝电镀,提高生产效率与产品一致性,适合大批量工业化生产。
附图说明
图1是微波功率管用氮化铝基板制造工艺流程图。
图2-1是微波功率管用氮化铝基板结构的仰视图。
图2-2是微波功率管用氮化铝基板结构的主视图。
具体实施方式
对照图2-1、图2-2,一种微波功率管用氮化铝基板,其通过流延、层压、打孔、孔侧壁金属化、印刷、生切、烧结、化学镀镍金,获得。其结构表层金属布线;孔侧壁金属化;底面接地满金属化。通过这种结构,表层金属化上进行多管芯的焊接与互联,通过孔侧壁金属化与底面满金属化满足接地的需求。基板上的管芯发热量,通过氮化铝陶瓷,能够有效传递出去,以保证工作状态下的温度稳定性。
对照图1,微波功率管用氮化铝基板的制造方法,包括如下工艺步骤:
1)通过流延,获得0.25-0.30mm厚度的氮化铝生瓷带;
2)将多层氮化铝生瓷带利用干压机叠压结合,层压压力为1.5kpsi-2.5kpsi;
3)对层压后的生瓷带利用机械冲孔机冲出产品电路互连所需的孔及定位孔,互连孔孔径为0.30-0.80mm,定位孔孔径为0.50-3.00mm;
4)利用丝网印刷机,结合真空倒吸技术,将钨金属化浆料进行孔侧壁金属化;
5)利用丝网印刷方式将钨金属化浆料进行表层金属化与底面金属化;
6)生切、烧结获得单个熟瓷瓷件;
7)采用化学镀镍、化学镀金工艺对钨金属化进行镀覆,获得微波功率管用氮化铝基板。
所述的微波功率管用氮化铝基板,选用氮化铝陶瓷为基体材料,利用多层陶瓷高温共烧工艺,共烧温度为1700-1900℃。
所述的利用丝网印刷机,配合与产品通孔完全相同的钢制专用模板,结合真空倒吸技术,实现孔侧壁金属化以及上下层电路互联。
所述的利用化学镀镍、化学镀金工艺实现导电层的镀覆,镀金层厚度为0.03-0.10μm。
应用在微波功率管的封装,热导率高于170 W/mK。
实施例
利用流延设备,在120℃干燥温度下,获得单张厚度0.27mm,长、宽210mm生瓷带。将三层0.27厚度氮化铝生瓷带,利用干压机在2.0kpsi压力下,压制成块。并利用机械冲孔设备,冲出0.6mm直径的通孔。利用丝网与印刷机,将钨浆料涂覆在通孔侧壁,待干燥后,利用丝网与印刷机,用钨浆料对表层电路与底层电路进行印刷。干燥后利用生切机,将整版生瓷块,按标记线进行生切获得单元。在1700-1900℃的温度下,进行烧结,获得熟瓷基板。将基板进行化学镀镍,镀镍完成后进行化学镀金处理,金层厚度为0.03-0.1μm,获得微波功率管用氮化铝基板。经过测试和筛选后,可以用于封装SiC功率管和GaN功率管。

Claims (5)

1.微波功率管用氮化铝基板的制造方法,其特征是该方法包括如下工艺步骤:
1)通过流延,获得0.25-0.30mm厚度的氮化铝生瓷带;
2)将多层氮化铝生瓷带利用干压机叠压结合,层压压力为1.5kpsi-2.5kpsi;
3)对层压后的生瓷带利用机械冲孔机冲出产品电路互连所需的孔及定位孔,互连孔孔径为0.30-0.80mm,定位孔孔径为0.50-3.00mm;
4)利用丝网印刷机,结合真空倒吸技术,将钨金属化浆料进行孔侧壁金属化;
5)利用丝网印刷方式将钨金属化浆料进行表层金属化与底面金属化;
6)生切、烧结获得单个熟瓷瓷件;
7)采用化学镀镍、化学镀金工艺对钨金属化进行镀覆,获得微波功率管用氮化铝基板。
2.根据权利要求1所述的一种微波功率管用氮化铝基板的制造方法,其特征是所述的微波功率管用氮化铝基板,选用氮化铝陶瓷为基体材料,利用多层陶瓷高温共烧工艺,共烧温度为1700-1900℃。
3.根据权利要求1所述的一种微波功率管用氮化铝基板的制造方法,其特征在于:所述步骤4)中,配合与产品通孔完全相同的钢制专用模板,结合真空倒吸技术,实现孔侧壁金属化以及上下层电路互联。
4.根据权利要求1所述的一种微波功率管用氮化铝基板的制造方法,其特征在于所述的利用化学镀镍、化学镀金工艺实现导电层的镀覆,镀金层厚度为0.03-0.10μm。
5.根据权利要求1所述的一种微波功率管用氮化铝基板的制造方法,其特征在于应用在微波功率管的封装,热导率高于170 W/mK。
CN201510859169.7A 2015-11-30 2015-11-30 一种微波功率管用氮化铝基板及其制造方法 Active CN105489559B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510859169.7A CN105489559B (zh) 2015-11-30 2015-11-30 一种微波功率管用氮化铝基板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510859169.7A CN105489559B (zh) 2015-11-30 2015-11-30 一种微波功率管用氮化铝基板及其制造方法

Publications (2)

Publication Number Publication Date
CN105489559A CN105489559A (zh) 2016-04-13
CN105489559B true CN105489559B (zh) 2018-01-16

Family

ID=55676457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510859169.7A Active CN105489559B (zh) 2015-11-30 2015-11-30 一种微波功率管用氮化铝基板及其制造方法

Country Status (1)

Country Link
CN (1) CN105489559B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106631036A (zh) * 2016-12-07 2017-05-10 中国电子科技集团公司第五十五研究所 一种高温共烧氮化铝陶瓷的烧结方法
CN109545771A (zh) * 2018-09-14 2019-03-29 中国电子科技集团公司第五十五研究所 一种高集成模块级封装用多层氮化铝基板及其制造方法
CN111128679A (zh) * 2019-12-18 2020-05-08 北京无线电测量研究所 一种功分微波基板以及制作方法
CN112038297B (zh) * 2020-08-14 2022-10-25 中国电子科技集团公司第十三研究所 氧化铝瓷件及其制作方法、陶瓷外壳的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942076A (en) * 1988-11-03 1990-07-17 Micro Substrates, Inc. Ceramic substrate with metal filled via holes for hybrid microcircuits and method of making the same
US4951014A (en) * 1989-05-26 1990-08-21 Raytheon Company High power microwave circuit packages
CN102573299A (zh) * 2010-12-08 2012-07-11 中国科学院微电子研究所 制备低温共烧陶瓷平整基板的方法
CN104439724A (zh) * 2014-11-10 2015-03-25 北京大学东莞光电研究院 一种在陶瓷基板上利用激光加工导电通道的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053739A1 (en) * 1999-10-18 2001-12-20 Biljana Mikijelj High thermal conductivity aln for microwave tube applications
US8345433B2 (en) * 2004-07-08 2013-01-01 Avx Corporation Heterogeneous organic laminate stack ups for high frequency applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942076A (en) * 1988-11-03 1990-07-17 Micro Substrates, Inc. Ceramic substrate with metal filled via holes for hybrid microcircuits and method of making the same
US4951014A (en) * 1989-05-26 1990-08-21 Raytheon Company High power microwave circuit packages
CN102573299A (zh) * 2010-12-08 2012-07-11 中国科学院微电子研究所 制备低温共烧陶瓷平整基板的方法
CN104439724A (zh) * 2014-11-10 2015-03-25 北京大学东莞光电研究院 一种在陶瓷基板上利用激光加工导电通道的方法

Also Published As

Publication number Publication date
CN105489559A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
CN105489559B (zh) 一种微波功率管用氮化铝基板及其制造方法
US20190198424A1 (en) Power module with built-in power device and double-sided heat dissipation and manufacturing method thereof
CN109545771A (zh) 一种高集成模块级封装用多层氮化铝基板及其制造方法
CN104064478B (zh) 一种铜/氮化铝陶瓷复合导热基板的制作方法
CN102339758A (zh) 低温键合制备铜-陶瓷基板方法
US20100282459A1 (en) Heat sink and method for manufacturing a heat sink
CN107123601B (zh) 一种高散热器件封装结构和板级制造方法
US11114355B2 (en) Power module and method for manufacturing power module
CN105304577A (zh) 多芯片组件散热封装陶瓷复合基板的制备方法
CN106537580B (zh) 陶瓷电路基板及其制造方法
CN205303452U (zh) 金刚石铜热沉材料
CN107995781A (zh) 一种氮化铝陶瓷电路板及制备方法
EP3404709B1 (en) Packaged microelectronic component mounting using sinter attachment
TW201521148A (zh) 氮化鋁靜電吸盤之異質疊層共燒陶瓷製備方法
JP2003229669A (ja) 多層セラミック基板、その製造方法および製造装置
CN100352317C (zh) 电子元件安装板、电子元件模块、制造电子元件安装板的方法及通信设备
CN107708296A (zh) 一种高导热的金属基电路板及其制作方法
JP4404602B2 (ja) セラミックス−金属複合体およびこれを用いた高熱伝導放熱用基板
JP2007158185A (ja) 誘電体積層構造体、その製造方法、及び配線基板
CN113213950B (zh) 陶瓷封装基座的制备方法
JP5665479B2 (ja) 回路基板および電子装置
CN112235936A (zh) 一种5g通讯设备用高稳定性高频混压板及其制作方法
JP2004055577A (ja) アルミニウム−炭化珪素質板状複合体
TWI640495B (zh) 複合構件及其用途與製作方法
CN104640344A (zh) 镀铜的陶瓷线路板及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant