CN113213950B - 陶瓷封装基座的制备方法 - Google Patents
陶瓷封装基座的制备方法 Download PDFInfo
- Publication number
- CN113213950B CN113213950B CN202110542319.7A CN202110542319A CN113213950B CN 113213950 B CN113213950 B CN 113213950B CN 202110542319 A CN202110542319 A CN 202110542319A CN 113213950 B CN113213950 B CN 113213950B
- Authority
- CN
- China
- Prior art keywords
- ceramic
- packaging base
- ink
- ceramic packaging
- printing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63424—Polyacrylates; Polymethacrylates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6582—Hydrogen containing atmosphere
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Computer Hardware Design (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Civil Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及一种陶瓷封装基座的制备方法,该制备方法包括以下步骤:按照设计的陶瓷封装基座的三维模型,依次使用纳米陶瓷墨水、纳米金属墨水打印陶瓷封装基座的陶瓷层、金属线路层,依次分别对陶瓷层、金属线路层进行预固化,直至完成包含陶瓷层和金属线路层的陶瓷封装基座的打印;将陶瓷封装基座进行干燥、脱脂、烧结,完成陶瓷封装基座的制备。陶瓷封装基座的制备方法的制备过程连续,制备工艺和制作过程简单、生产效率高、能够制备复杂结构的精密陶瓷封装基座。
Description
技术领域
本发明涉及陶瓷封装技术领域,具体涉及一种陶瓷封装装置的制备方法。
背景技术
陶瓷封装基座因具有热导率高、电绝缘强度高等特点,成为了理想的封装材料,广泛用于CMOS/CCD、石英器件等封装。随着手机、数码相机、PC等产品的不断推陈出新,对陶瓷封装基座的需求量越来越大。
目前制备陶瓷封装基座的方法主要有两种,第一种是传统的高温共烧陶瓷(HTCC-High Temperature co-fired Ceramic)技术、低温共烧陶瓷(LTCC-Low Temperature co-fired Ceramic)技术,其主要技术途径是以生瓷材料和流延技术为基础加工出陶瓷生片,然后根据线路层设计对陶瓷生片进行打孔,采用丝网印刷金属浆料进行布线和填孔,最后将各个陶瓷生片按照顺序依次叠加,置于烧结炉中按照一定的烧结温度进行烧结而成。采用多层陶瓷生片共烧技术来制备陶瓷封装基座需要经过多个工艺过程流转,所需设备多,流程复杂容易出错,生产效率低;特别是制备具有复杂结构的陶瓷封装基座时,其制备过程的复杂程度将成倍增加,导致生产时间和成本大幅上升。第二种制备方法是采用挤出方式打印陶瓷浆料或者胚料来制备陶瓷基体,配合采用喷墨或者挤出方式打印导电浆料,挤出过程辅助热固化条件堆叠成型。第二种制备方法能够改善现有共烧陶瓷技术的缺点,但是存在挤出速度慢、精度有限、需要预留金属浆料槽道、热固化时间长等缺点;同时制备过程需要多次暂停,流程不连续,无法实现不停机的连续打印。
发明内容
本发明克服现有技术的不足,本发明提供一种陶瓷封装基座的制备方法。
陶瓷封装基座的制备方法,包括以下步骤:
S1、按照设计的陶瓷封装基座的三维模型,使用纳米陶瓷墨水3D打印,获得预留有打印槽道、层间互连孔和外接用引脚孔的陶瓷层;
S2、对所述陶瓷层进行预固化;
S3、使用纳米金属墨水沿所述预留的打印槽道、层间互连孔和外接用引脚孔进行3D打印,获得金属线路层;其中,所述层间互连孔和所述外接用引脚孔采用实心填充的方式打印;
S4、对所述金属线路层进行预固化,打印舱温度为100~200℃;
S5、重复步骤S1~S4,交替打印所述陶瓷层与所述金属线路层,直至完成陶瓷封装基座的打印;
S6、使用去离子水清洗陶瓷封装基座,用于去除未固化的纳米陶瓷墨水;设置预定时间,将陶瓷封装基座置于室温或烘箱中干燥;
S7、将干燥后的陶瓷封装基座置于脱脂炉内,在保护气体的作用下,进行脱脂处理;
S8、将冷却至室温的陶瓷封装基座置于烧结炉内,在保护气体的作用下,进行烧结,完成陶瓷封装基座的制备。
进一步地,陶瓷封装基座的制备方法还包括如下步骤:
S9、对烧结后的陶瓷封装基座进行机械加工和表面研磨。
进一步地,陶瓷封装基座的制备方法还包括如下步骤:
S10、对烧结后的陶瓷封装基座进行引脚焊接。
进一步地,烧结方法为高温共烧陶瓷法或低温共烧陶瓷法。
进一步地,纳米陶瓷墨水中的陶瓷原料为氧化铝粉末、氮化铝粉末、碳化硅粉末中的任意一种;纳米金属墨水中的金属原料为金、铜、钨、银、钼、银钯合金、银铂合金中的任意一种,且与纳米陶瓷墨水中的陶瓷原料的烧结温度匹配,能够实现共烧。
进一步地,所述纳米陶瓷墨水还包括光敏有机物混合体,用于实现预固化功能。
进一步地,所述光敏有机物混合体包含以下质量份数的组分,以光敏有机物混合体为100质量份数计:1,6-已二醇双丙烯酸酯40份、双季戊四醇六丙烯酸酯20份、乙氧化三羟甲基丙烷三丙烯酸酯20份、2,4,6-三甲基苯甲酰基-二苯基氧化膦1份、丙烯酸嵌段共聚物2份和聚乙二醇17份。
本发明提供的一种陶瓷封装基座的制备方法,与现有技术中挤出类型的3D打印陶瓷封装基座制备方法相比制备过程连续,制备工艺和制作过程简单、生产效率高,能够制备复杂结构的精密陶瓷封装基座。
附图说明
图1是本发明实施例陶瓷封装基座的制备方法的流程图;
图2A-图2I是本发明实施例陶瓷封装基座的制备方法的打印过程示意图。
具体实施方式
下面结合附图和实施例对本发明的实施方式作进一步详细描述。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互结合。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1示出了本发明实施例陶瓷封装基座的制备方法的流程图,图2A-图2I示出了本发明实施例陶瓷封装基座的制备方法的打印过程示意图,其中:图2A是本发明实施例中预留的第一层金属线路层的打印槽道、层间互连孔和外接用引脚孔示意图;图2B是本发明实施例中形成的氧化铝陶瓷封装基座的第一陶瓷层示意图;图2C是本发明实施例中形成的氧化铝陶瓷封装基座的第一层金属线路和外接金属引脚示意图;图2D是本发明实施例中预留的第二层金属线路层的打印槽道、层间互连孔和外接用引脚孔示意图;图2E是本发明实施例中形成的氧化铝陶瓷封装基座的第二陶瓷层示意图;图2F是本发明实施例中形成的氧化铝陶瓷封装基座的第二层金属线路和外接金属引脚示意图;图2G是本发明实施例中预留的第三层金属线路层的打印槽道、层间互连孔和外接用引脚孔示意图;图2H是本发明实施例中氧化铝陶瓷封装基座的第三陶瓷层示意图;图2I是本发明实施例中形成的氧化铝陶瓷封装基座的第三层金属线路和外接金属引脚示意图。
本发明实施例提供一种氧化铝陶瓷封装基座的制备方法,包括以下步骤:
S1、按照设计的陶瓷封装基座的三维模型,使用纳米陶瓷墨水3D打印,获得预留有打印槽道、层间互连孔和外接用引脚孔陶瓷层。
按照设计的氧化铝陶瓷封装基座三维模型,使用纳米氧化铝陶瓷墨水进行3D打印,打印氧化铝陶瓷封装基座的陶瓷层,厚度为50μm;如图2A所示,其中预留金属线路层的打印槽道、层间互连孔和外接用引脚孔;陶瓷3D喷墨打印机至少具有双喷头及其相对应的墨水供应装置,能够避免不同纳米墨水间的混合。陶瓷封装基座三维模型的制图软件的选择涉及现有技术,可以根据情况选择UG、Pro/E、Solidworks等三维制图软件,本发明对此不进行限定。打印程序需要采用切片分层软件对上述三维模型文件进行分层处理,获得3D打印机可识别文件,切片分层软件的选择涉及现有技术,本发明对此不进行限定。
S2、使用紫外波段固化光源对打印完成的陶瓷层进行预固化。
如图2B所示,形成氧化铝陶瓷封装基座的第一陶瓷层。
S3、使用纳米金属钨墨水沿所述预留的打印槽道、层间互连孔和外接用引脚孔进行3D打印,获得金属线路层;其中,所述层间互连孔和所述外接用引脚孔采用实心填充的方式打印。
S4、对打印完成的金属层进行预固化,打印舱温度为150℃。
如图2C所示,形成氧化铝陶瓷封装基座的金属线路和外接金属引脚。
S5、重复步骤S1~S4,分别交替使用纳米氧化铝陶瓷墨水和纳米金属钨墨水进行打印,直至完成包含陶瓷层和金属线路层的氧化铝陶瓷封装基座的打印。
如图2D-2I所示,每层陶瓷打印过程中均预留出金属线路的打印槽道和层间互连孔,不同层之间的金属线路互连孔均采用实心填充的方式打印。本发明的技术方案采用3D喷墨打印的方式将陶瓷和金属逐层堆叠成型,能够实现陶瓷封装基座的连续打印,解决了采用挤出类型的3D打印方法打印过程中需要暂停打印的技术问题,能够提高生产速率。
S6、使用去离子水清洗氧化铝陶瓷封装基座,用于去除未固化的纳米氧化铝陶瓷墨水;将氧化铝陶瓷封装基座置于烘箱中干燥,烘箱温度为40℃,烘干时长为6小时。
烘干温度和时间可以根据空气湿度和烘箱的具体情况确定,通常烘干时长≥6小时。
S7、将干燥后的氧化铝陶瓷封装基座置于脱脂炉内,在湿氢气与氮气混合的保护气体的作用下,以0.5℃/min的升温速率升温至500℃,再以1℃/min的升温速率升温至900℃,保温1小时,然后随脱脂炉冷却至室温。
不同金属需要使用不同的保护气体,对保护气体的流量的设定也不同,本发明对此不进行具体限制,可根据制备的陶瓷封装基座的情况进行调节。不同材质的陶瓷封装基座的脱脂温度不同,本发明对此不进行具体限制,脱脂过程中,严格控制升温速率以及保温时间,减少陶瓷封装基座的开裂和变形。
S8、将冷却至室温的氧化铝陶瓷封装基座置于烧结炉内,按照氧化铝陶瓷材料和钨金属材料的特性设定烧结温度和烧结流程,在湿氢气与氮气混合的保护气体的作用下,以3℃/min升温至1000℃,保温1小时;再以2℃/min升温至1500℃,保温6小时,然后随烧结炉冷却至室温,完成氧化铝陶瓷封装基座的制备。
不同材质的陶瓷封装基座的烧结温度和烧结流程不同,本发明对此不进行具体限制,烧结过程中,严格控制升温速率以及保温时间,减少陶瓷封装基座的开裂和变形。
本发明提供一种优选实施例,陶瓷封装基座的制备方法还包括:
S9、对陶瓷封装基座进行机械加工和表面研磨,尺寸精度≤0.1mm。
本发明提供一种优选实施例,陶瓷封装基座的制备方法还包括:
S10、对陶瓷封装基座进行引脚焊接,引脚长度为5mm,表面镀金,满足陶瓷封装基座产品电连接要求。
本发明提供一种优选实施例,步骤S8中,烧结方式为1500~1800℃的高温共烧陶瓷技术或900~1000℃的低温共烧陶瓷技术。
本发明提供一种优选实施例,纳米陶瓷墨水中的陶瓷原料为氧化铝粉末、氮化铝粉末、碳化硅粉末中的任意一种;纳米金属墨水中的金属原料为金、铜、钨、银、钼、银钯合金、银铂合金中的任意一种,且与纳米陶瓷墨水中的陶瓷原料的烧结温度匹配,能够实现共烧。
本发明提供一种优选实施例,纳米陶瓷墨水还包括光敏有机物混合体,用于实现预固化功能。
本发明提供一种优选实施例,光敏有机物混合体包含以下质量份数的组分,以光敏有机物混合体为100质量份数计:1,6-已二醇双丙烯酸酯40份、双季戊四醇六丙烯酸酯20份、乙氧化三羟甲基丙烷三丙烯酸酯20份、2,4,6-三甲基苯甲酰基-二苯基氧化膦1份、丙烯酸嵌段共聚物2份和聚乙二醇17份。
本发明提供的一种陶瓷封装基座的制备方法,利用3D喷墨打印的方式将陶瓷和金属逐层堆叠成型,并结合高温共烧陶瓷技术或低温共烧陶瓷技术,制备过程无需中断暂停,制备过程连续,制备工艺和制作过程简单、生产效率高能够制备结构复杂的陶瓷封装基座。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制。本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
以上本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。
Claims (7)
1.一种陶瓷封装基座的制备方法,其特征在于,利用陶瓷3D喷墨打印机将陶瓷和金属逐层堆叠成型,实现陶瓷封装基座的连续打印,包括以下步骤:
S1、按照设计的陶瓷封装基座的三维模型,使用纳米陶瓷墨水3D打印,获得预留有打印槽道、层间互连孔和外接用引脚孔的陶瓷层;
S2、对所述陶瓷层进行预固化;
S3、使用纳米金属墨水沿所述预留的打印槽道、层间互连孔和外接用引脚孔进行3D打印,获得金属线路层;其中,所述层间互连孔和所述外接用引脚孔采用实心填充的方式打印;
S4、对所述金属线路层进行预固化,打印舱温度为100~200℃;
S5、重复步骤S1~S4,交替打印所述陶瓷层与所述金属线路层,直至完成陶瓷封装基座的打印;
S6、使用去离子水清洗所述陶瓷封装基座,用于去除未固化的纳米陶瓷墨水;设置预定时间,将所述陶瓷封装基座置于室温或烘箱中干燥;
S7、将干燥后的所述陶瓷封装基座置于脱脂炉内,在保护气体的作用下,进行脱脂处理;
S8、将冷却至室温的所述陶瓷封装基座置于烧结炉内,在保护气体的作用下,进行烧结,完成所述陶瓷封装基座的制备。
2.根据权利要求1所述的陶瓷封装基座的制备方法,其特征在于,还包括如下步骤:
S9、对烧结后的所述陶瓷封装基座进行机械加工和表面研磨。
3.根据权利要求1所述的陶瓷封装基座的制备方法,其特征在于,还包括如下步骤:
S10、对烧结后的所述陶瓷封装基座进行引脚焊接。
4.根据权利要求1所述的陶瓷封装基座的制备方法,其特征在于,烧结方法为高温共烧陶瓷法或低温共烧陶瓷法。
5.根据权利要求1所述的陶瓷封装基座的制备方法,其特征在于,
纳米陶瓷墨水中的陶瓷原料为氧化铝粉末、氮化铝粉末、碳化硅粉末中的任意一种;
纳米金属墨水中的金属原料为金、铜、钨、银、钼、银钯合金、银铂合金中的任意一种,且与纳米陶瓷墨水中的陶瓷原料的烧结温度匹配,能够实现共烧。
6.根据权利要求1或5任一项所述的陶瓷封装基座的制备方法,其特征在于,所述纳米陶瓷墨水还包括光敏有机物混合体,用于实现预固化功能。
7.根据权利要求6所述的陶瓷封装基座的制备方法,其特征在于,所述光敏有机物混合体包含以下质量份数的组分,以光敏有机物混合体为100质量份数计:1,6-已二醇双丙烯酸酯40份、双季戊四醇六丙烯酸酯20份、乙氧化三羟甲基丙烷三丙烯酸酯20份、2,4,6-三甲基苯甲酰基-二苯基氧化膦1份、丙烯酸嵌段共聚物2份和聚乙二醇17份。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110542319.7A CN113213950B (zh) | 2021-05-18 | 2021-05-18 | 陶瓷封装基座的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110542319.7A CN113213950B (zh) | 2021-05-18 | 2021-05-18 | 陶瓷封装基座的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113213950A CN113213950A (zh) | 2021-08-06 |
CN113213950B true CN113213950B (zh) | 2023-02-14 |
Family
ID=77092837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110542319.7A Active CN113213950B (zh) | 2021-05-18 | 2021-05-18 | 陶瓷封装基座的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113213950B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114716260B (zh) * | 2022-03-14 | 2023-03-07 | 广东省科学院新材料研究所 | 一种陶瓷-金属复合材料与金属材料的连接件及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101556939A (zh) * | 2009-05-19 | 2009-10-14 | 珠海粤科京华电子陶瓷有限公司 | 陶瓷封装基座及其制备方法 |
CN103407296A (zh) * | 2013-07-29 | 2013-11-27 | 南京鼎科纳米技术研究所有限公司 | 一种激光熔融辅助纳米墨水实现高熔点材料3d打印的方法 |
CN108901138A (zh) * | 2018-08-30 | 2018-11-27 | 西安瑞特三维科技有限公司 | 基于3d打印陶瓷与金属线路的一体化制备方法 |
US10619059B1 (en) * | 2019-06-20 | 2020-04-14 | Science Applications International Corporation | Catalyst ink for three-dimensional conductive constructs |
CN111065211A (zh) * | 2019-12-24 | 2020-04-24 | 贵州航天计量测试技术研究所 | 一种微带滤波器3d打印制造方法 |
CN112390626A (zh) * | 2019-08-16 | 2021-02-23 | 上海魅湃实业有限公司 | 一种3d打印用陶瓷浆料制备及其3d打印光固化成型方法 |
KR102225126B1 (ko) * | 2019-10-15 | 2021-03-09 | 한국세라믹기술원 | 소수성 3차원 프린팅 잉크 조성물 및 그 제조방법, 그리고 3차원 잉크젯 프린팅 방법. |
-
2021
- 2021-05-18 CN CN202110542319.7A patent/CN113213950B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101556939A (zh) * | 2009-05-19 | 2009-10-14 | 珠海粤科京华电子陶瓷有限公司 | 陶瓷封装基座及其制备方法 |
CN103407296A (zh) * | 2013-07-29 | 2013-11-27 | 南京鼎科纳米技术研究所有限公司 | 一种激光熔融辅助纳米墨水实现高熔点材料3d打印的方法 |
CN108901138A (zh) * | 2018-08-30 | 2018-11-27 | 西安瑞特三维科技有限公司 | 基于3d打印陶瓷与金属线路的一体化制备方法 |
US10619059B1 (en) * | 2019-06-20 | 2020-04-14 | Science Applications International Corporation | Catalyst ink for three-dimensional conductive constructs |
CN112390626A (zh) * | 2019-08-16 | 2021-02-23 | 上海魅湃实业有限公司 | 一种3d打印用陶瓷浆料制备及其3d打印光固化成型方法 |
KR102225126B1 (ko) * | 2019-10-15 | 2021-03-09 | 한국세라믹기술원 | 소수성 3차원 프린팅 잉크 조성물 및 그 제조방법, 그리고 3차원 잉크젯 프린팅 방법. |
CN111065211A (zh) * | 2019-12-24 | 2020-04-24 | 贵州航天计量测试技术研究所 | 一种微带滤波器3d打印制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113213950A (zh) | 2021-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3716783B2 (ja) | セラミック多層基板の製造方法及び半導体装置 | |
CN106211622A (zh) | 一种埋入式电路板复合3d打印方法 | |
WO2001086717A1 (fr) | Mandrin electrostatique | |
CN110071050B (zh) | 一种芯片互连结构及其制备方法 | |
CN106653356A (zh) | 一种叠层片式磁珠的制备方法 | |
US5302219A (en) | Method for obtaining via patterns in ceramic sheets | |
CN113213950B (zh) | 陶瓷封装基座的制备方法 | |
CN100525581C (zh) | 制造积层陶瓷基板的方法 | |
JP2007027570A (ja) | セラミック多層基板、その製造方法、およびパワー半導体モジュール | |
CN108878055B (zh) | 应用于高温共烧陶瓷的高导电率金属化层的制备方法 | |
JP3797008B2 (ja) | ガラスセラミックス多層基板の製造方法 | |
CN108155103A (zh) | 一种氮化铝陶瓷覆铜基板及其制备方法 | |
CN209544334U (zh) | 高载流能力多层陶瓷基板 | |
JP4599783B2 (ja) | 低温焼成セラミック回路基板の製造方法 | |
WO2006064793A1 (ja) | メタライズドセラミック基板の製造方法 | |
CN114195527A (zh) | 一种台阶结构高温共烧陶瓷的烧结方法 | |
JP2007221115A (ja) | 導体ペースト及び多層セラミック基板の製造方法 | |
KR100459868B1 (ko) | 저온 소성 세라믹 히터용 조성물 및 세라믹 히터 제조방법 | |
KR100289959B1 (ko) | 저온동시소성세라믹의 내장 커패시터 제조방법 | |
JP2004355862A (ja) | 導体用ペースト、セラミック配線基板及びその製造方法 | |
CN116835990B (zh) | 复合陶瓷基板、覆铜陶瓷基板及制备方法和应用 | |
JP2002290040A (ja) | セラミック基板の製造方法 | |
JP4610113B2 (ja) | セラミック多層基板の製法 | |
JP4645962B2 (ja) | 多層セラミック基板 | |
JP4978822B2 (ja) | 多層セラミック基板の製造方法および多層セラミック基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230420 Address after: 130033 East of 6th Floor, Building 7, Changchun Economic Development Zone, Intersection of Ziyou Road and Shiyan Street, Changchun Economic Development Zone, Jilin Province Patentee after: Changchun Changguang Qichen Technology Co.,Ltd. Address before: 130033 No. 3888 southeast Lake Road, Changchun economic and Technological Development Zone, Jilin Patentee before: CHANGCHUN INSTITUTE OF OPTICS, FINE MECHANICS AND PHYSICS, CHINESE ACADEMY OF SCIENCE |