CN105445734B - 具有基于相位的多目标检测的雷达系统 - Google Patents

具有基于相位的多目标检测的雷达系统 Download PDF

Info

Publication number
CN105445734B
CN105445734B CN201510541200.2A CN201510541200A CN105445734B CN 105445734 B CN105445734 B CN 105445734B CN 201510541200 A CN201510541200 A CN 201510541200A CN 105445734 B CN105445734 B CN 105445734B
Authority
CN
China
Prior art keywords
frequency
antenna
phase
signal
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510541200.2A
Other languages
English (en)
Other versions
CN105445734A (zh
Inventor
A·H·阿瑞吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aptiv Technologies Ltd
Original Assignee
Aptiv Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aptiv Technologies Ltd filed Critical Aptiv Technologies Ltd
Publication of CN105445734A publication Critical patent/CN105445734A/zh
Application granted granted Critical
Publication of CN105445734B publication Critical patent/CN105445734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4454Monopulse radar, i.e. simultaneous lobing phase comparisons monopulse, i.e. comparing the echo signals received by an interferometric antenna arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2921Extracting wanted echo-signals based on data belonging to one radar period
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • G01S7/412Identification of targets based on measurements of radar reflectivity based on a comparison between measured values and known or stored values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • G01S13/726Multiple target tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna

Abstract

公开了一种具有基于相位的多目标检测的雷达系统。雷达系统(10)包括多个天线(16)和控制器(26)。该多个天线(16)被配置为检测由系统(10)的视场(22)中的物体(24A)所反射的反射雷达信号(20)。该多个天线(16)中的每个天线(16A)被配置为输出指示由该天线(16A)所检测的该反射雷达信号(20)的检测信号(30)。该控制器(26)被配置为从该多个天线(16)接收检测信号(30),并且基于该检测信号(30)确定目标(24)是否存在于视场(22)中。该控制器(26)还被配置为基于该检测信号(30)的相位的分析来确定该目标(24)是否包括多于一个物体(24A)。

Description

具有基于相位的多目标检测的雷达系统
技术领域
本公开总地涉及雷达系统,更具体地涉及一种基于来自多个接收天线的检测信号的相位的比较来确定目标是否包括多于一个物体的系统。
背景技术
由于天线尺寸、系统尺寸、技术和成本约束,汽车雷达传感器对于区分具有相似的位置和多普勒频移特性或如果一个物体相比第二附近物体具有显著较大的雷达截面(RCS)的两个物体可能具有性能限制。具有相似距离和多普勒频移反射特性的两个物体难以被典型汽车雷达系统区分的示例包括:缓慢移动的行人在静止的或缓慢移动的客运车辆周围步行;摩托车以相似的距离和距离变化率在行进在相邻车道中的拖拉机挂车旁边行进;以及两辆轿车以具有相似范围变化率在相邻的车道上邻近彼此移动。
发明内容
诸如汽车智能巡航控制、碰撞警告与缓解以及盲点检测的汽车系统使用雷达传感器以检测接近车辆的物体。由天线阵列所检测的反射雷达信号通常被转换到离散基带,然后从时域变换为频域,其中,指示由每个接收天线元件所检测的每个信号的幅度分布被非相干地累积。汽车雷达通常将此非相干累积(NCI)幅度分布用于物体检测以确定具有分布大小大于限定的检测阈值的所检测物体的位置(即距离)和多普勒参数(即距离变化率)。NCI检测技术是优选的,因为它抑制噪声变化以避免误警报。尽管NCI会劣化检测信号中的信息,它比噪声变化劣化得较少,因为当与反射雷达信号相比较时,系统噪声在天线元件上是更低相关的。如此,NCI在信噪比中提供了净增益。
然而,对于彼此邻近的多个物体的检测和区分,NCI检测技术具有性能限制。即,如果两个物体具有相似的位置和多普勒特性,并且对于物体的反射特性或雷达截面(RCS)是显著不同的,那么来自具有较大RCS的物体的反射雷达信号可遮蔽来自具有较小RCS的目标的反射雷达信号,并且由此使得第二目标识别和/或区分困难。此情况的示例包括:缓慢移动的行人邻近静止的客运车辆;当拖拉机挂车在相邻车道时以几乎相同的距离和多普勒移动的摩托车;以及具有几乎相同的距离和多普勒在相邻车道上靠近彼此移动的两辆客运车辆。
通过修正的波形参数规格和/或窄束天线设计,可改善这样的性能限制。然而,这些选择不期望地增大传感器尺寸、成本以及信号处理复杂度。此外,观察到,频谱参数中的一些(诸如“频谱束宽”)不适合用于后处理技术以在宽频谱下从能量含量中提取多个物体的可靠信息。由Alebel Arage Hassen在2014年5月15日提交的并且名为RADAR SYSTEMWITH IMPROVED MULTI-TARGET DESCRIMINATION(具有改善的多目标分辨力的雷达系统)的美国专利申请号14/277894,描述了一种检测系统和方法以改善多个邻近目标的检测和区分,使用了来自NCI检测技术与基于“或逻辑”单接收信道峰值检测技术的复合检测技术。然而,仍存在性能限制需要被解决和需求较少的计算密集方式以确定检测目标是否包括或包含多于一个物体。
局部相位频谱评估技术解决了使用幅度频谱峰值检测与评估技术的检测技术的邻近目标检测与区分的性能限制。当物体或多个物体的多个邻近彼此的散射中心存在时,取决于各个散射中心相对于接收天线位置的相对位置差异,来自每个散射中心的反射雷达信号在各个接收天线元件处彼此不同地干涉相干。散射中心之间的相对位置差异以来自各个散射中心的反射雷达信号之间的相对相位差的形式来表达,并且它确定了接收天线处的干涉特性。这意味着由于相对相位差在分布式天线元件上变化的事实,各个天线-阵列元件从这些散射中心接收到反射雷达信号的不相似的干涉特性。
由于这是来自位于彼此相对附近的不同散射中心的反射雷达信号之间的干涉的问题,来自每个接收天线元件的检测信号的相位差能在频域局部中被评估为经叠加的信号频率元(bin)。例如,相位差可在第一对称(即第一高和低)频率元之间被计算为经叠加的信号检测频率元。如果检测信号来自单个点散射中心,那么相位差收敛于最小值(或零)。这是因为若时域信号关于中心处的窗最大值被对称窗系数所加权,信号幅度与相位频谱通常相等地扩散到邻近频率元。在来自多个邻近散射中心的反射雷达信号干涉的情况下,若散射中心具有相对位置差异,这些第一对称频率元应该包含不同的信号相位值。
对于天线阵列配置,相位差在天线阵列元件上的求平均值提供了能用于从多个邻近散射中心区分单个点散射中心的稳健相位差值。如上所讨论的,对于分布式天线阵列配置,还存在由多个散射中心的相对位置差异不相等所引起的在天线阵列元件上的相位差变化。因此,评估在天线阵列元件上的相位差的斜率或标准偏差也能被用于从多个邻近散射中心区分单个散射中心。
注意,局部相位频谱评估技术本身不提供散射中心的参数估计,因为它是由Hassen(申请No.14/277894)所述的检测与区分技术的情况。然而,该局部相位频谱评估技术对于从多个邻近彼此的散射中心区分单个散射中心的反射是更敏感的。那么该局部相位频谱评估技术能用作指示器以激活受控参数估计技术,诸如由Alebel Arage Hassen(申请No.14/277894)所述的使用“或逻辑”单信道检测技术的幅度频谱峰值检测与评估技术,或使用空间-时间自适应处理的复杂频谱评估技术。替代地,此局部相位频谱评估技术还能用于当参数估计技术的激活不现实时,让系统限定关于NCI检测的距离-多普勒邻近物体检测区域(RDNOD-区域)。这将帮助有限信号处理资源的最佳使用,同时增强多个邻近散射中心的识别。
认识到,因为这是正如与绝对相位评估相反的相位差评估技术,所以它对于在天线阵列元件之间失配和任意瞬变效应是不易受影响的。然而,推荐应用此技术用于仅有足够信噪比的检测。相位通常是易受噪声影响的,而且来自相位差评估的结果对于具有不足的信噪比的检测可能是不可靠的。
使用幅度频谱峰值检测与评估技术的汽车雷达传感器对检测物体分类的无能由局部相位频谱评估技术所改善。观察到,如果散射中心处于连续运动中并引发随着时间的相对位置变化,那么相位差的标准偏差随时间波动。如此,认识到,相位差的标准偏差的时域变化(波动)提供进一步的信息,该信息能用于将多种物体群与它们的运动分布清楚地分类或归类,例如,用于把相对于主车辆笔直向前或纵向地行进的车辆与行人、骑自行车者以及以相对于主车辆的角度移动的车辆区分开来。
根据一个实施例,提供了雷达系统。该系统包括多个天线和控制器。多个天线被配置为检测由系统的视场中的物体所反射的反射雷达信号。多个天线中的每个天线被配置为输出指示由天线所检测的反射雷达信号的检测信号。控制器被配置为从多个天线接收检测信号,并且基于检测信号来确定目标是否存在于视场中。控制器还被配置为基于检测信号的相位的分析来确定目标是否包括多于一个物体。
在另一实施例中,提供了用于雷达系统的控制器。控制器包括接收器和处理器。接收器被配置为从多个天线接收检测信号,该多个天线被配置为检测由系统的视场中的物体所反射的反射雷达信号。多个天线中的每个天线被配置为输出指示由天线中的每个所检测的反射雷达信号的检测信号。处理器被配置为:从多个天线接收检测信号;基于检测信号来确定目标是否存在于视场中;以及基于检测信号的相位的分析来确定目标是否包括多于一个物体。
在另一实施例中,提供了操作雷达系统的方法。该方法包括从多个天线接收检测信号的步骤,该多个天线被配置为检测由天线的视场中的物体所反射的反射雷达信号。多个天线中的每个天线被配置为输出指示由天线中的每个所检测的反射雷达信号的检测信号。该方法还包括基于检测信号来确定目标是否存在于视场中的步骤。该方法还包括基于检测信号的相位的分析来确定目标是否包括多于一个物体的步骤。
在阅读优选实施例的下列详细描述后,进一步的特征和优势将更清楚地呈现出,这些优选实施例仅作为非限定性的示例且结合附图而给出。
附图说明
现在将参考附图借助示例来描述本发明,在附图中:
图1是根据一个实施例的雷达系统的示图;
图2是根据一个实施例的存在于图1的系统中的信号的曲线图;
图3是根据一个实施例的存在于图1的系统中的信号的曲线图;
图4是根据一个实施例的存在于图1的系统中的数据的曲线图;
图5是根据一个实施例的存在于图1的系统中的数据的曲线图;以及
图6是根据一个实施例的由图1的系统所执行的方法的流程图。
具体实施方式
图1示出了雷达系统(下文称为系统10)的非限制性示例。系统10包括天线阵列12,该天线阵列12可包括发射元件14和接收元件的阵列(下文称为多个天线16)。认识到,构成天线阵列12的天线元件中的一个或多个可被用于发射雷达信号18并且输出指示由系统10的视场22中的第一物体24A或第二物体24B所反射的反射雷达信号20的检测信号30。在此示例中,将发射元件14和多个天线16示为不同的元件仅是为了简化系统10的解释。
系统10还可包括控制器26,该控制器26被配置为将发射信号28输出至发射元件14,并且被配置为从每个天线接收检测信号30,例如从第一天线16A接收第一信号30A和从第二天线16B接收第二信号30B。检测信号30中的每个对应于由多个天线16中的一个所检测的反射雷达信号20。控制器26可包括用于处理数据的处理器27,诸如微处理器、数字信号处理器或其它控制/信号调节电路,诸如包括专用集成电路(ASIC)的模拟和/或数字控制电路,如对本领域技术人员而言应当显而易见的。控制器26可包括用于储存一个或多个例程、阈值和捕获的数据的存储器(未示出),包括非易失性存储器,诸如电可擦除可编程只读存储器(EEPROM)。该一个或多个例程可由处理器27执行以执行用于确定由控制器26所接收的检测信号30是否指示第一物体24A或第二物体24B的存在的步骤,如本文中所描述的那样。
为了满足汽车雷达系统的顾客指定的角分辨率要求,这样的系统通常使用具有相对窄的发射和接收束宽的天线来针对物体扫描视场。在此非限制性示例中,发射元件14向视场22中的第一物体24A和/或第二物体24B辐射或发射雷达信号18,并且多个天线16各自检测由系统10的视场22中的第一物体24A和/或第二物体24B所反射的反射雷达信号。反射雷达信号20的特性取决于第一物体24A或第二物体24B的背向散射性质或雷达截面(RCS)。该特性同样取决于第一物体24A和/或第二物体24B相对于天线阵列12的距离、方向和相对运动,其影响了反射雷达信号20的多普勒频移。依赖于所使用的信号波形和调制系统,控制器26可将时域信号(检测信号30)转变至频域,例如,所以这些频谱可使用例如非相干累积(NCI)被组合。一些汽车雷达系统将此非相干累积的频谱数据用作物体检测的基础,并且评估频谱数据以确定位置和具有比所限定的检测阈值高的频谱大小的多普勒参数估计。通常优选NCI以抑制噪声引起的变化并由此将噪声引起的误警报率保持在最小值。
如果多个物体存在于视场22中,那么取决于物体相对于接收天线(多个天线16)之间的相对位置差异和/或距离变化率差异,反射雷达信号20可能彼此干涉。在第一物体24A和第二物体24B之间的相对位置差被示为Δrx和Δry并且可以以天线16从这些散射中心所检测的反射雷达信号20之间的相对相位差的形式来呈现。归因于相对相位差在多个天线16上变化的事实,这可能导致检测信号30对于来自物体的散射中心的信号呈现不相似的干涉特性。这导致在多个天线16上的不同的距离分布和多普勒分布,并且增加得到瞬时的多个频谱峰值和零点的概率,如果检测策略是基于单信道或各个信号的“或逻辑”比较的话。取决于多个天线16中的元件的数量,此检测理念改善了多个邻近散射中心的检测和区分。相比之下,基于NCI的检测通过平均掉在检测信号30上的频谱差来抑制散射中心的位置差异效应,该位置差异效应使得邻近的散射中心分辨与区分更为困难。
在2014年5月15日提交的美国专利申请14/277,894中所述的申请者的现有系统应用基于NCI频谱连同使用“或逻辑”的单个接收信道频谱分析一起的复合检测策略以改善汽车雷达距离、距离变化率和角测量分辨率,并且增强系统性能以供邻近目标区分、目标成像和横向距离变化率估计。发射的和接收的信号之间的时间延迟以及归因于多普勒效应的频移被用于分别地计算径向距离(例如,图1中的r1或r2)和所检测物体(例如第一物体24A或第二物体24B)的相对速度。检测信号30的所接收信号-相位差被用于通过应用各种角度查找技术或算法(诸如单脉冲、数字波束形成或超分辨率)估计所检测物体的角度(方向)。
由现有系统的物体检测可在将2D-FFT算法应用至检测信号30之后,首先在距离-多普勒(RD)域中被完成,并接着非相干地对所得的距离-多普勒频谱累积。使用并处理所得的NCI RD图像的局部最大值和其紧邻的邻近频谱以检测物体并在对检测的原始频谱数据应用期望的角度查找算法之后,确定其包括该物体的横向和纵向位置的相应RD坐标。
在某些情况下,多个物体可具有几乎相同的距离和多普勒参数。在这些物体之间的距离和多普勒差异可以小于RD测量分辨率,该RD测量分辨率主要从类似扫频和停留时间的信号波形参数中被预先确定。因此,这些物体可呈现为NCI RD图像的一个局部最大值,并且它们的区分将仅依赖于角度,如果它们拥有与所应用的角度查找技术(即,天线模式束宽、配置和角度评估算法)的测量分辨率一致的横向跨度的话。这意味着,对于具有不充足的多普勒、纵向和横向间隔的相对邻近的目标,多个目标区分的性能对于仅基于NCI RD图像的检测策略是有限的。
对于特定雷达系统设计,如果检测策略不仅评估复合的NCI RD图像,而且评估单独基础上的天线信号中的每一个,即单个接收信道RD图像,则可显著地改善分辨率和区分性能中的如此限制。如上所述,来自物体的两个邻近的散射中心的信号可取决于在这些散射中心之间的信号相对相位差而在接收天线元件处干涉。此相对相位差是这两个散射中心之间的横向和纵向距离间隔(例如,Δrx、Δry)的函数,并且在多个天线16上可能不是相等的。这对于以毫米波(例如3.92mm)工作的汽车雷达尤其如此,该毫米波在现实世界中远小于散射中心之间的预期位置差。因此,来自这些散射中心的信号干涉的频谱应当在接收天线阵列元件之间拥有不相似的分布,并且针对不同的天线阵列元件在不同的距离和多普勒频率处显示峰值和零点。经改善的方式以确定目标24是否包括多于一个物体或由多于一个物体构成,例如第一物体24A和第二物体24B。
本文中所描述的系统10可被用作自动化驱动系统的一部分,该自动化驱动系统控制车辆的各个方面,诸如车速和/或自动化刹车。如果安装在主车辆中的雷达系统不能通过将摩托车与由NCI检测到的较大的、渐远的物体、在邻近主车辆的车道的行车道中的半拖车区分开而检测邻近的物体,诸如在主车辆正前方的摩托车,则速度控制系统可能非预期地使主车辆朝着摩托车加速。就是说,从拖车反射的较大信号可遮蔽从摩托车反射的较小信号,如果它们在距离上靠近彼此和/或具有相似的距离变化率的话。在这样的情况下,NCI在广谱内仅检测到一个峰值。由于这两个物体处于相邻车道中,归因于所使用的角度查找技术的有限的角分辨率,系统10可能仅确定趋向于较大信号的一个角而不能将一个物体的角与另一物体的角区分开,尤其是在较长距离处。这是为什么距离分布和/或多普勒分布或距离-多普勒图像上的邻近目标区分有利于可靠地跟踪主车辆车道上的物体的示例。
再次参见图1,系统10的非限制性示例包括多个天线16,该多个天线16被配置为检测由系统10的视场22中的物体(24A、24B)所反射的反射雷达信号20,其中该多个天线中的每个天线(例如第一天线16A和第二天线16B)被配置为输出指示由天线16A、16B、…所检测的反射雷达信号20的检测信号(例如第一信号30A和第二信号30B)。控制器26通常被配置为:从多个天线16接收检测信号30,基于检测信号30来确定目标24是否存在于视场中,以及基于检测信号30的相位的分析来确定目标24是否包括多于一个物体(例如第一物体24A和第二物体24B)。
控制器26可包括接收器29,该接收器29被配置为从每个天线(例如,第一天线16A和第二天线16B)接收天线信号(例如,第一信号30A和第二信号30B),该天线信号对应于由多个天线16中的每一个所检测的反射雷达信号20。控制器26可包括混合器(未示出)和局部振荡器(未示出)以解调检测信号30。混合器和局部振荡器可以是接收器29的一部分。
由目标或多个物体所形成的目标的两个邻近散射中心所反射的雷达信号在天线16处在某种程度上彼此干涉。干涉的程度取决于来自每个物体的各个反射雷达信号之间的相对相位差。此相对相位差是这两个散射中心之间的横向和纵向距离间隔的函数,并且在所有天线16上不可能是相等的。如此,受干涉信号的相位频谱在接收天线阵列元件(天线16)上具有不同的分布。不同的天线阵列元件的幅度频谱可取决于相对位置差-波长比在不同的频率(即距离)处显示峰值和零点。由于一些汽车雷达系统以毫米和微米波长(例如12.5mm和3.92mm)工作,“相对位置差-波长比”的关系使频谱分布多样性在天线阵列元件上是相对动态的和灵敏的以区分物体或多个物体的道路上邻近散射中心。此灵敏度还取决于天线阵列元件的数量,该数量创建了在多个频率元处获得多个瞬时峰值的机会,而且当与NCI幅度频谱峰值检测技术相比较时,使用单个接收信道检测技术由此增加了邻近散射中心的检测与区分的可能性。NCI可用于在接收天线阵列元件上平均掉相对相位差的变化的频谱多样性效应,并且由此劣化第二邻近散射中心的检测和/或区分。
在散射中心位置丛在所有接收天线阵列元件上导致均匀的相长干涉的情况下,在多个频率元处接收多个瞬时峰值的机会减少了,因为所有接收天线阵列元件的局部幅度频谱均匀地变宽并且仅在一个且相同的频率元处产生峰值。这限制了即使与“或逻辑”单个信道检测技术一起使用幅度频谱峰值评估技术的邻近散射中心检测与区分的性能改善。特别地,如与具有较大数量的天线阵列元件的雷达相比较,对于具有小数量的天线阵列元件的雷达,性能限制的程度是显著的。这样的性能限制也通常是对于具有显著RCS差的邻近散射中心的情况。例如,邻近汽车的行人或邻近拖拉机挂车的摩托车可经受达到30dBsmRCS差。对于所有接收天线阵列元件,较大目标的频谱能遮蔽较小目标的频谱,并且使幅度频谱峰值检测技术失效。
通常,来自由散射中心所反射的信号的信息的完整提取需要复合频谱评估技术。由于散射中心之间的相对位置差被嵌入经叠加的信号相位项中,相位频谱评估技术应该还提供关于邻近散射中心的存在的信息,并且克服幅度频谱峰值检测技术的性能限制用于本文所讨论的方案。
此外,典型汽车雷达传感器限制了分类或归类道路目标的能力,例如通过跟踪行人的运动的微多普勒效应而将行人与车辆区分开来。行人的微多普勒检测依赖于多普勒频域上的幅度频谱峰值检测技术。如以上部分所述,归因于多个散射中心的信号干涉,幅度频谱峰值检测技术的性能限制还劣化了微多普勒效应检测以及跟踪器的有限能力以从类似车辆的物体分类行人。
本文提出的局部相位频谱评估技术通过评估相位差随时间的波动加强了分类或归类目标的雷达跟踪能力。如果散射中心处于连续运动中并且引起随时间的相对位置变化,那么相位差取决于雷达物体几何与运动分布在时域中波动。因此,相位差的标准偏差的时域变化提供了用于将从雷达所检测的道路上物体分类为多种类别的进一步信息。
图2和3是示出储存在系统10的控制器26中的数据的示例的曲线图200和曲线图300的非限制性示例。图2中的数据对应于来自具有与单个客运车辆相当的雷达截面(RCS)的单个物体的反射雷达信号。相比之下,图3中的数据对应于来自具有与两个客运车辆或单个客运车辆的后部和前部的两个散射中心相当的雷达截面(RCS)的两个挨在一起的物体的反射雷达信号。
检测信号30通常是时域信号,控制器26取样该时域信号并且执行频率变换(例如傅立叶变换)以产生检测信号(例如第一信号30A和第二信号30B)中的每一个的频率分布32。图2和3示出由频率变换引起的频率分布32的幅度部分34。本领域技术人员将认识到由某些类型的所发射雷达信号引起的雷达反射的频率变换将指示向着目标的距离。本领域技术人员还将认识到频率变换也可产生相位信息,参见图4和5,在下文被更详细地讨论。在两个情况(图2和3)下,幅度部分34没有表现得特别有用以确定位于大约四十一米(41m)的距离处并且对应于频率元#28的目标24是否是单点反射(例如仅第一物体24A),或多点反射(例如第一物体24A和第二物体24B)。
因此,控制器被有利地配置为确定检测信号30中的每一个的频率分布32。如上所讨论的,检测信号30中的每一个的频率分布包括两个如图2和3所示的幅度部分34,并包括相位部分36(图4和5)。频率分布32中的每一个包括与频率元38相关联的多个幅度值和相位值,对应于特定频率分布在特定频率处的幅度取样和相位取样。如将被本领域技术人员认识到,频率元38对应于向着潜在目标的距离,而频率分布32的幅度是特定距离处所反射的雷达信号的量的指示。如此,如果频率分布的幅度部分34是相对高的(例如大于60dB),则它是目标以对应于具有幅度部分34的最大值的频率元的距离或间隔而存在或邻近的指示。在图2和3中,幅度部分的最大值是在对应于大约四十一米的频率元#28处。
在一个实施例中,频率分布32可基于来自所有天线的检测信号的时域取样的频率变换(例如傅立叶变换)被表征为距离分布。替代地,频率分布32可基于来自所有天线的检测信号的时域取样的频率变换被表征为多普勒分布。所使用的替代是依赖于用于雷达信号18的调制,例如调频连续波(FMCW)、连续波(CW)或脉冲-多普勒。所有这些调制方案提供可以是时间取样的并且可变换到频域的时域信号。有差异的是频率分布所表示的。
例如,使用FMCW波形、具有足够数量的天线阵列元件的系统可以多种顺序执行3D-傅立叶变换。第一时间取样数据变换到频域是为了得到每线性调频脉冲的距离分布。对于给定的距离频率元,在多个线性调频脉冲上执行第二傅立叶变换为了得到多普勒分布。对于给定的距离-多普勒频率元,在天线阵列元件上执行第三傅立叶变换为了得到角分布(公知为数字波束形成)。注意到,为了确定距离、多普勒以及角分布的这种3D频率变换顺序是也可取决于预期应用的复杂度以不同的顺序执行的示例。
替代地,使用FMCW波形、仅具有两个或三个天线阵列元件的系统可仅使用1D傅立叶变换来处理,该1D傅立叶变换使用傅立叶变换将时间取样数据变换到频域,然后建立所谓的多普勒-距离平面并且在每个天线元件的线性调频之间应用匹配技术。当发现线性调频频域信号之间的交叉时,利用交叉坐标处的多普勒-距离指数来确定目标检测。在这对所有天线阵列完成之后,应用单脉冲技术(即天线元件之间的幅度和相位比较技术)以便得到所检测目标的角。对于此技术,另一个频率变换阶段是不必要的。
另一个替代是使用脉冲-多普勒波形,这不需要在时间取样的数据上执行傅立叶变换以得到距离分布。相反,所谓的距离门被定义为取样序列的函数,在单脉冲完全发射之后立即开始。例如,距离门1=ts1/(2C)、距离门2=ts2/(2C)、…、距离门N=tsN/(2C),其中ts1、ts2、…、tsN是在单脉冲发射之后的第1、第2、…、第N取样时间。这对数个连续的脉冲重复地执行。对于给定的距离门,在数个脉冲上对时间取样数据执行傅立叶变换以确定多普勒分布。由于这对天线阵列元件中的每个完成后,取决于所实施的天线技术,可应用不同的角查找技术(包括单脉冲、数字波束形成、…)以在特定距离元和多普勒元中得到所检测目标的角。即,执行傅立叶变换以得到多普勒频率分布以及角分布,如果所实施天线技术需要执行数字波束形成的话。
以CW波形工作的雷达(例如警用雷达)检测目标的多普勒分布。对时间取样数据执行傅立叶变换以得到多普勒分布。不存在距离分布。所以,如上描述中可看出,所有雷达,不管其波形如何,将时间取样数据变换到频域,并且确定目标的频率分布,不管它表示什么(距离或多普勒或角分布)。
图4示出与对来自天线16中的每个的检测信号30中的每个所选的距离元(#27和#29)相关联的相位值40的曲线图400,该天线16在此图示中标记为接收信道42。例如,来自第一天线16A的第一信号30A被处理以确定与频率元38(也称为距离元)相关联的经取样频率中的每个的幅度值和相位值。然后,距离元中的一个被指定为参考距离元44(在此示例中为#28),因为它与最大幅度值46相关。基于所有检测信号30的组合(例如频率分布32的非相干累积(NCI))的最大值可选择最大幅度值46。
图5示出每个频率分布的两个不同的频率(在此示例中,#27和#29)处的相位差50的曲线图500。即,相位差50中的每个是对于频率分布32中的一个在频率元38中的两个上的相位值40中的差异。从曲线图200(图2)导出的单个物体曲线52示出在接收信道42上的相位差50中存在很小变化,而从曲线图300(图3)导出的两个物体曲线54示出在接收信道42上的相位差50中存在可察觉的变化。
总之,频率分布32由储存在频率元38的阵列中的值(幅度部分34和相位部分36)所表征。基于与阵列的第一频率元44A(#27)相关联的第一相位值40A和与阵列的第二频率元44B(#29)相关联的第二相位值40B之间的差异确定相位差50。用于选择第一频率元44A和第二频率元44B的参考频率元44与最大幅度值46相关联。作为示例而非限定,第一频率元44A与参考频率元44毗邻并且与比参考频率元44低的频率相关联,而第二频率元44B与参考频率元44毗邻并且与比参考频率元44高的频率相关联。
通常,参考频率元44应该具有足够的信号强度,这样对于确定频率元44A、44和44B中的任意两个之间的相位差,噪声就不是实质问题。
再次参见图5,显而易见,两个物体曲线54是倾斜的,而单个物体曲线52是相对平坦的,即不倾斜的。因此,控制器26可被配置为基于相位差50相对于确定两个物体曲线54的天线16中的每一个的相对位置的趋势或趋势线来确定相位斜率56。使用数学领域技术人员已知的任意数量的方法,可确定相位斜率56,例如拟合公知方程y=mx+b的最小二乘法,其中m是斜率。控制器26也可被配置为如果相位斜率56具有大于斜率阈值58的大小,则指示目标24包括多于一个物体,例如第一物体24A和第二物体24B。认识到,所示的相位斜率56将通常被表征为负斜率,但正斜率对其他示例目标是可能的。这是为什么相位斜率的大小或陡度与同样以绝对值而不是符号值的形式考虑的斜率阈值相比。对斜率阈值58所选择的值可通过实验室和/或现场测试被经验性地确定。
替代地,而可能较少计算密集的,控制器26可被配置为如果相位差变化60大于变化阈值(未示出但理解为预定值),则指示目标24包括多于一个物体。相位差变化60可通过例如计算两个物体曲线54的相位差50的标准偏差来确定。如果标准偏差大于变化阈值的预定值,那么这就是目标24包括多于一个物体的指示。对变化阈值所选择的值可通过实验室和/或现场测试被经验性地确定。
图6示出了操作雷达系统(系统10)的方法600的非限制性示例。具体地,方法600指向基于检测信号30的相位(例如相位值40)的分析来确定由系统10所检测的目标24是否包括多于单个物体或由多于单个物体构成。
步骤610,“接收检测信号”,可包括从多个天线16接收检测信号30的控制器26,该多个天线16被配置为在天线16的视场22中检测由物体(24A、24B)所反射的反射雷达信号20。多个天线中的每个天线(16A、16B)被配置为输出指示由天线16中的每个所检测的反射雷达信号的检测信号(30A、30B)。
步骤620,“确定目标存在”,可包括基于检测信号30来确定目标24是否存在于视场22中。目标24可通过确定将频率变换(例如傅立叶变换)应用到来自天线16的时域信号所得的每个检测信号30的频率分布32来检测。频率变换通常提供由频率变换产生的频谱的取样值并包括幅度部分34和相位部分36。
步骤630,“确定参考频率”,可包括检测频率分布32的幅度部分34的最大幅度值46。最大幅度值46可以是来自频率分布32的一些复合(诸如频率分布32的非相干累积(NCI))的最大值或峰值。每个频率分布可基于来自一个天线的检测信号的时域取样的频率变换来表征为距离分布或多普勒分布,如先前所述。频率分布32可被取样为对表示对于值的存储位置的频率元38产生值。参考频率元44与最大幅度值相关联。
步骤640,“确定第一频率和第二频率”,可包括确定频率元中的哪些包含大于某个预定阈值的幅度值。为了计算相位差50,可指定第一频率元44A和第二频率元44B。第一频率元44A可与参考频率元44毗邻并且与比参考频率元44低的频率相关联,而第二频率元44B可与参考频率元44毗邻并且与比参考频率元44高的频率相关联。替代地,如果与参考频率元44毗邻的任一元的信号强度过低或过弱,那么参考频率元44可被指定为第一频率元44A或者第二频率元44B。
步骤650,“确定相位差”,可包括确定频率分布32中的每个在两个不同频率(例如与第一频率元44A与第二频率元44B相关联的频率)处的相位差50。每个频率分布由储存在频率元38的阵列中的值来表征,而在此非限制性示例中,相位差基于与接收信道42的阵列的第一频率元44A相关联的第一相位值40A和与接收信道42的阵列的第二频率元44B相关联的第二相位值40B之间的差来确定。
步骤660和670可都被执行,但更可能的是可执行仅一个或另一个。方法600中的步骤660和670两者的显示不应该被解释为意味着需要两个步骤都被执行。如果步骤660和670所执行的测试中的两者或任一结果是肯定的(是),那么方法600前进到步骤680。
步骤660,“相位差变化>变化阈值?”,可包括基于相位差50相对于每个天线的相对位置的变化来确定相位差60,该相位差60对应于接收信道42的编号;并确定相位差60是否大于变化阈值。
步骤670,“相位斜率>斜率阈值?”,可包括基于相位差50相对于每个天线的相对位置的趋势来确定相位斜率56,并确定斜率是否具有大于斜率阈值的大小。
步骤680,“指示目标包括多于一个物体”,可包括控制器26,如果相位差变化60大于变化阈值,那么该控制器26指示目标24包括多于一个物体;和/或如果相位斜率56具有大于斜率阈值58的大小,那么该控制器26指示目标24包括多于一个物体。目标24包括多于一个物体的指示可例如导致控制器启动其他软件例程以进一步检查来自天线的信号用于分类或归类构成目标24的多个物体的目的,或点亮指示器以通知车辆的操作者已检测到接近车辆的行人。
因此,提供了雷达系统(系统10)、用于系统10的控制器26以及操作系统10的方法600。这些都包括确定是否多于一个物体存在于视场22中的经改善方式而现有尝试可能仅检测到一个目标。在天线阵列元件上的相位差的标准偏差指示单个散射中心或多个邻近散射中心。如果指示了多个邻近散射中心,则可激活其他邻近目标检测与区分技术(诸如单信道峰值检测技术和空间时间处理技术)。指示也可被用于引导系统10以限定NCI检测RD坐标周围的邻近散射中心的距离-多普勒邻近物体检测区域(RDNOD区域),如果存在信号处理资源约束或如果雷达具有相对小数量的天线阵列元件(天线16)的话。
相位差的标准偏差的时域波动也可被用于分类雷达道路上物体类别。此物体分类器可被跟踪器所使用以作出物体引导的参数预测并且增强物体跟踪性能。这对于可靠地跟踪横向移动的物体(诸如行人和骑自行车者)是特别有关的,因为雷达传感器不会直接横向速率测量。总之,本文所述的系统的益处贡献了,但不限于:增强的邻近目标识别与区分;汽车雷达目标范围测量(或成像);作为目标区分与分类的结果的交叉车流检测与可靠跟踪;以及有限的信号处理资源的最优使用,而改善了邻近目标识别、区分和跟踪的性能。本文所述的此技术适用于汽车雷达传感器产品的许多配置,并且实现是直截了当的,伴随着信号处理流量和存储中的适度增加。
尽管已针对其优选实施例对本发明进行了描述,然而本发明不旨在如此限制,而是仅受后面权利要求书中给出的范围限制。

Claims (13)

1.一种雷达系统,包括:
多个天线,被配置为检测由所述系统的视场中的物体所反射的反射雷达信号,其中,所述多个天线中的每个天线被配置为输出指示由所述天线中的每个所检测的所述反射雷达信号的检测信号;以及
控制器,被配置为:
从所述多个天线接收所述检测信号,
基于所述检测信号确定目标是否存在于所述视场中,
确定来自每个所述天线的每个所述检测信号的频率分布,其中所述频率分布被储存在频率元的阵列中的值所表征,并且
确定天线的每个频率分布在两个不同频率处的相位差,其中所述相位差是基于与所述阵列的所述两个不同频率中的第一频率元相关联的第一相位值和与所述阵列的所述两个不同频率中的第二频率元相关联的第二相位值之间的差来确定的,以及
基于每个所述检测信号的所述频率分布的相位差的分析来确定所述目标是否包括多于一个物体。
2.如权利要求1所述的系统,其特征在于,所述频率分布基于来自一个天线的所述检测信号的时域取样的频率变换而被表征为距离分布。
3.如权利要求1所述的系统,其特征在于,所述频率分布基于来自一个天线的所述检测信号的时域取样的频率变换而被表征为多普勒分布。
4.如权利要求1所述的系统,其特征在于,参考频率元与最大幅度值相关联;所述第一频率元与所述参考频率元毗邻并与比所述参考频率元低的频率相关联;以及所述第二频率元与参考频率元毗邻并与比所述参考频率元高的频率相关联。
5.如权利要求1所述的系统,其特征在于,所述控制器被进一步配置为
基于所述相位差相对于每个天线的相对位置的趋势来确定相位斜率,以及
如果所述相位斜率具有大于斜率阈值的大小,则指示所述目标包括多于一个物体。
6.如权利要求1所述的系统,其特征在于,所述控制器被进一步配置为
基于所述相位差相对于每个天线的相对位置的变化来确定相位变化,以及
如果所述相位变化大于变化阈值,则指示所述目标包括多于一个物体。
7.一种用于雷达系统的控制器,所述控制器包括:
接收器,被配置为从多个天线接收检测信号,所述多个天线被配置为检测由所述系统的视场中的物体所反射的反射雷达信号,其中,所述多个天线中的每个天线被配置为输出指示由所述天线中的每一个所检测的所述反射雷达信号的检测信号;以及
处理器,被配置为:
从所述多个天线接收所述检测信号,
基于所述检测信号确定目标是否存在于所述视场中,
确定来自每个所述天线的每个所述检测信号的频率分布,其中所述频率分布被储存在频率元的阵列中的值所表征,并且
确定天线的每个频率分布在两个不同频率处的相位差,其中所述相位差是基于与所述阵列的所述两个不同频率中的第一频率元相关联的第一相位值和与所述阵列的所述两个不同频率中的第二频率元相关联的第二相位值之间的差来确定的,以及
基于每个所述检测信号的所述频率分布的相位差的分析来确定所述目标是否包括多于一个物体。
8.一种操作雷达系统的方法,包括:
从多个天线接收检测信号,所述多个天线被配置为检测由所述天线的视场中的物体所反射的反射雷达信号,其中,所述多个天线中的每个天线被配置为输出指示由所述天线中的每一个所检测的所述反射雷达信号的检测信号;以及
基于所述检测信号确定目标是否存在于所述视场中,
确定来自每个所述天线的每个所述检测信号的频率分布,其中所述频率分布被储存在频率元的阵列中的值所表征,并且
确定天线的每个频率分布在两个不同频率处的相位差,其中所述相位差是基于与所述阵列的所述两个不同频率中的第一频率元相关联的第一相位值和与所述阵列的所述两个不同频率中的第二频率元相关联的第二相位值之间的差来确定的,以及
基于每个所述检测信号的所述频率分布的相位差的分析来确定所述目标是否包括多于一个物体。
9.如权利要求8所述的方法,其特征在于,所述频率分布基于来自一个天线的所述检测信号的时域取样的频率变换而被表征为距离分布。
10.如权利要求8所述的方法,其特征在于,所述频率分布基于来自一个天线的所述检测信号的时域取样的频率变换而被表征为多普勒分布。
11.如权利要求8所述的方法,其特征在于,参考频率元与最大幅度值相关联;所述第一频率元与所述参考频率元毗邻并与比所述参考频率元低的频率相关联;以及所述第二频率元与参考频率元毗邻并与比所述参考频率元高的频率相关联。
12.如权利要求8所述的方法,其特征在于,所述方法包括:
基于所述相位差相对于每个天线的相对位置的趋势来确定相位斜率,以及
如果所述相位斜率具有大于斜率阈值的大小,则指示所述目标包括多于一个物体。
13.如权利要求8所述的方法,其特征在于,所述方法包括:
基于所述相位差相对于每个天线的相对位置的变化来确定相位变化,以及
如果所述相位变化大于变化阈值,则指示所述目标包括多于一个物体。
CN201510541200.2A 2014-09-19 2015-08-28 具有基于相位的多目标检测的雷达系统 Active CN105445734B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/491,192 2014-09-19
US14/491,192 US9784820B2 (en) 2014-09-19 2014-09-19 Radar system with phase based multi-target detection

Publications (2)

Publication Number Publication Date
CN105445734A CN105445734A (zh) 2016-03-30
CN105445734B true CN105445734B (zh) 2019-10-15

Family

ID=53776484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510541200.2A Active CN105445734B (zh) 2014-09-19 2015-08-28 具有基于相位的多目标检测的雷达系统

Country Status (3)

Country Link
US (1) US9784820B2 (zh)
EP (1) EP2998761B1 (zh)
CN (1) CN105445734B (zh)

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3105939B1 (de) * 2014-02-11 2020-05-20 VEGA Grieshaber KG Messvorrichtung und verfahren zum erfassen von eigenschaften eines objekts
ES2622928T3 (es) * 2014-02-19 2017-07-07 Kapsch Trafficcom Ag Dispositivo y procedimiento para la detección de un eje de rueda de un vehículo
US9470777B2 (en) * 2014-09-19 2016-10-18 Delphi Technologies, Inc. Radar system for automated vehicle with phase change based target catagorization
EP3144696A1 (en) * 2015-09-15 2017-03-22 Delphi Technologies, Inc. Radar system for automated vehicle with phase change based target categorization
KR102438228B1 (ko) * 2015-10-07 2022-08-31 주식회사 에이치엘클레무브 차량용 레이더 장치와 이를 이용한 타겟의 각도 추정 방법
US9689967B1 (en) 2016-04-07 2017-06-27 Uhnder, Inc. Adaptive transmission and interference cancellation for MIMO radar
US10261179B2 (en) 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
US9846228B2 (en) 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
WO2017187299A2 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Successive signal interference mitigation
WO2017187304A2 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
EP3449275A4 (en) 2016-04-25 2020-01-01 Uhnder, Inc. REDUCTION OF PMCW-PCMW INTERFERENCE
US9791551B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Vehicular radar system with self-interference cancellation
US9954955B2 (en) 2016-04-25 2018-04-24 Uhnder, Inc. Vehicle radar system with a shared radar and communication system
US10573959B2 (en) 2016-04-25 2020-02-25 Uhnder, Inc. Vehicle radar system using shaped antenna patterns
WO2017187306A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Adaptive filtering for fmcw interference mitigation in pmcw radar systems
WO2017187243A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Vehicular radar sensing system utilizing high rate true random number generator
WO2017187242A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. On-demand multi-scan micro doppler for vehicle
JP2017223461A (ja) * 2016-06-13 2017-12-21 パナソニックIpマネジメント株式会社 レーダ装置および検出方法
US9753121B1 (en) * 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
EP3264131A1 (en) * 2016-07-01 2018-01-03 Autoliv Development AB A vehicle radar for environmental detection
US10641867B2 (en) 2016-08-15 2020-05-05 Magna Electronics Inc. Vehicle radar system with shaped radar antennas
US9869762B1 (en) 2016-09-16 2018-01-16 Uhnder, Inc. Virtual radar configuration for 2D array
US10222472B2 (en) * 2016-09-30 2019-03-05 Veoneer Us, Inc. System and method for detecting heading and velocity of a target object
US10481243B2 (en) * 2016-10-31 2019-11-19 Aptiv Technologies Limited Automated vehicle radar system with self-calibration
KR20180064951A (ko) * 2016-12-06 2018-06-15 주식회사 비트센싱 레이더와 반사체를 이용한 직선의 가상펜스 시스템
US10912493B2 (en) * 2017-01-06 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Sensor and method
IL250253B (en) 2017-01-24 2021-10-31 Arbe Robotics Ltd A method for separating targets and echoes from noise, in radar signals
US10591591B1 (en) * 2017-01-31 2020-03-17 L-3 Communications Corp. Adaptive discovery and correction of phase alignment errors in monopulse antenna systems
US10866306B2 (en) 2017-02-10 2020-12-15 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
WO2018146530A1 (en) 2017-02-10 2018-08-16 Uhnder, Inc. Reduced complexity fft-based correlation for automotive radar
US11454697B2 (en) 2017-02-10 2022-09-27 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
DE102018204829A1 (de) * 2017-04-12 2018-10-18 Ford Global Technologies, Llc Verfahren und Vorrichtung zur Analyse einer Fahrzeugumgebung sowie Fahrzeug mit einer solchen Vorrichtung
US10656248B2 (en) * 2017-05-11 2020-05-19 GM Global Technology Operations LLC Radar post processing for sidelobe suppression
EP3415948B1 (en) * 2017-06-12 2021-11-10 Aptiv Technologies Limited A method of determining the de-aliased range rate of a target
US10830882B2 (en) * 2017-06-19 2020-11-10 Ge Aviation Systems, Llc Methods and apparatus for distributed, multi-node, low-frequency radar systems for degraded visual environments
US10690769B2 (en) * 2017-08-17 2020-06-23 GM Global Technology Operations LLC Target angle determination using vehicle radar elements with local reference signals
US10270498B2 (en) * 2017-09-11 2019-04-23 Aptiv Technologies Limited MIMO detector device useful for automated vehicles
EP3454081B1 (en) * 2017-09-12 2023-11-01 Aptiv Technologies Limited Single scatterer test using amplitude and a plurality of receive elements
EP3454080B1 (en) * 2017-09-12 2023-11-01 Aptiv Technologies Limited Single scatterer test using phase change
CN107665336A (zh) * 2017-09-20 2018-02-06 厦门理工学院 智能冰箱中基于Faster‑RCNN的多目标检测方法
EP3460512B1 (en) * 2017-09-21 2022-11-16 Arriver Software AB A vehicle radar for environmental detection
US10794991B2 (en) * 2017-11-03 2020-10-06 GM Global Technology Operations LLC Target detection based on curve detection in range-chirp map
IL255982A (en) 2017-11-29 2018-01-31 Arbe Robotics Ltd Detection, mitigation and prevention of mutual interference between fixed water radars in vehicles
DE102017129149A1 (de) * 2017-12-07 2019-06-13 Valeo Schalter Und Sensoren Gmbh Verfahren zur Ermittlung von wenigstens einer Objektinformation wenigstens eines Zielobjekts, das mit einem Radarsystem insbesondere eines Fahrzeugs erfasst wird, Radarsystem und Fahrerassistenzsystem
US11105890B2 (en) 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
DE102018102816B3 (de) * 2018-02-08 2019-07-04 Infineon Technologies Ag Radar mit phasenkorrektur
US11199611B2 (en) 2018-02-20 2021-12-14 Magna Electronics Inc. Vehicle radar system with T-shaped slot antennas
US10826177B2 (en) 2018-02-27 2020-11-03 Apple Inc. Electronic devices having phased antenna arrays for performing proximity detection operations
JP7092529B2 (ja) * 2018-03-16 2022-06-28 株式会社デンソーテン レーダ装置およびレーダ装置の制御方法
EP3546978B1 (en) * 2018-03-29 2021-12-08 Aptiv Technologies Limited Method for testing a target object as single point scattering center
US11275170B2 (en) * 2018-04-06 2022-03-15 Electromagnetic Systems, Inc. Use of dual processing channels for stationary and moving objects illuminated by radar
IL259190A (en) 2018-05-07 2018-06-28 Arbe Robotics Ltd System and method for frequency hopping MIMO FMCW imaging radar
US10482768B1 (en) * 2018-05-08 2019-11-19 Denso International America, Inc. Vehicle function impairment detection
IL260694A (en) * 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for two-stage signal processing in a radar system
IL260695A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for eliminating waiting times in a radar system
IL260696A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for structured self-testing of radio frequencies in a radar system
WO2020030281A1 (en) * 2018-08-10 2020-02-13 HELLA GmbH & Co. KGaA Method for evaluating overlapping targets
IL261636A (en) 2018-09-05 2018-10-31 Arbe Robotics Ltd Deflected MIMO antenna array for vehicle imaging radars
CN109222983A (zh) * 2018-09-13 2019-01-18 上海宇佑船舶科技有限公司 一种基于纳米波技术的形态监测方法
US11474225B2 (en) 2018-11-09 2022-10-18 Uhnder, Inc. Pulse digital mimo radar system
US10969466B2 (en) * 2018-11-13 2021-04-06 GM Global Technology Operations LLC Sliding window integration scheme for object detection in a radar system
KR20200067629A (ko) * 2018-12-04 2020-06-12 삼성전자주식회사 레이더 데이터를 처리하는 장치 및 방법
CN109521417B (zh) * 2018-12-07 2023-01-03 哈尔滨工程大学 基于fmcw雷达波形的多目标检测计算方法
US11885874B2 (en) * 2018-12-19 2024-01-30 Semiconductor Components Industries, Llc Acoustic distance measuring circuit and method for low frequency modulated (LFM) chirp signals
CN109493637B (zh) * 2018-12-26 2021-12-03 武汉拓宝科技股份有限公司 一种车位状态检测方法
US11047972B2 (en) * 2019-01-28 2021-06-29 Steradian Semiconductors Private Limited Method, apparatus and device for determining a velocity of an object in a time switched MIMO radar system
US11681017B2 (en) 2019-03-12 2023-06-20 Uhnder, Inc. Method and apparatus for mitigation of low frequency noise in radar systems
CN110286354B (zh) * 2019-04-23 2021-10-15 中国人民解放军63921部队 多目标检测和区分的方法、装置和计算机可读存储介质
US11300655B2 (en) * 2019-09-05 2022-04-12 GM Global Technology Operations LLC Object detection using radar
CN110888134B (zh) * 2019-11-04 2023-07-18 电子科技大学 一种非协作和协作一体化机场场面监视系统
IL271269A (en) 2019-12-09 2021-06-30 Arbe Robotics Ltd Radom for a planar antenna for car radar
CN113096791A (zh) * 2020-01-08 2021-07-09 富士通株式会社 基于无线信号的人员识别装置、方法及系统
CN111175738B (zh) * 2020-01-08 2022-09-30 中国船舶重工集团公司第七二四研究所 一种基于多模型隶属控制的相控阵雷达目标快速建航方法
WO2021144710A2 (en) 2020-01-13 2021-07-22 Uhnder, Inc. Method and system for multi-chip operation of radar systems
CN112578353A (zh) * 2020-02-28 2021-03-30 加特兰微电子科技(上海)有限公司 测量目标角度的装置及方法、传感器和设备
US20210364599A1 (en) * 2020-05-20 2021-11-25 Infineon Technologies Ag Radar receiving system and method for compensating a phase error between radar receiving circuits
US11536831B2 (en) 2020-06-15 2022-12-27 Gm Cruise Holdings Llc Systems and methods for high velocity resolution high update rate radar for autonomous vehicles
US11555920B2 (en) * 2020-10-28 2023-01-17 GM Global Technology Operations LLC Estimating vehicle velocity using radar data
US20220242443A1 (en) * 2021-01-29 2022-08-04 Johannes Traa Method for detecting objects in automotive-grade radar signals
CN113093137B (zh) * 2021-04-02 2022-08-12 电子科技大学 一种基于fda-mimo雷达最优频偏估计的杂波抑制方法
CN112990170B (zh) * 2021-05-20 2021-07-16 成都市克莱微波科技有限公司 一种相控阵雷达目标识别方法、系统、电子设备及介质
CN113341762B (zh) * 2021-05-25 2022-12-13 上海机电工程研究所 半实物仿真系统中复合目标模拟方法及系统
WO2023087232A1 (zh) * 2021-11-19 2023-05-25 华为技术有限公司 检测行人的雷达系统、方法和车辆
CN116679301B (zh) * 2023-07-28 2023-10-20 西安电子科技大学 一种宽带雷达目标距离像快速超分辨重构的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630051A (en) * 1985-03-01 1986-12-16 Holodyne Ltd., 1986 Imaging doppler interferometer
GB2175767B (en) * 1985-05-28 1989-07-26 Standard Telephones Cables Ltd Radar systems.
US5093649A (en) * 1990-08-28 1992-03-03 The Boeing Company Bessel beam radar system using sequential spatial modulation
EP1580572A1 (en) * 2004-03-22 2005-09-28 Fujitsu Ten Limited Digital beamforming radar apparatus
CN102224432A (zh) * 2008-11-24 2011-10-19 奥托里夫Asp股份有限公司 用于雷达信号处理的方法和装置
CN102707266A (zh) * 2012-05-24 2012-10-03 北京理工大学 一种具有抗干扰和多目标识别功能的雷达及其检测方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49107491A (zh) * 1973-02-15 1974-10-12
US3978481A (en) * 1974-06-17 1976-08-31 Merlin A. Pierson Anti-collision vehicular radar system
US5302956A (en) * 1992-08-14 1994-04-12 Vorad Safety Systems, Inc. Multi-frequency, multi-target vehicular radar system using digital signal processing
JP4258941B2 (ja) * 1999-06-03 2009-04-30 株式会社デンソー レーダ装置
WO2001055745A1 (fr) * 2000-01-28 2001-08-02 Hitachi, Ltd. Dispositif de mesure de distance
US6538599B1 (en) * 2001-11-16 2003-03-25 Raytheon Company Noncoherent gain enhancement technique for non-stationary targets
JP4093109B2 (ja) * 2003-05-15 2008-06-04 株式会社デンソー 車両用レーダ装置
US20050156780A1 (en) * 2004-01-16 2005-07-21 Ghz Tr Corporation Methods and apparatus for automotive radar sensors
EP1735637B1 (en) * 2004-04-05 2019-01-16 Weibel Scientific A/S System and method for radar detection of an object
JP2006047114A (ja) * 2004-08-04 2006-02-16 Fujitsu Ten Ltd レーダ装置
JP2008170193A (ja) * 2007-01-09 2008-07-24 Mitsubishi Electric Corp レーダ装置
WO2009081981A1 (ja) * 2007-12-25 2009-07-02 Honda Elesys Co., Ltd. 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP4828553B2 (ja) * 2008-01-29 2011-11-30 富士通テン株式会社 レーダ装置、及び物標の角度検出方法
JP5407272B2 (ja) * 2008-06-12 2014-02-05 三菱電機株式会社 レーダ装置
JP2010071865A (ja) * 2008-09-19 2010-04-02 Fujitsu Ten Ltd 信号処理装置、及びレーダ装置。
US8558733B2 (en) * 2010-03-15 2013-10-15 Honda Elesys Co., Ltd. Radar apparatus and computer program
JP5655516B2 (ja) * 2010-11-12 2015-01-21 株式会社デンソー レーダ装置
JP5677830B2 (ja) * 2010-12-22 2015-02-25 日本電産エレシス株式会社 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP5695925B2 (ja) * 2011-02-04 2015-04-08 日本電産エレシス株式会社 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP5739701B2 (ja) * 2011-03-23 2015-06-24 富士通テン株式会社 レーダ装置用の演算装置、レーダ装置、レーダ装置用の演算方法およびプログラム
JP6123974B2 (ja) * 2011-04-15 2017-05-10 パナソニックIpマネジメント株式会社 レーダ装置
JP5278484B2 (ja) * 2011-04-21 2013-09-04 株式会社デンソー レーダ装置
JP2012242166A (ja) * 2011-05-17 2012-12-10 Fujitsu Ten Ltd レーダ装置
JP5382087B2 (ja) * 2011-11-02 2014-01-08 株式会社デンソー レーダ装置
JP6009775B2 (ja) * 2012-02-13 2016-10-19 株式会社デンソー レーダ装置
JP6280319B2 (ja) * 2012-10-30 2018-02-14 株式会社デンソーテン レーダ装置、および、信号処理方法
JP6181924B2 (ja) 2012-12-06 2017-08-16 富士通テン株式会社 レーダ装置、および、信号処理方法
US9400325B2 (en) * 2014-11-26 2016-07-26 Valeo Radar Systems, Inc. Method and apparatus for increasing angular resolution in an automotive radar system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630051A (en) * 1985-03-01 1986-12-16 Holodyne Ltd., 1986 Imaging doppler interferometer
GB2175767B (en) * 1985-05-28 1989-07-26 Standard Telephones Cables Ltd Radar systems.
US5093649A (en) * 1990-08-28 1992-03-03 The Boeing Company Bessel beam radar system using sequential spatial modulation
EP1580572A1 (en) * 2004-03-22 2005-09-28 Fujitsu Ten Limited Digital beamforming radar apparatus
CN102224432A (zh) * 2008-11-24 2011-10-19 奥托里夫Asp股份有限公司 用于雷达信号处理的方法和装置
CN102707266A (zh) * 2012-05-24 2012-10-03 北京理工大学 一种具有抗干扰和多目标识别功能的雷达及其检测方法

Also Published As

Publication number Publication date
EP2998761B1 (en) 2020-01-01
CN105445734A (zh) 2016-03-30
EP2998761A1 (en) 2016-03-23
US20160084941A1 (en) 2016-03-24
US9784820B2 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
CN105445734B (zh) 具有基于相位的多目标检测的雷达系统
US9470777B2 (en) Radar system for automated vehicle with phase change based target catagorization
US11340332B2 (en) Method and apparatus for processing radar data
US10830874B2 (en) Method to determine the suitability of a radar target as a positional landmark
CN105093213B (zh) 具有改进的多目标区分的雷达系统
US9229098B2 (en) Detection of radar objects with the aid of a radar sensor of a motor vehicle
US8558730B2 (en) Method and device for detecting precipitation by radar
Hyun et al. Moving and stationary target detection scheme using coherent integration and subtraction for automotive FMCW radar systems
EP3144696A1 (en) Radar system for automated vehicle with phase change based target categorization
CN109031271B (zh) 用于机动车的fmcw雷达传感器
US11249180B2 (en) Method and device for ascertaining transverse relative velocity components of radar targets
US10989809B2 (en) Single scatterer test using amplitude and a plurality of receive elements
JP7138970B2 (ja) 物体の少なくとも1つのパラメータを決定する方法および装置
US8823582B2 (en) FMCW radar sensor system having a device for detecting a radome coating
US10473760B2 (en) Radar device and vertical axis-misalignment detecting method
CN104614723A (zh) 利用可变波形判别虚假目标的车辆用雷达及其判别方法
CN106908794B (zh) 用于检测目标物体的方法和设备
CN109752699B (zh) 基于距离-啁啾图中曲线检测的目标检测
US11719801B2 (en) Method for providing at least one piece of target information
US20230038738A1 (en) Method for determining angle information
Lim et al. Rejection of road clutter using mean-variance method with OS-CFAR for automotive applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20181130

Address after: Babado J San Michaele

Applicant after: Amberford Technology Co., Ltd.

Address before: michigan

Applicant before: Delphi Automotive Systems LLC (US)

GR01 Patent grant
GR01 Patent grant