CN105355883B - 一种TiN/TiO2核壳纳米线阵列及其制备方法 - Google Patents

一种TiN/TiO2核壳纳米线阵列及其制备方法 Download PDF

Info

Publication number
CN105355883B
CN105355883B CN201510796858.8A CN201510796858A CN105355883B CN 105355883 B CN105355883 B CN 105355883B CN 201510796858 A CN201510796858 A CN 201510796858A CN 105355883 B CN105355883 B CN 105355883B
Authority
CN
China
Prior art keywords
nano
tin
tio
core
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510796858.8A
Other languages
English (en)
Other versions
CN105355883A (zh
Inventor
文伟
白俊强
吴进明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN201510796858.8A priority Critical patent/CN105355883B/zh
Publication of CN105355883A publication Critical patent/CN105355883A/zh
Application granted granted Critical
Publication of CN105355883B publication Critical patent/CN105355883B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种TiN/TiO2核壳纳米线阵列及其制备方法。该材料是以TiN纳米线为骨架,在TiN纳米线表面生长TiO2颗粒,形成核壳结构的纳米线阵列。制备过程为:将钛片先依次在NaOH溶液中进行水热反应、酸交换、NH3气氛中高温热处理,得到TiN纳米线阵列;然后将上述TiN纳米线阵列在TiF4或TiCl4水溶液中反应,最终得到TiN/TiO2核壳纳米线阵列。所得到的TiN/TiO2核壳纳米线阵列可提高TiO2电极整体的电导率和电化学活性,核壳结构的纳米线阵列作为锂离子电池负极时,还可大幅减小TiO2脱嵌锂时电子和锂离子所需的传输距离,进而提高其电化学性能。可用于锂离子电池和光催化等领域。

Description

一种TiN/TiO2核壳纳米线阵列及其制备方法
技术领域
本发明涉及一种TiN/TiO2核壳纳米线阵列及其制备方法,可应用于能量存储和能量转换领域。
背景技术
纳米结构TiO2在能量存储和能量转换等领域具有潜在的应用前景,但其作为锂离子电池负极材料时,TiO2的低电导率(例如锐钛矿TiO2的电导率只有5.6×10-8 S/cm左右,Xiaodong Yan, et al, Energy Technology, 2015, 3, 801-814)影响了锂离子电池的电化学性能。为此,有必要研究制备高性能的TiO2锂离子电池负极材料。
发明内容
本发明的目的是提供一种具有良好电化学性能的TiN/TiO2核壳纳米线阵列及其制备方法。
本发明的TiN/TiO2核壳纳米线阵列,以TiN纳米线为骨架,在TiN纳米线表面生长有TiO2颗粒,形成核壳结构的纳米线阵列。
TiN/TiO2核壳纳米线阵列的制备方法,其步骤如下:
1)将清洗干净的钛片置于浓度为1.25 M的NaOH溶液中,在水热环境下于220 ℃反应20小时,得到钛酸钠纳米线阵列;
2)将上述钛酸钠纳米线阵列在pH值为1的盐酸溶液中浸泡40 min以上,进行质子交换反应,得到钛酸纳米线阵列;
3)将上述钛酸纳米线阵列在流量为200 mL/min的NH3气氛中于800 ℃热处理1小时,得到TiN纳米线;
4) 将上述TiN纳米线置于浓度为0.04 M的TiF4溶液中于60 ℃反应40~180 min,或置于浓度为0.04 M~0.4 M的TiCl4溶液中于60 ℃反应30 min,得到TiN/TiO2核壳纳米线阵列。
本发的有益效果在于:
TiN具有高熔点、高硬度、稳定性好、电导率高(其电导率为4×104 S/cm左右,PengChen, et al,Journal of Materials Chemistry C, 2015, 3, 7272)等优点。本发明以导电性较好的TiN纳米线作为导电骨架,在TiN纳米线阵列表面生长覆盖TiO2颗粒,可提高TiO2电极整体的电导率和电化学活性,核壳结构的纳米线阵列作为锂离子电池负极时,还可大幅减小TiO2脱嵌锂时电子和锂离子所需的传输距离,进而提高其电化学性能。
附图说明
图1为实施例1制备的TiN纳米线阵列的扫描电子显微镜照片;
图2为实施例1制备的TiN/TiO2核壳纳米线阵列的X射线衍射图谱;
图3为实施例1制备的TiN/TiO2核壳纳米线阵列的扫描电子显微镜照片;
图4为实施例1制备的TiN/TiO2核壳纳米线阵列的能谱面分布照片,其中,a图为扫描透射电镜照片,b图为Ti元素的能谱面分布图,c图为N元素的能谱面分布图,d图为O元素的能谱面分布图;
图5为实施例1制备的TiN/TiO2核壳纳米线阵列的外壳层的TiO2的高分辨透射电子显微镜照片;
图6为实施例2制备的TiN/TiO2核壳纳米线阵列的扫描电子显微镜照片;
图7为实施例3制备的TiN/TiO2核壳纳米线阵列的扫描电子显微镜照片;
图8为实施例4制备的TiN/TiO2核壳纳米线阵列的扫描电子显微镜照片;
图9为实施例5制备的TiN/TiO2核壳纳米线阵列的扫描电子显微镜照片;
图10为实施例1制备的TiN/TiO2核壳纳米线阵列薄膜在0.11 mA/cm2的面电流密度下的锂电池循环性能曲线;
图11为实施例1制备的TiN/TiO2核壳纳米线阵列薄膜在1 mA/cm2的面电流密度下的锂电池循环性能曲线。
具体实施方式
以下结合实施例进一步阐述本发明,但本发明不仅仅局限于下述实施例。
实施例1
将面积为2.5×2.5cm2的清洗干净的钛片置于35mL浓度为1.25M的NaOH溶液中,在水热环境下220 ℃反应20小时,得到钛酸钠纳米线阵列;将上述钛酸钠纳米线阵列在pH值为1的盐酸中浸泡40 min,将浸泡过程重复三次(每次在新更换的pH值为1的盐酸中浸泡40min),得到钛酸纳米线阵列;将上述钛酸纳米线阵列在流量为200 mL/min的NH3中于800 ℃热处理1小时,得到TiN纳米线;将上述TiN纳米线置于15 mL浓度为0.04 M的TiF4溶液中,于60 ℃反应180 min,得到TiN/TiO2核壳纳米线阵列。
图1为得到TiN纳米线的场发射扫描电子显微镜照片,可以看出其具有纳米线阵列结构。图2为本例制得产物的X射线衍射图谱,经与标准卡片对照可知,所得产物的物相为TiN、TiO2以及来自基底的Ti。图3为所获得的TiN/TiO2的扫描电子显微镜照片,可以看到产物具有纳米线阵列结构。图4为本例所制备的TiN/TiO2核壳纳米线阵列的Ti、N、O元素的能谱面分布照片,可以看出,N元素集中分布在纳米线的中心部分,即中心部分为TiN,TiN外层的包覆了一层TiO2(壳层),所以所制备的TiN/TiO2具有核壳纳米线结构。图5为所制备的TiN/TiO2核壳纳米线阵列的外壳层的高分辨透射电子显微镜照片,可以看到其晶面间距为0.35 nm,对应于TiO2锐钛矿的(101)晶面,进一步说明该核壳纳米线的外层(壳层)为TiO2
实施例2
将面积为2.5×2.5cm2的清洗干净的钛片置于浓度为1.25M的NaOH溶液中,在水热环境下220 ℃反应20小时,得到钛酸钠纳米线阵列;将上述钛酸钠纳米线阵列在pH 值为1的盐酸中浸泡40 min,将浸泡过程重复三次,得到钛酸纳米线阵列;将上述钛酸纳米线阵列在流量为200 mL/min的NH3中于800 ℃热处理1小时,得到TiN纳米线;取面积为1×1 cm2的上述TiN纳米线置于5 mL浓度为0.04 M的TiF4溶液中,于60 ℃反应40 min,得到TiN/TiO2核壳纳米线阵列。本例所获得的TiN/TiO2的扫描电子显微镜照片如图6所示。
实施例3
将面积为2.5×2.5cm2的清洗干净的钛片置于浓度为1.25M的NaOH溶液中,在水热环境下220 ℃反应20小时,得到钛酸钠纳米线阵列;将上述钛酸钠纳米线阵列在pH值为1的盐酸中浸泡40 min,将浸泡过程重复三次,得到钛酸纳米线阵列;将上述钛酸纳米线阵列在流量为200 mL/min的NH3中于800 ℃热处理1小时,得到TiN纳米线;取面积为1×1 cm2的上述TiN纳米线置于5 mL浓度为0.04 M的TiF4溶液中,于60 ℃反应120 min,得到TiN/TiO2核壳纳米线阵列。本例所获得的TiN/TiO2的扫描电子显微镜照片如图7所示。
实施例4
将面积为2.5×2.5cm2的清洗干净的钛片置于浓度为1.25M的NaOH溶液中,在水热环境下220 ℃反应20小时,得到钛酸钠纳米线阵列;将上述钛酸钠纳米线阵列在pH值为1的盐酸中浸泡40 min,将浸泡过程重复三次,得到钛酸纳米线阵列;将上述钛酸纳米线阵列在流量为200 mL/min的NH3中于800 ℃热处理1小时,得到TiN纳米线;取面积为1×1 cm2的上述TiN纳米线置于5 mL浓度为0.04 M的TiCl4溶液中,于60 ℃反应30 min,得到TiN/TiO2核壳纳米线阵列。本例所获得的TiN/TiO2的扫描电子显微镜照片如图8所示。
实施例5
将面积为2.5×2.5cm2的清洗干净的钛片置于浓度为1.25M的NaOH溶液中,在水热环境下220 ℃反应20小时,得到钛酸钠纳米线阵列;将上述钛酸钠纳米线阵列在pH 值为1的盐酸中浸泡40 min,将浸泡过程重复三次,得到钛酸纳米线阵列;将上述钛酸纳米线阵列在流量为200 mL/min的NH3中于800 ℃热处理1小时,得到TiN纳米线;取面积为1×1 cm2的上述TiN纳米线置于5 mL浓度为0.4 M的TiCl4溶液中,于60 ℃反应30 min,得到TiN/TiO2核壳纳米线阵列。本例所获得的TiN/TiO2的扫描电子显微镜照片如图9所示。
本发明所述TiN/TiO2核壳纳米线阵列作为锂离子电池负极效果实验例
为了进一步说明本发明所述的TiN/TiO2核壳纳米线阵列的应用优势,将实施例1所制备的TiN/TiO2核壳纳米线阵列薄膜作为负极,在氩气气氛手套箱内与金属锂片、电解液和隔膜组成纽扣式电池。其中,隔膜为聚丙烯(PP)膜(Celgard 2300),电解液为1 mol/L的LiPF6溶解于质量比为50:50的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)的混合物中。将所得电池在LAND2001A电池测试仪上进行循环充放电测试。0.11 mA/cm2的面电流密度下的循环性能如图10所示,1 mA/cm2的面电流密度下的测试结果如图11所示。由图10和图11可以看出,TiN/TiO2核壳纳米线阵列具有优异的循环稳定性和倍率性能。

Claims (1)

1.一种TiN/TiO2核壳纳米线阵列的制备方法,它是以TiN纳米线为骨架,在TiN纳米线表面生长有TiO2颗粒,形成核壳结构的纳米线阵列,其制备步骤如下:
1)将清洗干净的钛片置于浓度为1.25 M的NaOH溶液中,在水热环境下于220 ℃反应20小时,得到钛酸钠纳米线阵列;
2)将上述钛酸钠纳米线阵列在pH值为1的盐酸溶液中浸泡40 min以上,进行质子交换反应,得到钛酸纳米线阵列;
3)将上述钛酸纳米线阵列在流量为200 mL/min的NH3气氛中于800 ℃热处理1小时,得到TiN纳米线;
4) 将上述TiN纳米线置于浓度为0.04 M的TiF4溶液中于60 ℃反应40~180 min,或置于浓度为0.04 M~0.4 M的TiCl4溶液中于60 ℃反应30 min,得到TiN/TiO2核壳纳米线阵列。
CN201510796858.8A 2015-11-18 2015-11-18 一种TiN/TiO2核壳纳米线阵列及其制备方法 Active CN105355883B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510796858.8A CN105355883B (zh) 2015-11-18 2015-11-18 一种TiN/TiO2核壳纳米线阵列及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510796858.8A CN105355883B (zh) 2015-11-18 2015-11-18 一种TiN/TiO2核壳纳米线阵列及其制备方法

Publications (2)

Publication Number Publication Date
CN105355883A CN105355883A (zh) 2016-02-24
CN105355883B true CN105355883B (zh) 2017-09-29

Family

ID=55331802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510796858.8A Active CN105355883B (zh) 2015-11-18 2015-11-18 一种TiN/TiO2核壳纳米线阵列及其制备方法

Country Status (1)

Country Link
CN (1) CN105355883B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086881B (zh) * 2016-06-08 2019-07-26 合肥工业大学 一种具有核壳结构的TiN/TiO2三维纳米线阵列及其制备方法
CN107243353B (zh) * 2016-08-10 2019-11-22 山东大学 一种氟掺杂的二氧化钛多层级结构光催化剂及其制备方法
CN106848319B (zh) * 2016-12-29 2019-04-26 清华大学深圳研究生院 一种锂硫电池用正极片及包含该正极片的锂硫电池
CN111663183B (zh) * 2020-05-25 2021-07-20 海南大学 一种含微应变的准单晶二氧化钛三维阵列及其制备方法
CN111634942B (zh) * 2020-05-25 2021-06-22 海南大学 一种具有细长分支的二氧化钛纳米线阵列的制备方法
CN113539695B (zh) * 2020-10-13 2023-02-28 南通一品机械电子有限公司 一种高比容固体铝电解电容器及其制备方法
CN112897483B (zh) * 2021-01-22 2022-07-05 盐城工学院 TiN(B)@TiO2核-壳颗粒粉末材料及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101298321A (zh) * 2008-05-30 2008-11-05 河南大学 一种氮化钛纳米粉体的制备方法
CN102646822A (zh) * 2012-05-18 2012-08-22 深圳华粤宝电池有限公司 纳米锐钛矿相二氧化钛的制备方法及在锂电池中的应用
CN103985563A (zh) * 2014-04-10 2014-08-13 东南大学 一种锂插层二氧化锰-氮化钛纳米管复合材料及其制备方法与应用
CN105018919A (zh) * 2015-07-08 2015-11-04 浙江大学 一种“带-带”分级结构纳米二氧化钛薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101298321A (zh) * 2008-05-30 2008-11-05 河南大学 一种氮化钛纳米粉体的制备方法
CN102646822A (zh) * 2012-05-18 2012-08-22 深圳华粤宝电池有限公司 纳米锐钛矿相二氧化钛的制备方法及在锂电池中的应用
CN103985563A (zh) * 2014-04-10 2014-08-13 东南大学 一种锂插层二氧化锰-氮化钛纳米管复合材料及其制备方法与应用
CN105018919A (zh) * 2015-07-08 2015-11-04 浙江大学 一种“带-带”分级结构纳米二氧化钛薄膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fabrication of Highly Ordered and Well-Aligned PbTiO3/TiN Core–Shell Nanotube Arrays;Jaesung Yoon et al.;《small》;20150430;第11卷(第31期);第3750–3754页 *
Stabilized titanium nitride nanowire supported silicon core–shell nanorods as high capacity lithium-ion anodes;Hao Zheng et al.;《J.Mater.Chem.A》;20150506;第3卷;第12476–12481页 *
Titanium dioxide@titanium nitride nanowires on carbon cloth with emarkable rate capability for fexible lithium-ion batteries;Muhammad-Sadeeq Balogun et al.;《Journal of Power Sources》;20140916;第272卷;第946-953页 *

Also Published As

Publication number Publication date
CN105355883A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
CN105355883B (zh) 一种TiN/TiO2核壳纳米线阵列及其制备方法
Liu et al. Three-dimensional tubular arrays of MnO 2–NiO nanoflakes with high areal pseudocapacitance
Li et al. Unraveling the role of nitrogen‐doped carbon nanowires incorporated with MnO2 nanosheets as high performance cathode for zinc‐ion batteries
CN105688958B (zh) 多面体形磷化钴/石墨碳杂化材料及其制备方法和应用
Chen et al. Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires
Lu et al. Hydrogenated TiO2 nanotube arrays as high‐rate anodes for lithium‐ion microbatteries
CN104616910B (zh) 碳包覆钛基纳米阵列材料及其制备方法和应用
CN104616905B (zh) 聚苯胺‑碳层‑氮化钛纳米线阵列复合材料及其制备方法和应用
Qorbani et al. Ti‐rich TiO2 tubular nanolettuces by electrochemical anodization for all‐solid‐state high‐rate supercapacitor devices
Khatavkar et al. α-Fe2O3 thin film on stainless steel mesh: A flexible electrode for supercapacitor
US11557441B2 (en) Method for preparing an electrode comprising a substrate, aligned carbon nanotubes and a metal oxide deposited by oxidative deposition, the electrode and uses thereof
CN106449132B (zh) 一种介孔Co3O4纳米线@NiCo2O4纳米片分级核壳阵列材料、制备方法及应用
Yan et al. Electronic modulation of composite electrocatalysts derived from layered NiFeMn triple hydroxide nanosheets for boosted overall water splitting
Huang et al. TiO2-rutile/anatase homojunction with enhanced charge separation for photoelectrochemical water splitting
CN104032355A (zh) 半金属态导电亚氧化钛纳米管阵列的制备方法
CN108130711A (zh) 一种基于纤维衬底的TiO2纳米阵列及其制备方法
Li et al. CoSe 2/porous carbon shell composites as high-performance catalysts toward tri-iodide reduction in dye-sensitized solar cells
CN108428882A (zh) 一种硅酸锌/碳微纳分级结构复合物及其制备方法
CN108598408A (zh) 藕杆生物质炭镶嵌氧化铁复合材料及其制备方法、电极材料
Arbaz et al. Rational design of bimetallic oxide multi‐nanoarchitectures for high‐rate and durable hybrid supercapacitors
CN106876658A (zh) 一种空心镍棒/碳球阵列电极的制备方法
CN107354480B (zh) 一种金属氧化物/NiPi光阳极材料及其制备
CN109713314A (zh) 柔性二氧化钛/硅/二氧化硅锂离子电池电极的制备方法
Huang et al. Nickel nanoparticles modified MnO nanosheet arrays for high-performance supercapacitor with long-lasting and sustainable capacitance increase
CN101565205A (zh) 新型纳米材料v10o24·12h2o的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant