CN105321871A - 铜与低k介质材料的整合工艺 - Google Patents

铜与低k介质材料的整合工艺 Download PDF

Info

Publication number
CN105321871A
CN105321871A CN201410366361.8A CN201410366361A CN105321871A CN 105321871 A CN105321871 A CN 105321871A CN 201410366361 A CN201410366361 A CN 201410366361A CN 105321871 A CN105321871 A CN 105321871A
Authority
CN
China
Prior art keywords
low
copper
layer
ultra
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410366361.8A
Other languages
English (en)
Inventor
金一诺
王坚
王晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACM (SHANGHAI) Inc
ACM Research Shanghai Inc
Original Assignee
ACM (SHANGHAI) Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACM (SHANGHAI) Inc filed Critical ACM (SHANGHAI) Inc
Priority to CN201410366361.8A priority Critical patent/CN105321871A/zh
Publication of CN105321871A publication Critical patent/CN105321871A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明揭示了一种铜与低K介质材料的整合工艺,包括如下步骤:在基底上沉积低K或超低K介质层;对沉积的低K或超低K介质层进行等离子退火处理;在低K或超低K介质层上沉积阻挡层;在阻挡层上沉积铜种子层;在铜种子层上沉积铜层,铜层填满基底上的图形结构并覆盖在基底的整个表层上;采用化学机械平坦化工艺将基底表层上的铜层部分去除;采用无应力抛光工艺将基底表层上剩余的铜层全部去除,停留至阻挡层;采用热气相刻蚀工艺,将基底表层上的阻挡层全部去除。本发明能够使介质材料保持足够低的K值并实现了与铜的整合,突破了现有工艺的技术壁垒。

Description

铜与低K介质材料的整合工艺
技术领域
本发明涉及集成电路制造领域,尤其涉及铜与低K介质材料的整合工艺,用以降低集成电路的阻容迟滞。
背景技术
随着集成电路技术的不断进步,具有高速度、高器件密度、低功耗及低成本的芯片已成为超大规模集成电路的主流产品。此时,芯片中的导线密度不断增加,导线宽度和间距不断缩小,互连结构中的电阻R和电容C所产生的寄生效应越来越明显。为了克服阻容迟滞(RCdelay)而引起的信号传播延迟,线间干扰及功率耗散等,铜线替代传统的铝线成为集成电路工艺的发展方向,低K材料代替传统的二氧化硅成为集成电路工艺的必然选择。因此,低电阻率的铜与低介电常数的介质材料相结合的新型互连结构,成为未来集成电路工艺技术发展的趋势。而如何让铜与低K介质材料有效整合应用,从集成电路的制程技术来看,具有挑战性。
参考图1所示,揭示了现有的铜与低K介质材料的整合工艺流程图。该整合工艺包括如下步骤:
步骤101:使用等离子增强化学气相沉积(PECVD)技术在基底上沉积低K介质层;
步骤102:采用紫外线固化(UVcuring)工艺固化低K介质层;
步骤103:使用物理气相沉积(PVD)技术在介质层上沉积阻挡层;
步骤104:使用物理气相沉积(PVD)技术在阻挡层上沉积铜种子层;
步骤105:采用电化学电镀(ECP)工艺在铜种子层上沉积铜层;
步骤106:使用化学机械平坦化(CMP)技术将表层覆盖的铜层去除;
步骤107:使用化学机械平坦化(CMP)技术将表层覆盖的阻挡层去除。
上述整合工艺采用紫外线固化工艺固化低K介质层的目的是将低K介质材料的孔洞封闭,以达到增强低K介质材料的机械性能,同时避免后续化学机械平坦化过程中研磨液渗入低K介质材料的孔洞中的目的。然而,采用紫外线固化工艺固化低K介质层会导致介质材料的K值升高。此外,上述整合工艺使用了化学机械平坦化技术去除表层的铜层和阻挡层,化学机械平坦化本身的技术特性决定了介质材料的K值不能过低,否则,化学机械平坦化过程中施加的下压力会对介质材料造成损伤,因此,上述整合工艺具有局限性,难以实现铜与低K介质材料的有效整合。
发明内容
本发明的目的是提供一种铜与低K介质材料的整合工艺,该整合工艺能够使介质材料保持足够低的K值并实现与铜的整合。
为实现上述目的,本发明提出的铜与低K介质材料的整合工艺,包括如下步骤:在基底上沉积低K或超低K介质层;对沉积的低K或超低K介质层进行等离子退火处理;在低K或超低K介质层上沉积阻挡层;在阻挡层上沉积铜种子层;在铜种子层上沉积铜层,铜层填满基底上的图形结构并覆盖在基底的整个表层上;采用化学机械平坦化工艺将基底表层上的铜层部分去除;采用无应力抛光工艺将基底表层上剩余的铜层全部去除,停留至阻挡层;采用热气相刻蚀工艺,将基底表层上的阻挡层全部去除。
在一个实施例中,在对沉积的低K或超低K介质层进行退火处理之后,在低K或超低K介质层上沉积阻挡层之前,还包括对低K或超低K介质层进行固化处理。
在一个实施例中,采用紫外线固化工艺,在封闭的充满氮气的空间内,将低K或超低K介质层加热至预定温度,然后采用预定波长的紫外线对低K或超低K介质层进行照射。
在一个实施例中,采用含氢气的等离子退火工艺对低K或超低K介质层进行退火处理。
在一个实施例中,采用He与H2的混合气体对低K或超低K介质层进行微波等离子退火处理。
在一个实施例中,微波的波长为200nm以上。
与现有技术相比,本发明通过对沉积的低K或超低K介质层进行等离子退火处理,能够去除介质材料中含有的牺牲性致孔剂,从而提高介质材料的洞率,进而降低介质材料的K值。而且,由于采用了干法的热气相刻蚀工艺代替传统的化学机械平坦化工艺来去除基底表层上的阻挡层,能够避免湿法工艺中的液体渗入介质材料的孔洞中而导致介质材料的K值升高。此外,本发明采用无应力抛光去除基底表层上的铜层,避免机械应力在金属铜层平坦化过程中对机械强度较弱的介质材料造成损伤。本发明的整合工艺使介质材料保持足够低的K值并实现了与铜的整合,突破了现有工艺的技术壁垒。
附图说明
图1揭示了现有的铜与低K介质材料的整合工艺流程图。
图2揭示了本发明铜与低K介质材料相整合形成的互连结构的示意图。
图3揭示了本发明的铜与低K介质材料的整合工艺的一实施例的流程图。
图4揭示了本发明的铜与低K介质材料的整合工艺的另一实施例的流程图。
图5揭示了采用现有的铜与低K介质材料的整合工艺及采用本发明的铜与低K介质材料的整合工艺将铜与低K介质材料相整合后,介质材料的K值及机械强度变化的对比图。
具体实施方式
为详细说明本发明的技术内容、所达成目的及效果,下面将结合实施例并配合图式予以详细说明。
参考图3并结合图2所示,本发明揭示的一种铜与低K介质材料的整合工艺,包括如下步骤:
步骤301:在基底201上沉积低K或超低K介质层202,低K介质层的K值小于2.5,超低K介质层的K值小于2。具体地,通过等离子增强化学气相沉积(PECVD)在基底201上沉积低K或超低K介质层202,该低K或超低K介质层202含有牺牲性致孔剂。
步骤302:对沉积的低K或超低K介质层202进行等离子退火(PlasmaAnneal)处理,具体地,采用含氢气的等离子退火(H2-AFT)工艺对低K或超低K介质层202进行退火处理。在一个实施例中,采用浓度为He/H2的比例为20:1的混合气体对温度为280℃的基底进行350秒微波等离子退火处理,其中,微波的波长在200nm以上更佳。
步骤303:在低K或超低K介质层202上沉积阻挡层203,具体地,通过物理气相沉积(PVD)在低K或超低K介质层202上沉积阻挡层203,阻挡层203可以选用钽、氮化钽、钛、氮化钛中的一种或两种的组合,阻挡层203的厚度一般为10nm至20nm。
步骤304:在阻挡层203上沉积铜种子层204,具体地,通过物理气相沉积(PVD)在阻挡层203上沉积铜种子层204,铜种子层204的厚度通常为100nm。
步骤305:在铜种子层204上沉积铜层205,铜层205填满基底201上的图形结构并覆盖在基底201的整个表层上,具体地,采用电化学电镀(ECP)工艺,在铜种子层204上沉积约为700nm至800nm厚度的铜层205。
步骤306:采用化学机械平坦化(CMP)工艺将基底201表层覆盖的铜层205部分去除,保留约150nm至200nm铜层205。
步骤307:采用无应力抛光(SFP)工艺将基底201表层上剩余的铜层205全部去除,停留至阻挡层204。
步骤308:采用热气相刻蚀(TFE)工艺,将基底201表层上的阻挡层204全部去除。
上述揭示的铜与低K介质材料的整合工艺,通过对沉积的低K或超低K介质层202进行等离子退火处理,能够去除介质材料中含有的牺牲性致孔剂,从而提高介质材料的洞率,进而降低介质材料的K值。相比现有的铜与低K介质材料的整合工艺,由于本发明的铜与低K介质材料的整合工艺采用了干法的热气相刻蚀(TFE)工艺代替传统的化学机械平坦化工艺来去除基底201表层上的阻挡层204,能够避免湿法工艺中的液体渗入介质材料的孔洞中而导致介质材料的K值升高,因此,无需对介质层进行固化。此外,本发明采用无应力抛光去除基底201表层上的铜层205,避免机械应力在金属铜层平坦化过程中对机械强度较弱的介质材料造成损伤。本发明的整合工艺使介质材料保持足够低的K值并实现了与铜的整合,突破了现有工艺的技术壁垒。
参考图4所示,揭示了本发明的铜与低K介质材料的整合工艺的另一实施例的流程图。如图4所示,该整合工艺包括如下步骤:
步骤401:在基底201上沉积低K或超低K介质层202,低K介质层的K值小于2.5,超低K介质层的K值小于2。具体地,通过等离子增强化学气相沉积(PECVD)在基底201上沉积低K或超低K介质层202,该低K或超低K介质层202含有牺牲性致孔剂。
步骤402:对沉积的低K或超低K介质层202进行等离子退火(PlasmaAnneal)处理,具体地,采用含氢气的等离子退火(H2-AFT)工艺对低K或超低K介质层202进行退火处理。在一个实施例中,采用浓度为He/H2的比例为20:1的混合气体对温度为280℃的基底进行350秒微波等离子退火处理,其中,微波的波长在200nm以上更佳。
步骤403:对低K或超低K介质层202进行固化处理,具体地,采用紫外线固化(UVcuring)工艺,在封闭的充满氮气的空间内,将低K或超低K介质层202加热至430℃,采用波长为172nm的紫外线对低K或超低K介质层202进行照射。
步骤404:在低K或超低K介质层202上沉积阻挡层203,具体地,通过物理气相沉积(PVD)在低K或超低K介质层202上沉积阻挡层203,阻挡层203可以选用钽、氮化钽、钛、氮化钛中的一种或两种的组合,阻挡层203的厚度一般为10nm至20nm。
步骤405:在阻挡层203上沉积铜种子层204,具体地,通过物理气相沉积(PVD)在阻挡层203上沉积铜种子层204,铜种子层204的厚度通常为100nm。
步骤406:在铜种子层204上沉积铜层205,铜层205填满基底201上的图形结构并覆盖在基底201的整个表层上,具体地,采用电化学电镀(ECP)工艺,在铜种子层204上沉积约为700nm至800nm厚度的铜层205。
步骤407:采用化学机械平坦化(CMP)工艺将基底201表层覆盖的铜层205部分去除,保留约150nm至200nm铜层205。
步骤408:采用无应力抛光(SFP)工艺将基底201表层上剩余的铜层205全部去除,停留至阻挡层204。
步骤409:采用热气相刻蚀(TFE)工艺,将基底201表层上的阻挡层204全部去除。
相比第一实施例所揭示的铜与低K介质材料的整合工艺,本实施例所揭示的铜与低K介质材料的整合工艺增加了对低K或超低K介质层202进行固化处理的步骤,其目的在于增强介质材料的机械性能,虽然该步骤会导致介质材料的K值有所升高,但是由于在固化处理之前,已对低K或超低K介质层202进行了等离子退火处理,使介质材料的K值降低,因此,该两个步骤结合之后,介质材料的K值仍比现有整合工艺中的介质材料的K值低。如图5所示,揭示了采用现有的铜与低K介质材料的整合工艺及采用本发明的铜与低K介质材料的整合工艺将铜与低K介质材料相整合后,介质材料的K值及机械强度变化的对比图。从图5中可以看出,采用现有的铜与低K介质材料的整合工艺对介质层进行固化处理后,介质材料的K值为2.26,而采用本发明的铜与低K介质材料的整合工艺对介质层进行等离子退火处理后,介质材料的K值为1.77,然后再对介质层进行固化处理,介质材料的K值上升至1.79,该K值仍属于低K值的范畴。因此,本实施例所揭示的铜与低K介质材料的整合工艺既能够使介质材料保持低K值,又使介质材料的机械性能有所增强,进一步提高了整合工艺的可靠性。
综上所述,本发明通过上述实施方式及相关图式说明,己具体、详实的揭露了相关技术,使本领域的技术人员可以据以实施。而以上所述实施例只是用来说明本发明,而不是用来限制本发明的,本发明的权利范围,应由本发明的权利要求来界定。

Claims (6)

1.一种铜与低K介质材料的整合工艺,其特征在于,包括如下步骤:
在基底上沉积低K或超低K介质层;
对沉积的低K或超低K介质层进行等离子退火处理;
在低K或超低K介质层上沉积阻挡层;
在阻挡层上沉积铜种子层;
在铜种子层上沉积铜层,铜层填满基底上的图形结构并覆盖在基底的整个表层上;
采用化学机械平坦化工艺将基底表层上的铜层部分去除;
采用无应力抛光工艺将基底表层上剩余的铜层全部去除,停留至阻挡层;
采用热气相刻蚀工艺,将基底表层上的阻挡层全部去除。
2.如权利要求1所述的铜与低K介质材料的整合工艺,其特征在于,在对沉积的低K或超低K介质层进行退火处理之后,在低K或超低K介质层上沉积阻挡层之前,还包括对低K或超低K介质层进行固化处理。
3.如权利要求2所述的铜与低K介质材料的整合工艺,其特征在于,采用紫外线固化工艺,在封闭的充满氮气的空间内,将低K或超低K介质层加热至预定温度,然后采用预定波长的紫外线对低K或超低K介质层进行照射。
4.如权利要求1或2所述的铜与低K介质材料的整合工艺,其特征在于,采用含氢气的等离子退火工艺对低K或超低K介质层进行退火处理。
5.如权利要求4所述的铜与低K介质材料的整合工艺,其特征在于,采用He与H2的混合气体对低K或超低K介质层进行微波等离子退火处理。
6.如权利要求5所述的铜与低K介质材料的整合工艺,其特征在于,微波的波长为200nm以上。
CN201410366361.8A 2014-07-29 2014-07-29 铜与低k介质材料的整合工艺 Pending CN105321871A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410366361.8A CN105321871A (zh) 2014-07-29 2014-07-29 铜与低k介质材料的整合工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410366361.8A CN105321871A (zh) 2014-07-29 2014-07-29 铜与低k介质材料的整合工艺

Publications (1)

Publication Number Publication Date
CN105321871A true CN105321871A (zh) 2016-02-10

Family

ID=55248980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410366361.8A Pending CN105321871A (zh) 2014-07-29 2014-07-29 铜与低k介质材料的整合工艺

Country Status (1)

Country Link
CN (1) CN105321871A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270176A (zh) * 2020-03-16 2020-06-12 江阴六环合金线有限公司 热镀锡铜包钢生产工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020092A1 (en) * 2008-08-20 2010-02-25 Acm Research (Shanghai) Inc. Barrier layer removal method and apparatus
EP2272996A1 (en) * 2009-07-08 2011-01-12 Imec Fabrication of porogen residue free and mechanically robust low-k materials
CN103117245A (zh) * 2011-11-17 2013-05-22 盛美半导体设备(上海)有限公司 空气隙互联结构的形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020092A1 (en) * 2008-08-20 2010-02-25 Acm Research (Shanghai) Inc. Barrier layer removal method and apparatus
EP2272996A1 (en) * 2009-07-08 2011-01-12 Imec Fabrication of porogen residue free and mechanically robust low-k materials
CN103117245A (zh) * 2011-11-17 2013-05-22 盛美半导体设备(上海)有限公司 空气隙互联结构的形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270176A (zh) * 2020-03-16 2020-06-12 江阴六环合金线有限公司 热镀锡铜包钢生产工艺

Similar Documents

Publication Publication Date Title
TWI606550B (zh) 在雙重鑲嵌結構中填充介層窗及溝渠的方法
US8003517B2 (en) Method for forming interconnects for 3-D applications
CN105097657B (zh) 半导体结构的形成方法
JP2013140980A (ja) 半導体装置の製造の方法
CN102054748B (zh) 铜互连线的形成方法和介质层的处理方法
US20150228585A1 (en) Self-forming barrier integrated with self-aligned cap
CN103117245A (zh) 空气隙互联结构的形成方法
CN103985668B (zh) 铜互连的制备方法
CN102479692B (zh) 形成栅极的方法
CN103972160A (zh) 一种降低在线wat测试对铜互连可靠性影响的方法
CN106486416A (zh) 金属互联结构的形成方法
CN102983098A (zh) 后栅工艺中电极和连线的制造方法
WO2013040751A1 (en) Method for forming air gap interconnect structure
US20150162282A1 (en) Bi-layer hard mask for robust metallization profile
CN104795358B (zh) 钴阻挡层的形成方法和金属互连工艺
CN105321871A (zh) 铜与低k介质材料的整合工艺
CN104465506B (zh) 铜互连中空气隙的形成方法
KR102042861B1 (ko) 무전해 구리 퇴적
CN102903613B (zh) 消除接触孔工艺中桥接的方法
JP2006245240A (ja) 半導体装置及びその製造方法
US8877083B2 (en) Surface treatment in the formation of interconnect structure
CN105513961B (zh) 化学机械抛光方法
CN102496598A (zh) 一种去除铜互连中阻挡层残留的方法
CN102751188B (zh) 超低介电材料的化学机械抛光方法
CN104392959A (zh) 双大马士革结构的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160210

WD01 Invention patent application deemed withdrawn after publication