CN105267233A - 用于抑制Eg5和VEGF基因表达的组合物和方法 - Google Patents

用于抑制Eg5和VEGF基因表达的组合物和方法 Download PDF

Info

Publication number
CN105267233A
CN105267233A CN201510567473.4A CN201510567473A CN105267233A CN 105267233 A CN105267233 A CN 105267233A CN 201510567473 A CN201510567473 A CN 201510567473A CN 105267233 A CN105267233 A CN 105267233A
Authority
CN
China
Prior art keywords
dsrna
compositions
nucleotide
cell
vegf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510567473.4A
Other languages
English (en)
Other versions
CN105267233B (zh
Inventor
D·邦姆克罗特
D·W-Y·沙
I·图德雅斯卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alnylam Pharmaceuticals Inc
Original Assignee
Alnylam Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alnylam Pharmaceuticals Inc filed Critical Alnylam Pharmaceuticals Inc
Publication of CN105267233A publication Critical patent/CN105267233A/zh
Application granted granted Critical
Publication of CN105267233B publication Critical patent/CN105267233B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3515Lipophilic moiety, e.g. cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/31Combination therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Endocrinology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及包含SNALP制剂中的双链核糖核酸(dsRNA)的组合物,使用该组合物抑制Eg5和血管内皮生长因子(VEGF)的表达的方法,及使用该组合物治疗Eg5和VEGF的表达介导的病理过程(如癌症)的方法。

Description

用于抑制Eg5和VEGF基因表达的组合物和方法
本申请是申请日为2009年03月05日和发明名称为“用于抑制Eg5和VEGF基因表达的组合物和方法”的200980115656.5号发明专利申请的分案申请。
相关申请
本申请要求2008年3月5日提交的美国临时申请61/034,019、2008年7月24日提交的美国临时申请61/083,367、2008年8月5日提交的美国临时申请61/086,381、2008年11月6日提交的美国临时申请61/112,079、2009年2月6日提交的美国临时申请61/150,664的优先权,本文通过引用完整引入。
发明领域
本发明涉及含有双链核糖核酸(dsRNA)的组合物,及其在介导RNA干扰以抑制基因组合(例如,配制于SNALP中的Eg5和血管内皮生长因子(VEGF)的基因)的表达的用途,及该组合物治疗Eg5和VEGF的表达介导的病理过程(如癌症)的用途。
发明背景
生物体中细胞群的维持由细胞分裂和程序性细胞死亡的细胞过程控制。在正常细胞中,与各个过程的起始和完成相关的细胞事件受到高度调控。在增殖性疾病(如癌症)中,这些过程中的一个或两者都可能被打断。例如,癌细胞可以通过正调控因子的过表达或负调控因子的缺失(可能是由于突变)而失去对细胞分裂周期的调控(检验点控制)。
可选择地,癌细胞可能通过负调控因子的过表达而失去进行程序性细胞死亡的能力。因此,需要开发新的化学治疗药物,该药物将使癌性细胞恢复检验点控制和程序性细胞死亡的过程。
治疗人类癌症的一种途径是靶向于对细胞周期进程至关重要的蛋白。为了使细胞周期从一个阶段进入下一个阶段,必须完成某些先决事件。在细胞周期中有加强事件和阶段的正确顺序的检验点。这种检验点中的一个是在有丝分裂中期阶段中出现的纺锤体检验点。靶向于在有丝分裂中具有重要功能的蛋白的小分子可以触发纺锤体检验点以将细胞抑止(arrest)在有丝分裂中。在将细胞抑止在有丝分裂中的小分子中,那些在临床上显示有抗肿瘤活性的小分子也诱导细胞凋亡,即与程序性细胞死亡相关的形态变化。因此,用于癌症治疗的有效的化学治疗剂可以是诱导检验点控制和程序性细胞死亡的治疗剂。令人遗憾的是,很少有可用于控制细胞中的这些过程的化合物。多数已知的引起有丝分裂抑止和细胞凋亡的化合物都作为微管蛋白结合剂起作用。这些化合物改变微管的动态不稳定性,并间接地改变有丝分裂纺锤体的功能/结构,从而引起有丝分裂抑止。因为这些化合物中的大多数都特异地靶向于作为所有微管的成分的微管蛋白,所以它们也可以影响微管在其中起作用的许多正常细胞过程中的一个或多个过程。因此,也需要更特异地靶向于与增殖细胞相关的蛋白的试剂。
Eg5是定位于有丝分裂的纺锤体上并且已知是两极有丝分裂纺锤体的形成和/或功能所必需的几种驱动蛋白样运动蛋白(kinesin-likemotorprotein)中的一种。最近,有干扰有丝分裂纺锤体的两极性的小分子的报道(Mayer,T.U.等人,1999.Science286(5441)971-4,通过引用结合入本文)。更具体地,所述小分子诱导异常有丝分裂纺锤体的形成,其中微管的单星形排列(monoastralarray)从中间中心体对发散,使染色体附着在微管的远端。所述小分子根据单星形排列被命名为“monastrol”。以前已经在Eg5运动蛋白免疫耗竭的有丝分裂细胞中观察到了这种单星形排列现象。这种与众不同的单星形排列现象有利于鉴定作为潜在Eg5抑制剂的monastrol。实际上,在体外检测中monastrol进一步显示了抑制由Eg5运动原(motor)驱动的微管运动性。Eg5抑制剂monastrol对细胞中相关的驱动蛋白运动原或负责高尔基体运动的运动原没有明显的作用。通过Eg5的免疫耗竭或者Eg5的monastrol抑制而显示出单星形排列现象的细胞抑止在细胞周期的M期中。然而,由Eg5的免疫耗竭或抑制诱导的有丝分裂抑止是瞬时的(Kapoor,T.M.,2000.JCellBiol150(5)975-80)。由monastrol诱导的有丝分裂中的单星形排列现象和细胞周期抑止都是可逆的。细胞恢复形成正常的两极有丝分裂纺锤体,完成有丝分裂并通过细胞周期和进行正常的细胞增殖。这些数据表明诱导瞬时有丝分裂抑止的Eg5抑制剂可能对癌细胞增殖的治疗无效。虽然如此,monastrol引起有丝分裂抑止的发现引起了人们的兴趣,并由此需要进一步的研究并鉴定能够用于以一种对人类癌症治疗有效的方式调节Eg5运动蛋白的化合物。还需要研究这些化合物与其他抗肿瘤药物的联合用药。
VEGF(也即血管渗透因子,VPF)是多功能细胞因子,其刺激血管形成、上皮细胞增殖和内皮细胞存活。VEGF可以由多种组织产生,并且它的过表达或异常表达能够引起多种病症,包括癌症和视网膜病症(如年龄相关的黄斑变性和其他血管形成性病症)。
最近,双链RNA分子(dsRNA)已经证明以一种称为RNA干扰(RNAi)的高度保守的调控机制阻止基因表达。WO99/32619(Fire等人)公开了在秀丽隐杆线虫(C.elegans.)中使用至少25个核苷酸长度的dsRNA抑制基因的表达。dsRNA也已经显示在其他生物体(包括植物(参见,如WO99/53050,Waterhouse等人;和WO99/61631,Heifetz等人)、果蝇(参见,例如,Yang,D.等人,Curr.Biol.(2000)10:1191-1200)和哺乳动物(参见WO00/44895,Limmer;和DE10100586.5,Kreutzer等人))中降解靶标RNA。这种天然机制目前已经成为开发用于治疗由基因的异常或不希望的调控引起的病症的新型治疗药物试剂的焦点。
发明概述
本发明公开了具有用于抑制细胞中的人驱动蛋白家族成员11(Eg5/KSP)和人VEGF基因的表达的两种双链核糖核酸(dsRNA)的组合物。将dsRNA配制成稳定的核酸脂质微粒(SNALP)。还公开了使用该组合物减少细胞中Eg5/KSP和/或VEGF的表达的方法,以及使用本发明的组合物治疗疾病(如肝癌)的方法。
因此,本发明公开了具有用于抑制细胞中人驱动蛋白家族成员11(Eg5/KSP)基因表达的第一双链核糖核酸(dsRNA)和用于抑制细胞中人VEGF的表达的第二dsRNA的组合物,其中,所述第一和所述第二dsRNA都配制成稳定的核酸脂质微粒(SNALP);所述第一dsRNA由第一正义链和第一反义链组成,且所述第一正义链具有第一序列,和所述第一反义链具有与SEQIDNO:1311(5’-UCGAGAAUCUAAACUAACU-3’)的至少15个连续核苷酸互补的第二序列,其中,所述第一序列与所述第二序列互补,和其中,所述第一dsRNA在长度上为15至30个碱基对;和所述第二dsRNA由第二正义链和第二反义链组成,所述第二正义链具有第三序列,和所述第二反义链具有与SEQIDNO:1538(5’-GCACAUAGGAGAGAUGAGCUU-3’)的至少15个连续核苷酸互补的第四序列,其中,所述第三序列与所述第四序列互补,和其中,各链在长度上为15至30个碱基对。
在一些实施方式中,第一反义链具有与SEQIDNO:1311(5’-UCGAGAAUCUAAACUAACU-3’)互补的第二序列和第二反义链具有与SEQIDNO:1538(5’-GCACAUAGGAGAGAUGAGCUU-3’)互补的第四序列。在其他实施方式中,第一dsRNA由SEQIDNO:1534(5’-UCGAGAAUCUAAACUAACUTT-3’)构成的正义链和SEQIDNO:1535(5’-AGUUAGUUUAGAUUCUCGATT-3’)构成的反义链组成,和第二dsRNA由SEQIDNO:1536(5’-GCACAUAGGAGAGAUGAGCUU-3’)构成的正义链和SEQIDNO:1537(5’-AAGCUCAUCUCUCCUAUGUGCUG-3’)构成的反义链组成。在进一步的实施方式中,各链如下修饰以包括由小写字母“c”或“u”表示的2'-O-甲基核糖核苷酸和由小写字母“s”表示的硫代磷酸酯(phosphorothioate):第一dsRNA由SEQIDNO:1240(5’-ucGAGAAucuAAAcuAAcuTsT-3’)构成的正义链和SEQIDNO:1241(5’-AGUuAGUUuAGAUUCUCGATsT)构成的反义链组成;第二dsRNA由SEQIDNO:1242(5’-GcAcAuAGGAGAGAuGAGCUsU-3’)构成的正义链和SEQIDNO:1243(5’-AAGCUcAUCUCUCCuAuGuGCusG-3’)构成的反义链组成。
在一些实施方式中,第一dsRNA包含两个突出端(overhang),和第二dsRNA包含在反义链3'端的突出端和在反义链5'端的平端(bluntend)。
第一和第二dsRNA可以具有至少一个修饰的核苷酸。例如,各dsRNA可以具有至少有一个选自以下的修饰的核苷酸:2'-O-甲基修饰的核苷酸、具有5'-硫代磷酸酯基团的核苷酸和与胆固醇衍生物或十二烷酸二癸酰胺(bisdecylamide)基团连接的末端核苷酸。修饰的核苷酸可以选自:2'-脱氧-2'-氟修饰的核苷酸、2'-脱氧修饰的核苷酸、锁定核苷酸(lockednucleotide)、无碱基核苷酸(abasicnucleotide)、2'-氨基修饰的核苷酸、2'-烷基修饰的核苷酸、吗啉核苷酸(morpholinonucleotide)、氨基磷酸酯(phosphoramidate)和具有非天然碱基的核苷酸。在一些实施方式中,第一和第二dsRNA各包含至少一个2'-O-甲基修饰的核苷酸和至少一个具有5'-硫代磷酸酯基团的核苷酸。
各dsRNA的各个链可以是,例如,19-23个碱基的长度,或可选择地21-23个碱基的长度。在一个实施方式中,第一dsRNA的各个链的长度是21个碱基,且第二dsRNA的正义链的长度为21个碱基,和第二dsRNA的反义链的长度为23个碱基。
在一些实施方式中,第一和第二dsRNA以等摩尔的比例存在。
正如本文所述,dsRNA配制成为SNALPS。在一些实施方式中,SNALP制剂包括DLinDMA、胆固醇、DPPC和PEG2000-C-DMA。例如,SNALP可以具有如表17中列出的比例的成分。
本发明的组合物可以用于减少Eg5和/或VEGF的表达。在一些实施方式中,本发明的组合物在接触表达Eg5的细胞时,抑制Eg5的表达至少40%、50%、60%、70%、80%或至少90%。在其他实施方式中,本发明的组合物在接触表达VEGF的细胞时,抑制VEGF的表达至少40%、50%、60%、70%、80%或至少90%。向细胞施用该组合物可以同时抑制所述细胞中Eg5和VEGF的表达。权利要求1-17的组合物,其中,所述组合物以nM浓度施用。
向细胞施用本发明的组合物可以导致,例如,细胞中的单星体(mono-aster)形成的增加。向哺乳动物施用该组合物可以导致至少一种选自以下的效应:在所述哺乳动物中阻止肿瘤生长、减少肿瘤生长或延长生存时间。该效应可以使用至少一种选自以下的检测方法测量:体重的测定、器官重量的测定、目视检查、mRNA分析、血清AFP分析和生存监测。包括以nM浓度施用时具有这些效应的组合物。
在进一步的实施方式中,本发明的组合物包括索拉非尼(Sorafenib)。
本发明也包括使用本发明的组合物的方法。一个实施方式是通过向细胞施用本发明的任何组合物抑制细胞中Eg5/KSP和VEGF的表达的方法。其他实施方式是通过向哺乳动物施用该组合物以在需要治疗癌症的哺乳动物中阻止肿瘤生长、减少肿瘤生长或延长生存时间的方法。在一些实施方式中,哺乳动物患有肝癌,例如,所述哺乳动物是患有肝癌的人。该方法可以包括施用索拉非尼的进一步的步骤。
附图简述
图1是显示在Hep3B小鼠模型中施用SNALP-siRNA后以体重百分比计的肝脏重量的图。
图2A-2D是显示在Hep3B小鼠模型中SNALP-siRNA对体重的效应的图。
图3是显示在Hep3B小鼠模型中SNALP-siRNA对体重的效应的图。
图4是显示未处理对照动物的体重的图。
图5是显示在Hep3B小鼠模型中对照的荧光素酶-SNALPsiRNA对体重的效应的图。
图6是显示在Hep3B小鼠模型中VSP-SNALPsiRNA对体重的效应的图。
图7A是显示在Hep3B小鼠模型中对于小鼠GAPDH水平归一化的SNALP-siRNA对人GAPDH水平的效应的图。
图7B是显示在Hep3B小鼠模型中通过血清ELISA测量的SNALP-siRNA对血清AFP水平的效应的图。
图8是显示在Hep3B小鼠模型中对于小鼠GAPDH水平归一化的SNALP-siRNA对人GAPDH水平的效应的图。
图9是显示在Hep3B小鼠模型中对于人GAPDH水平归一化的SNALP-siRNA对人KSP水平的效应的图。
图10是显示在Hep3B小鼠模型中对于人GAPDH水平归一化的SNALP-siRNA对人VEGF水平的效应的图。
图11A是显示在Hep3B小鼠模型中对于人GAPDH水平归一化的SNALP-siRNA对小鼠VEGF水平的效应的图。
图11B是一组显示在Hep3B小鼠模型中SNALP-siRNA对人GAPDH水平和血清AFP水平的效应的图。
图12A-12C是显示在Hep3B小鼠模型中SNALP-siRNA对肿瘤KSP、VEGF和GAPDH水平的效应的图。
图13A和图13B是显示在具有肝肿瘤的小鼠中SNALP-siRNA对生存率的效应的图。在肿瘤细胞接种后18天(图13A)和26天(图13B)开始治疗。
图14是显示SNALP-siRNA对血清甲胎蛋白(AFP)水平的效应的图。
图15A和15B是施用2mg/kg的SNALP-VSP(A)或2mg/kg的SNALP-Luc(B)的荷瘤动物(Hep3B细胞植入后3周)的H&E染色切片的图象。24小时后,荷瘤的肝叶进行处理以用于组织学分析。箭头表示单星体。
图16是表明ALN-VSPDS01的制备过程的流程图。
图17是ALN-VSP02的低温透射电子显微镜(低温-TEM)图象。
图18是表明ALN-VSP02的制备过程的流程图。
图19显示使用靶向于KSP的siRNA对MYC-癌基因驱动的新生(denovo)肝癌的转基因小鼠模型的治疗方案。
图20是表明施用SNALP配制的siRNA和索拉非尼对生存率的效应的图。
发明详述
本发明提供了使用dsRNA抑制细胞或哺乳动物中的Eg5基因和VEGF基因的表达的组合物和方法。dsRNA优选包封于稳定的核酸微粒(SNALP)中。本发明还提供了治疗在哺乳动物中由Eg5基因和VEGF基因的表达导致的病理状态和疾病(如肝癌)的组合物和方法。dsRNA通过称为RNA干扰(RNAi)的过程引导mRNA的序列特异性的降解。
下面的详细说明书公开了如何制作和使用包含dsRNA的组合物以分别抑制Eg5基因和VEGF基因的表达,以及用于治疗由这些基因的表达导致的疾病和病症(如癌症)的组合物和方法。作为本发明的方面的药物组合物包括具有包含长度小于30个核苷酸(一般为19-24个核苷酸长度)且基本上与Eg5基因的RNA转录物的至少一部分互补的互补区域的反义链的dsRNA,连同药学上可接受的载体。作为本发明的方面的组合物还包括具有反义链的dsRNA,该反义链具有长度小于30个核苷酸、一般为19-24个核苷酸长度且基本上与VEGF基因的RNA转录物的至少一部分互补的互补区域。
因此,本发明的某些方面提供含有Eg5和VEGFdsRNA及药学上可接受的载体的药物组合物,使用该组合物以分别抑制Eg5基因和VEGF基因表达的方法,和使用该药物组合治疗由Eg5和VEGF基因的表达导致的疾病的方法。
I.定义
为方便起见,下面提供用于说明书、实施例和所附的权利要求中的某些术语和短语的含义。如果一个术语在本说明书的其他部分的用法与本节提供的定义之间存在明显的差异,则以本节中的定义为准。
“G”、“C”、“A”和“U”一般各分别代表包含作为碱基的鸟嘌呤、胞嘧啶、腺嘌呤和尿嘧啶的核苷酸。“T”和“dT”在本文可以互换使用,并指脱氧核糖核酸,其中核苷碱基是胸腺嘧啶,如脱氧核糖胸腺嘧啶(deoxyribothymine)。但是,可以理解:术语“核糖核苷酸”或“核苷酸”也可以指修饰的核苷酸(如下面进一步详述的)或代用的替换部分。熟练的技术人员清楚地知道:鸟嘌呤、胞嘧啶、腺嘌呤和尿嘧啶可以被其他部分替换而基本上不改变包含具有这样的替代部分的核苷酸的寡核苷酸的碱基配对性质。例如,但非限制,包含肌苷(inosine)作为其碱基的核苷酸可以与包含腺嘌呤、胞嘧啶或尿嘧啶的核苷酸碱基配对。因此,含有尿嘧啶、鸟嘌呤或腺嘌呤的核苷酸可能在本发明的核苷酸序列中被含有例如肌苷的核苷酸替换。在另一个例子中,寡核苷酸中任何地方的腺嘌呤和胞嘧啶可以分别被鸟嘌呤和尿嘧啶替换,以与目标mRNA形成G-U摇摆碱基配对。包含这样的替换部分的序列是本发明的实施方式。
如本文所用,“Eg5”指人驱动蛋白家族成员11,也称为KIF11、Eg5、HKSP、KSP、KNSL1或TRIP5。Eg5序列可以作为NCBIGeneID:3832、HGNCID:HGNC:6388和RefSeqID号:NM_004523而被找到。术语“Eg5”和“KSP”和“Eg5/KSP”可以互换使用。
如本文所用,VEGF,也被称为血管通透性因子,是一种血管生成生长因子。VEGF是一种同型二聚的45kDa的糖蛋白,其至少以三种不同的同种型(isoform)存在。VEGF同种型在内皮细胞中表达。VEGF基因包含表达189氨基酸的蛋白质同种型的8个外显子。165个氨基酸的同种型缺乏由外显子6编码的残基,而121个氨基酸的同种型缺乏由外显子6和7编码的残基。VEGF145是预测包含145个氨基酸且缺乏外显子7的同种型。VEGF可以通过结合内皮酪氨酸激酶受体(如Flt-1(VEGFR-1)或KDR/flk-1(VEGFR-2))作用于内皮细胞。VEGFR-2在内皮细胞中表达,并参与内皮细胞分化和血管生成。第三种受体,VEGFR-3,参与淋巴生成(lymphogenesis)。
各种同种型具有不同的生物活性和临床意义。例如,VEGF145诱导血管生成,且类似于VEGF189(但与VEGF165不同),VEGF145通过不依赖于细胞外基质相关的硫酸肝素的机制有效地结合细胞外基质。VEGF在体外显示作为内皮细胞有丝分裂原和化学引诱物的活性,并在体内诱导血管通透性和血管生成。VEGF由各种癌细胞类型分泌,并通过诱导肿瘤相关的肪管系统的发生促进肿瘤的生长。VEGF功能的抑制已被证明限制原发实验肿瘤的生长以及免疫功能低下小鼠中转移的发生。在未决的美国专利申请11/078,073和11/340,080中描述了指向VEGF的各种dsRNA,本文通过引用完整引入。
如本文所用,“目标序列”指在Eg5/KSP和/或VEGF基因转录过程中形成的mRNA分子的核苷酸序列的连续部分,包括作为初级转录产物的RNA加工产物的mRNA。
如本文所用,术语“包含序列的链”指包含由使用标准的核苷酸命名法指称的序列描述的核苷酸链的寡核苷酸。
如本文所用,除非另有说明,术语“互补的”用来描述与第二核苷酸序列相关的第一核苷酸序列时,指包含第一核苷酸序列的寡核苷酸或多核苷酸在一定条件下与包含第二核苷酸序列的寡核苷酸或多核苷酸杂交并形成双链体结构的能力,这是熟练的技术人员所理解的。这些条件可以是,例如,严格条件,其中,严格条件可能包括:400mMNaCl、40mMPIPESpH6.4、1mMEDTA、50℃或70℃持续12-16小时,接着洗涤。可以应用其他条件,如可能在生物体内遇到的生理相关条件。熟练的技术人员能够根据杂交核苷酸的最终应用确定最适合测试两个序列的互补性的一组条件。
其中包括含第一核苷酸序列的寡核苷酸或多核苷酸与含第二核苷酸序列的寡核苷酸或多核苷酸在第一和第二核苷酸序列的全长上碱基配对。在此,这种序列可以称为彼此“完全互补”。然而,本文中当第一序列称作与第二序列“基本互补”时,所述两个序列可以为完全互补,或它们可以在杂交时形成一个或多个但通常不超过4、3或2个错配碱基对,而同时保留在与它们的最终应用最相关条件下杂交的能力。然而,在两个寡核苷酸设计成在杂交时形成一个或多个单链突出端的情况中,在确定互补性时这种突出端不应该被认作是错配。例如,根据本发明的目的,包含21个核苷酸长度的一个寡核苷酸和23个核苷酸长度的另一个寡核苷酸的dsRNA(其中所述较长的寡核苷酸包含与所述较短寡核苷酸完全互补的21个核苷酸的序列)也可以称为“完全互补”。
如本文所使用的,“互补”序列也可以包括非Watson-Crick碱基对和/或由非天然核苷酸和修饰核苷酸形成的碱基对,或完全由非Watson-Crick碱基对和/或由非天然核苷酸和修饰核苷酸形成的这些碱基对形成,只要满足上述与它们的杂交能力有关的要求。这种非Watson-Crick碱基对包括但不限于G:UWobble或Hoogstein碱基配对。
如从它们的使用语境里所理解的,本文中术语“互补”、“完全互补”和“基本互补”可以用于dsRNA的正义链与反义链之间或dsRNA的反义链与靶标序列之间的碱基匹配。
如本文所使用的,与信使RNA(mRNA)的“至少一部分基本互补”的多核苷酸指与感兴趣的mRNA(如编码Eg5/KSP和/或VEGF的mRNA)的连续部分(包括5’UTR、开放阅读框(ORF)或3'UTR)基本互补的多核苷酸。例如,如果多核苷酸序列与编码Eg5的mRNA的非间断部分基本互补,则该序列与Eg5mRNA的至少一部分互补。
如本文所使用的,术语“双链RNA”或“dsRNA”指具有包含两个反向平行且如上所定义的基本互补的核酸链的双链体结构。形成双链体结构的两条链可以是一个较大RNA分子的不同部分,或者它们可以是单独的RNA分子。当两条链为一个较大分子的部分且因此通过形成双链体结构的一条链的3’末端和对应的另一条链的5’末端之间的不间断核苷酸链连接时,连接RNA链被称为“发夹环”。当两条链通过形成双链体结构的一条链的3’末端和对应的另一条链的5’末端之间的不间断核苷酸链之外的其他方式共价连接时,此连接结构称为“接头(linker)”。RNA链可以具有相同或不同的核苷酸数目。碱基对的最大数目为dsRNA的最短链的核苷酸数目减去双链体中存在的任何突出端。除了双链体结构外,dsRNA可以包含一个或多个核苷酸突出端。一般来说,各条链的大多数核苷酸是核糖核苷酸,但如本文详细描述的,各条链或两条链也可以包含至少一个非核糖核苷酸,例如,脱氧核糖核酸和/或修饰的核苷酸。此外,如在本说明书中所用的,“dsRNA”可能包括对核糖核苷酸的化学修饰,包括多个核苷酸的实质性的(substantial)修饰和包括本文所公开或本领域已知的所有修饰类型。出于本说明书和权利要求的目的,“dsRNA”包括(如在siRNA型分子中使用的)任何这样的修饰。
如本文所使用,“核苷酸突出端”指未配对的核苷酸或当dsRNA的一条链的3’末端超出另一条链的5’末端或反之时从dsRNA的双链体结构突出的核苷酸。“平端”(“Blunt”或“bluntend”)表示在dsRNA的该末端没有未配对核苷酸,即没有核苷酸突出端。“平端的”(“bluntended”)dsRNA是在其整个长度上都是双链的dsRNA,即分子的任一端都没有核苷酸突出端。在一些实施方式中,dsRNA可以在双链体的一端具有突出端和在另一端具有平端。
术语“反义链”指包含与靶标序列基本互补的区域的dsRNA的链。如本文所使用的,术语“互补区域”指反义链上与本文所定义的序列(如靶标序列)基本互补的区域。当互补区域不与靶标列完全互补时,分子的内部或末端区域中可以存在错配。一般最可容忍的错配通常在末端区域中,例如5’和/或3’末端的6、5、4、3或2个核苷酸内。
如本文所使用的,术语“正义链”指包含与反义链的区域基本互补的区域的dsRNA链。
如本文所使用的,术语“SNALP”指稳定的核酸脂质微粒。SNALP表示包被含核酸(如iRNA剂或iRNA剂由其转录的质粒)低水性内部的脂质泡囊。
当“引入细胞”用于描述dsRNA时,其如本领域的技术人员所理解的表示促进摄取或吸收进入细胞。dsRNA的吸收或摄取可以通过非协助的扩散性或主动的细胞过程进行或通过辅助试剂或装置进行。该术语的意思并不限于体外的细胞;dsRNA也可以被“引入细胞中”,其中所述细胞是活的生物体的一部分。在这种情况下,引入细胞中包括向生物体的递送。例如,对于体内递送而言,dsRNA可以被注射到组织位点或全身性地施用。体外引入细胞包括本领域已知的方法,如电穿孔和脂质转染。
当术语“沉默”和“阻止表达”、“下调表达”、“抑制表达”等用于描述Eg5和/或VEGF基因时,它们在本文中指Eg5基因表达的至少部分抑制,如通过与第二细胞或细胞群(与第一细胞或细胞群基本相当但没有进行处理)(对照细胞)相比,可以从第一细胞或细胞群(其中Eg5和/或VEGF基因被转录且已进行处理以使得Eg5和/或VEGF基因的表达被抑制)中分离的Eg5mRNA和/或VEGFmRNA量的减少所表明的。抑制程度通常用以下式表示:
可选择地,抑制程度可以以与Eg5和/或VEGF基因的表达功能关联的参数降低的方式给出,例如,细胞所产生的由Eg5和/或VEGF基因编码的蛋白的量,或呈现某种表型(如细胞凋亡)的细胞的数目。理论上,靶标基因沉默可以或者组成性地或者通过基因工程并通过任何合适的检测方法在表达该靶标的任何细胞中测定。然而,当需要参照以确定给定的dsRNA是否抑制Eg5基因的表达达到特定程度并由此是否包括在本发明内时,以下实施例中提供的分析将作为这种参照。
例如,在某些情况下,通过施用本发明的双链寡核苷酸,Eg5基因(或VEGF基因)的表达至少被抑制大约5%、10%、15%、20%、25%、30%、35%、40%、45%或50%。在一些实施方式中,通过施用本发明的双链寡核苷酸,Eg5和/或VEGF基因至少被抑制大约60%、70%或80%。在其他实施方式中,通过施用本发明的双链寡核苷酸,Eg5和/或VEGF基因至少被抑制大约85%、90%或95%。下面的表和实施例提供了利用各种不同浓度的各种不同Eg5和/或VEGFdsRNA分子抑制表达的值。
如本文在Eg5表达(或VEGF表达)的上下文中所使用的,术语“治疗”("treat”、"treatment")等指由Eg5和/或VEGF表达介导的病理过程的减轻或缓和。在本发明的情况中只要涉及本文以下所列举的其他任意状况(由Eg5和/或VEGF表达介导的病理过程之外的状况),术语“治疗”等表示减轻或缓和至少一种与这种状况相关的症状,或减缓或逆转这种状况的发展,如减缓和逆转肝癌的发展。
如本文所使用的,短语“治疗有效量”和“预防有效量”指在由Eg5和/或VEGF表达介导的病理过程或由Eg5和/或VEGF表达介导的病理过程的外显症状的治疗、预防或控制中产生治疗效益的量。治疗有效的特定量可以由一般的医疗专业人员很容易地确定,并且可以根据本领域已知的因素进行变化,如由Eg5和/或VEGF表达介导的病理过程的类型、患者的病史和年龄、由Eg5和/或VEGF表达介导的病理过程的阶段和施用其他对抗由Eg5和/或VEGF表达介导的病理过程的药剂。
如本文所使用的,“药物组合物”包含药学有效量的dsRNA和药学上可接受的载体。如本文所使用的,“药学有效量”、“治疗有效量”或简称为“有效量”指有效地产生期望的药理、治疗或预防性结果的RNA量。例如,如果当与疾病或病症相关的可测量参数降低至少25%时给定的临床治疗被认为是有效的,那么用于该疾病或病症治疗的药物的治疗有效量是实现该参数至少25%的降低所需的量。
术语“药学上可接受的载体”指用于施用治疗剂的载体。如下文详细描述的,这类载体包括但不限于盐水、缓冲盐水、葡萄糖、水、甘油、乙醇及其组合。该术语特别地排除细胞培养基。对于口服给药的药物而言,药学上可接受的载体包括但不限于药学上可接受的赋形剂,如惰性稀释剂、崩解剂、粘合剂、润滑剂、甜味剂、芳香剂、着色剂和防腐剂。合适的惰性稀释剂包括碳酸钠和碳酸钙、磷酸钠和磷酸钙以及乳糖,而玉米淀粉和藻酸是合适的崩解剂。粘合剂可以包括淀粉和明胶,而润滑剂(如果存在)通常为硬脂酸镁、硬脂酸或滑石。如果需要,片剂可以用如单硬脂酸甘油酯或二硬脂酸甘油酯的物质进行涂覆以延迟在胃肠道中的吸收。
如本文所使用的,“转化的细胞”是其中已经引入可以由其表达dsRNA分子的载体的细胞。
II.双链核糖核酸(dsRNA)
如下文更详细描述的,本发明提供用于抑制细胞或哺乳动物中Eg5和/或VEGF基因表达的双链核糖核酸(dsRNA)分子,其中所述dsRNA包含具有与Eg5和/或VEGF基因表达中形成的mRNA的至少一部分互补的互补区域的反义链,并且其中所述互补区域长度小于30个核苷酸,通常为19-24个核苷酸长度,并且其中所述dsRNA在与表达所述Eg5和/或VEGF基因的细胞接触时抑制所述Eg5和/或VEGF基因的表达。
可以如下文进一步讨论的通过本领域已知的标准方法合成dsRNA,例如,通过使用自动化的DNA合成仪,例如可从Biosearch,AppliedBiosystems,Inc购买的仪器。
dsRNA包含两个充分互补以杂交形成双链体结构的链。dsRNA的一条链(反义链)包含与源自在Eg5/KSP和/或VEGF基因的表达过程中形成的mRNA序列的靶标序列基本互补和通常完全互补的互补区域,另一条链(正义链)包含与反义链互补的区域,这样当在适当条件下结合时,两条链杂交并形成双链体结构。一般来说,双链体结构的长度为15至30,更通常为18至25,但更通常为19至24,和最通常为19至21个碱基对。在其他实施方式中,双链体结构的长度为25-30个碱基对。
在一个实施方式中,双链体的长度为19个碱基对。在另一个实施方式中,双链体的长度为21个碱基对。当两个不同的siRNA结合使用时,双链体长度可以相同或不同。例如,组合物可以包括具有19个碱基对的双链体长度的靶向Eg5的第一dsRNA和具有21个碱基对的双链体长度的靶向VEGF的第二dsRNA。
类似地,与靶序列互补的区域的长度为15至30,更通常为18至25,但更通常为19至24,最通常为19至21个核苷酸。在其他实施方式中,互补区域长度为25-30个核苷酸。
在一个实施方式中,互补区域的长度为19个核苷酸。在另一个实施方式中,互补区域的长度为21个核苷酸。当两个不同的siRNA结合使用时,互补区域的长度可以相同或不同。例如,组合物可以包括具有19个核苷酸的互补区域的靶向Eg5的第一dsRNA和具有21个核苷酸的互补区域的靶向VEGF的第二dsRNA。
本发明的dsRNA的各链长度一般是15至30、或18至25、或18、19、20、21、22、23或24个核苷酸。在其他实施方式中,各链的长度为25-30个碱基对。双链体的各链可以具有相同或不同的长度。当两个不同的siRNA结合使用时,各个siRNA的各链的长度可以相同或不同。例如,组合物可以包括具有21个核苷酸的正义链和21个核苷酸的反义链的靶向Eg5的dsRNA和具有21个核苷酸的正义链和23个核苷酸的反义链的靶向VEGF的第二dsRNA。
本发明的dsRNA可以包含一个或多个核苷酸的一个或多个单链突出端。在一个实施方式中,dsRNA的至少一个末端具有1至4个,一般1或2个核苷酸的单链核苷酸突出端。在另一实施方式中,dsRNA的反义链各在3'端和5'端具有超出正义链的1-10个核苷酸的突出端。在进一步的实施方式中,dsRNA的正义链各在3'端和5'端具有超出反义链的1-10个核苷酸的突出端。
具有至少一个核苷酸突出端的dsRNA与它们的平端对应物相比具有意想不到的优异抑制性能。在一些实施方式中,仅一个核苷酸突出端的存在就可增强dsRNA的干扰活性,而不影响它的整体稳定性。已经证明仅具有一个突出端的dsRNA在体内以及在各种细胞、细胞培养基、血液和血清中是特别稳定和有效的。通常,单链突出端位于反义链的3’末端或者,可选择地,位于正义链的3’末端。dsRNA也可以有平端,通常位于反义链的5’端。这种dsRNA可以具有提高的稳定性和抑制活性,因此允许低剂量施用,即少于每天5mg/kg接受者体重。通常,dsRNA的反义链在3’端具有核苷酸突出端,且5’端为平端。在另一个实施方式中,突出端中的一个或多个核苷酸用核苷硫代磷酸酯(nucleosidethiophosphate)替换。
如本文更详细地描述的,本发明的组合物包括靶向于Eg5的第一dsRNA和靶向于VEGF的第二dsRNA。第一和第二dsRNA可以具有相同的突出端构成,例如,各链上核苷酸突出端的数目,或者各个dsRNA可以具有不同的构成。在一个实施方式中,靶向于Eg5的第一dsRNA在各链的3'端包括2个核苷酸的突出端,且靶向于VEGF的第二dsRNA在反义链的3'端包括2个核苷酸的突出端和在反义链的5'端(例如,正义链的3'端)包括平端。
在一个实施方式中,作为本发明dsRNA的靶标的Eg5基因是人Eg5基因。在一个实施方式中,靶向于Eg5的dsRNA的反义链包含表1-3中的反义序列之一的至少15个连续核苷酸。在具体实施方式中,dsRNA的第一序列选自表1-3中的正义链之一,和第二序列选自表1-3的反义序列。可以使用靶标序列和侧翼Eg5序列很容易地确定在表1-3提供的靶向于靶标序列中别处的替代反义物质。在一些实施方式中,靶向于Eg5的dsRNA包含至少两个选自表1-3提供的序列的核苷酸序列。这两个序列之一与两个序列中的另一个互补,其中一个序列与Eg5基因的表达中产生的mRNA序列基本互补。因此,dsRNA包含两个寡核苷酸,其中一个寡核苷酸描述为表1-3中的正义链,和第二寡核苷酸描述为表1-3中的反义链。
在使用靶向于VEGF的第二dsRNA的实施方式中,实施例、表4a和4b及待决的美国专利申请11/078,073和11/340,080中例举了这种物质,通过引用引入本文。在一个实施方式中,靶向于VEGF的dsRNA具有与表4a中所述的VEGF靶标序列的至少15个连续核苷酸互补的反义链。在其他实施方式中,靶向于VEGF的dsRNA包含表4b的反义序列之一或表4b的正义序列之一,或包含表4b的双链体(正义和反义链)之一。
熟练的技术人员清楚地知道,包含20至23个(但特别是21个)碱基对的双链体结构的dsRNA已被认为在诱导RNA干扰方面特别有效(Elbashir等人,EMBO2001,20:6877-6888)。然而,其他人发现,更长或更短的dsRNA也是有效的。在上述的实施方式中,根据表1-3中所提供的寡核苷酸序列的性质,本发明的dsRNA可以包含至少一个最小长度为21nt的链。可以合理地预期,包含在一个或两个末端仅减去几个核苷酸的表1-3中的一个序列的较短dsRNA相比于上述dsRNA可以同样有效。因此,本发明考虑包含来自表1-3的序列的至少15、16、17、18、19、20或更多的连续核苷酸的部分序列,并其在下文所述的FACS检测中抑制Eg5基因表达的能力与包含全序列的dsRNA相差不超过5%、10%、15%、20%、25%或30%的抑制的dsRNA。使用Eg5序列和提供的靶标序列可以很容易地制备在表1-3内提供的靶序列中切割的进一步的dsRNA。可以以类似的方式,使用表4a和4b、实施例和未决的美国专利申请11/078,073和11/340,080中公开的序列设计另外的靶向于VEGF的dsRNA,上述专利文献通过引用引入本文。
此外,表1-3提供的RNAi剂识别对于易受基于RNAi的切割的Eg5mRNA中的位点。因此,本发明还包括靶向于作为本发明的一种试剂的靶标的序列内的RNAi剂,例如,dsRNA。如本文所使用的,如果第二RNAi剂在与第一RNAi剂的反义链互补的mRNA中的任何位置剪切该信使RNA,则说第二RNAi剂靶向于第一RNAi剂的序列内。这样的第二试剂通常由与取自Eg5基因中邻近于选择序列的区域的另外的核苷酸序列偶联的来自表1-3提供的一个序列的至少15个连续核苷酸组成。例如,来自SEQIDNO:1的最后15个核苷酸与来自靶标Eg5基因的下6个核苷酸结合产生基于表1-3提供的序列之一的21个核苷酸的单链剂。可以使用表4a和4b、实施例及待决的美国专利申请11/078,073和11/340,080中公开的序列以类似的方式设计另外的靶向于VEGF的RNAi剂,如dsRNA,上述文献通过引用引入本文。
本发明的dsRNA可以包含一个或多个与靶标序列的错配。在优选的实施方式中,本发明的dsRNA包含不超过3个错配。如果dsRNA的反义链包含与靶蒜序列的错配,优选错配的区域不是位于互补区域的中心。如果dsRNA反义链包含与靶标序列的错配,优选错配限于距任一末端的5个核苷酸,例如,距离互补区域的5'或3'端的5、4、3、2或1个核苷酸。例如,对于与Eg5基因的区域互补的23个核苷酸的dsRNA链,该dsRNA通常在中间的13个核苷酸内不含有任何错配。本发明所述的方法可以用来确定包含与靶标序列的错配的dsRNA是否有效抑制Eg5基因的表达。考虑具有错配的dsRNA在抑制Eg5基因的表达中的效果是重要的,特别是如果Eg5基因中的特定互补区域已知在群体中具有多态性序列变异。
修饰
在再另一个实施方式中,对dsRNA进行化学修饰以增强稳定性。本发明的核酸可以通过本领域已建立的方法合成和/或修饰,如"Currentprotocolsinnucleicacidchemistry",Beaucage,S.L.等人(编辑),JohnWiley&Sons,Inc.,NewYork,NY,USA中所描述的那些方法,该文献通过引用结合入本文。本发明中有用的优选的dsRNA化合物的具体例子包括含有修饰的骨架或没有天然的核苷间连接的dsRNA。如本说明书中所定义的,具有修饰骨架的dsRNA包括那些在骨架中保留磷原子的dsRNA和那些在骨架中不具有磷原子的dsRNA。出于本说明书的目的并且如有时在本领域中所指的,在核苷间骨架中不含磷原子的修饰dsRNA也可以被认为是寡聚核苷(oligonucleoside)。
优选的修饰dsRNA骨架包括例如硫代磷酸酯、手性硫代磷酸酯、二硫代磷酸酯、磷酸三酯、氨基烷基磷酸三酯、甲基和其他烷基磷酸酯(包括3'-亚烷基磷酸酯和手性磷酸酯)、亚膦酸酯(phosphinate)、氨基磷酸酯(包括3’-氨基氨基磷酸酯和氨基烷基氨基磷酸酯)、硫代氨基磷酸酯(thionophosphoramidate)、硫代烷基磷酸酯、硫代烷基磷酸三酯,以及具有正常的3’-5’键的硼烷磷酸酯(boranophosphate)、它们的2’-5’键的类似物和那些具有相反极性的化合物(其中相邻的核苷单元由3’-5’改为5’-3’键或由2’-5’改为5’-2’键)。还包括各种盐、混合盐和游离酸形式。
教导以上含磷连接制备的代表性的美国专利包括但不限于美国专利3,687,808、4,469,863、4,476,301、5,023,243、5,177,195、5,188,897、5,264,423、5,276,019、5,278,302、5,286,717、5,321,131、5,399,676、5,405,939、5,453,496、5,455,233、5,466,677、5,476,925、5,519,126、5,536,821、5,541,316、5,550,111、5,563,253、5,571,799、5,587,3615,625,050,其各通过引用结合入本文。
优选的其中不含磷原子的修饰dsRNA骨架具有由短链烷基或环烷基核苷间连接、混合的杂原子和烷基或环烷基核苷间连接、或者一个或多个短链杂原子或杂环核苷间连接形成的骨架。这些包括那些具有吗啉连接(部分地由核苷的糖部分形成)的骨架,硅氧烷骨架,硫化物、亚砜和砜骨架,formacetyl和thioformacetyl骨架,亚甲基formacetyl和thioformacetyl骨架,含链烯的骨架,氨基磺酸酯(sulfamate)骨架,亚甲基亚胺和亚甲基肼骨架,磺酸酯和磺酰胺(sulfonamide)骨架,酰胺骨架,和其他具有混合的N、O、S和CH2成分部件的骨架。
教导制备以上寡聚核苷的代表性的美国专利包括但不限于美国专利5,034,506、5,166,315、5,185,444、5,214,134、5,216,141、5,235,033、5,264,562、5,264,564、5,405,938、5,434,257、5,466,677、5,470,967、5,489,677、5,541,307、5,561,225、5,596,086、5,602,240、5,608,046、5,610,289、5,618,704、5,623,070、5,663,312、5,633,360、5,677,437和5,677,439,其各通过引用结合入本文。
在其他优选的dsRNA模拟物中,核苷酸单元的糖和核苷间连接(即骨架)被新的基团替换。保持碱基单元以与适当的核酸靶标化合物杂交。一种这样的寡聚化合物(已经证明具有优异的杂交特性的dsRNA模拟物)称作肽核酸(PNA)。在PNA化合物中,dsRNA的糖骨架被含酰胺的骨架,尤其氨乙基氨基乙酸骨架取代。核苷碱基被保留并直接或间接地结合骨架酰胺部分的氮杂氮原子。教导制备PNA化合物的代表性的美国专利包括但不限于美国专利5,539,082、5,714,331和5,719,262,其各通过引用结合入本文。PNA化合物的进一步教导可见于Nielsen等人,Science,1991,254,1497-1500中。
本发明最优选的实施方式为具有硫代磷酸酯骨架的dsRNA和具有杂原子骨架的寡聚核苷,尤其是上述引用的美国专利5,489,677的--CH2--NH--CH2--、--CH2--N(CH3)--O--CH2--[称为亚甲基(甲基亚胺)或MMI骨架]、--CH2--O--N(CH3)--CH2--、--CH2--N(CH3)--N(CH3)--CH2--和--N(CH3)--CH2--CH2--[其中天然的磷酸二酯骨架表示为--O--P--O--CH2--],以及上述引用的美国专利5,602,240的酰胺骨架。还优选上述引用的美国专利5,034,506的含有吗啉骨架结构的dsRNA。
修饰的dSRNA还可以包含一个或多个取代的糖部分。优选的dsRNA在2’位置包含下述基团之一:OH,F,O-、S-或N-烷基,O-、S-或N-链烯基,O-、S-或N-炔基,或者O-烷基-O-烷基,其中烷基、链烯基和炔基可以是取代或未取代的C1至C10烷基或C2至C10链烯基和炔基。尤其优选的是O[(CH2)nO]mCH3、O(CH2)nOCH3、O(CH2)nNH2、O(CH2)nCH3、O(CH2)nONH2和O(CH2)nON[(CH2)nCH3)]2,其中n和m为1至大约10。其他优选的dsRNA在2’位置包含下述基团之一:C1至C10低级烷基、取代的低级烷基、烷芳基、芳烷基、O-烷芳基或O-芳烷基、SH、SCH3、OCN、Cl、Br、CN、CF3、OCF3、SOCH3、SO2CH3、ONO2、NO2、N3、NH2、杂环烷基、杂环烷芳基、氨烷基氨基、多聚烷基氨基、取代的甲硅烷基、RNA切割基团、报道基团、嵌入基团(intercalator)、提高dsRNA的药代动力学性质的基团或提高dsRNA药效学性质的基团、以及其他具有类似特性的取代基。优选的修饰包括2'-甲氧基乙氧基(2'-O--CH2CH2OCH3,也称作2'-O-(2-甲氧基乙基)或2'-MOE)(Martin等人,Helv.Chim.Acta,1995,78,486-504),即烷氧基-烷氧基基团。进一步优选的修饰包括如本文以下例子中描述的2'-二甲基氨基氧基乙氧基,即O(CH2)2ON(CH3)2基团,也称作2'-DMAOE,以及如本文以下例子中描述的2'-二甲基氨基乙氧基乙氧基(在本领域中也称作2'-O-二甲基氨基乙氧基乙基或2'-DMAEOE),即2'-O--CH2--O--CH2--N(CH2)2
其他优选的修饰包括2'-甲氧基(2'-OCH3)、2’-氨基丙氧基(2'-OCH2CH2CH2NH2)和2’-氟(2'-F)。类似的修饰也可以在dsRNA的其他位置完成,尤其是3’末端核苷酸上糖的3’位置或者在2'-5'连接的dsRNA中,5’末端核苷酸的5’位置。dsRNA还可以具有糖模拟物,如取代吠喃戊糖(pentofuranosylsugar)的环丁基部分。教导这种修饰的糖结构的制备的代表性美国专利包括但不限于美国专利4,981,957、5,118,800、5,319,080、5,359,044、5,393,878、5,446,137、5,466,786、5,514,785、5,519,134、5,567,811、5,576,427、5,591,722、5,597,909、5,610,300、5,627,053、5,639,873、5,646,265、5,658,873、5,670,633和5,700,920,其中某些是本申请共有的,并且其各通过引用整体结合入本文。
dsRNA也可以包括核苷碱基(在本领域中通常简称为“碱基”)修饰或取代。如本文所使用的,“未修饰的”或“天然的”核苷碱基包括嘌呤碱基腺嘌呤(A)和鸟嘌呤(G),以及嘧啶碱基胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。修饰的核苷碱基包括其他合成的和天然的核苷碱基如5’-甲基胞嘧啶(5-me-C),5-羟甲基胞嘧啶,黄嘌呤,次黄嘌呤,2-氨基腺嘌呤,腺嘌呤和鸟嘌呤的6-甲基和其他烷基衍生物,腺嘌呤和鸟嘌呤的2-丙基和其他烷基衍生物,2-硫尿嘧啶,2-硫胸腺嘧啶和2-硫胞嘧啶,5-卤代尿嘧啶和胞嘧啶,5-丙炔基尿嘧啶和胞嘧啶,6-偶氮尿嘧啶、胞嘧啶和胸腺嘧啶,5-尿嘧啶(假尿嘧啶),4-硫尿嘧啶,8-卤代、8-氨基、8-巯基、8-硫烷基、8-羟基和其他8-取代的腺嘌呤和鸟嘌呤,5-卤代尤其是5-溴代、5-三氟甲基和其他5-取代的尿嘧啶和胞嘧啶,7-甲基鸟嘌呤和7-甲基腺嘌呤,8-氮杂鸟嘌呤和8-氮杂腺嘌呤,7-脱氮鸟嘌呤和7-脱氮腺嘌呤以及3-脱氮鸟嘌呤和3-脱氮腺嘌呤。其他核苷碱基包括公开于美国专利3,687,808中的那些;在TheConciseEncyclopediaOfPolymerScienceAndEngineering,第858-859页,Kroschwitz,J.L编.JohnWiley&Sons,1990中公开的那些;由Englisch等人,AngewandteChemie,InternationalEdition,1991,30,613中公开的那些;以及由Sanghvi,YS.,第15章,DsRNAResearchandApplications,第289-302页,Crooke,S.T.Lebleu,B.编,CRCPress,1993公开的那些。这些核苷碱基中的某些对提高本发明的寡聚化合物的结合亲和力是特别有利的。它们包括5-取代的嘧啶、6-氮杂嘧啶和N-2、N-6以及O-6取代的嘌呤,包括2-氨基丙基腺嘌呤、5-丙炔基尿嘧啶和5-丙炔基胞嘧啶。已经表明5-甲基胞嘧啶取代提高核酸双链体的稳定性0.6-1.2摄氏度(Sanghvi,Y.S.,Crooke,S.T.和Lebleu,B.编,DsRNAResearchandApplications,CRCPress,BocaRaton,1993,第276-278页),并且是目前优选的碱基取代,甚至更加特别地在与2'-O-甲氧基乙基糖修饰组合时。
教导某些以上所提到的修饰核苷碱基以及其他修饰核苷碱基的制备的代表性的美国专利包括但不限于以上提到的美国专利3,687,808,还有美国专利4,845,205、5,130,30、5,134,066、5,175,273、5,367,066、5,432,272、5,457,187、5,459,255、5,484,908、5,502,177、5,525,711、5,552,540、5,587,469、5,594,121,5,596,091、5,614,617和5,681,941,其各通过引用结合入本文,以及美国专利5,750,692,其也通过引用结合入本文。
偶联
本发明的dsRNA的另一种修饰涉及化学性地连接到dsRNA上的一个或多个部分或偶联物,其增强dsRNA的活性、细胞分布或细胞摄取。这样的部分包括但不限于脂质部分,如胆固醇部分(Letsinger等人,Proc.Natl.Acid.Sci.USA,199,86,6553-6556)、胆酸(Manoharan等人,Biorg.Med.Chem.Let.,199441053-1060)、硫醚(如beryl-S-三苯甲基硫醇)(Manoharan等人,Ann.N.Y.Acad.Sci.,1992,660,306-309;Manoharan等人,Biorg.Med.Chem.Let.,1993,3,2765-2770)、巯基胆固醇(Oberhauser等人,Nucl.AcidsRes.,1992,20,533-538)、脂族链(如十二烷二醇或十一烷基残基)(Saison-Behmoaras等人,EMBOJ,1991,10,1111-1118;Kabanov等人,FEBSLett.,1990,259,327-330;Svinarchuk等人,Biochimie,1993,75,49-54)、磷脂(如二-十六烷基-外消旋-甘油或三乙基-铵1,2-二-O-十六烷基-外消旋-甘油-3-H-磷酸)(Manoharan等人,TetrahedronLett.,1995,36,3651-3654;Shea等人,Nucl.AcidsRes.,1990,18,3777-3783)、聚胺或聚乙二醇链(Manoharan等人,Nucleosides&Nucleotides,1995,14,969-973)或金刚烷乙酸(Manoharan等人,TetrahedronLett.,1995,36,3651-3654)、棕榈基(palmityl)部分(Mishra等人,Biochim.Biophys.Acta,1995,1264,229-237)、或十八烷基胺或己氨基-羰基羟胆固醇部分(Crooke等人,J.Pharmacol.Exp.Ther.,1996,277,923-937)。
教导这种dsRNA偶联物制备的代表性的美国专利包括但不限于美国专利4,828,979、4,948,882、5,218,105、5,525,465、5,541,313、5,545,730、5,552,538、5,578,717,5,580,731、5,591,584、5,109,124、5,118,802、5,138,045、5,414,077、5,486,603、5,512,439、5,578,718、5,608,046、4,587,044、4,605,735、4,667,025、4,762,779、4,789,737、4,824,941、4,835,263、4,876,335、4,904,582、4,958,013、5,082,830、5,112,963、5,214,136、5,082,830、5,112,963、5,214,136、5,245,022、5,254,469、5,258,506、5,262,536、5,272,250、5,292,873、5,317,098、5,371,241、5,391,723、5,416,203、5,451,463、5,510,475、5,512,667、5,514,785、5,565,552、5,567,810、5,574,142、5,585,481、5,587,371、5,595,726、5,597,696、5,599,923、5,599,928和5,688,941,其各通过引用结合入本文。
没有必要对给定化合物中的所有位置进行一致地修饰,并且事实上前述修饰中多于一种的修饰可以加入到单个化合物中或者甚至是dsRNA内的单个核苷上。本发明还包括是嵌合复合物的dsRNA复合物。在本发明的上下文中,“嵌合的”dsRNA化合物或“嵌合体”为含两个或多个化学上截然不同的区域的dsRNA复合物,尤其是dsRNA,所述区域各由至少一个单体单元(即在dsRNA复合物的情况中的核苷酸)构成。这些dsRNA通常包含至少一个其中所述dsRNA进行修饰以赋予dsRNA提高的核酸酶降解抗性、提高的细胞摄取和/或提高的与靶标核酸的结合亲和力的区域。dSRNA的另外的区域可以用作能够剪切RNA:DNA或RNA:RNA杂合体的酶的底物。例如,RNaseH是剪切RNA:DNA双链体的RNA链的细胞内切酶。因此RNaseH的激活引起RNA靶标的剪切,由此极大地增强dsRNA抑制基因表达的效率。因此,与杂交同一靶标区域的硫代磷酸酯脱氧dsRNA相比,当使用嵌合dsRNA时通常可以用较短的dsRNA获得相当的结果。RNA靶标的剪切可以通过凝胶电泳且如果需要的话通过本领域已知的相关核酸杂交技术常规地检测。
在某些情况下,dsRNA可以通过非配体基团进行修饰。许多非配体分子已经被偶联至dsRNA以增强dsRNA的活性、细胞分布或细胞摄取,并且进行这种偶联的过程可在科学文献中得到。这种非配体部分包括脂质部分,如胆固醇(Letsinger等人,Proc.Natl.Acid.Sci.USA,1989,86:6553)、胆酸(Manoharan等人,Bioorg.Med.Chem.Let.,1994,4:1053)、硫醚(如己基-S-三苯甲基硫醇)(Manoharan等人,Ann.N.Y.Acad.Sci.,1992,660:306;Manoharan等人,Bioorg.Med.Chem.Let.,1993,3:2765)、巯基胆固醇(Oberhauser等人,Nucl.AcidsRes.,1992,20,533)、脂族链(如十二烷二醇或十一烷基残基)(Saison-Behmoaras等人,EMBOJ,1991,10:111;Kabanov等人,FEBSLett.,1990,259:327;Svinarchuk等人,Biochimie,1993,75:49)、磷脂(如二-十六烷基-外消旋-甘油或三乙基-铵1,2-二-O-十六烷基-外消旋-甘油-3-H-磷酸)(Manoharan等人,TetrahedronLett.,1995,36:3651;Shea等人,Nucl.AcidsRes.,1990,18:3777)、聚胺或聚乙二醇链(Manoharan等人,Nucleosides&Nucleotides,1995,14:969)或金刚烷乙酸(Manoharan等人,TetrahedronLett.,1995,36:3651)、棕榈基部分(Mishra等人,Biochim.Biophys.Acta,1995,1264:229)、或十八烷基胺或己胺基-羰基羟胆固醇部分(Crooke等人,J.Pharmacol.Exp.Ther.,1996,277:923)。教导这种dsRNA偶联物的制备的代表性的美国专利已经在上文列出。典型的偶联方案包括合成在序列的一个或多个位置带有氨基接头(aminolinker)的dsRNA。然后氨基基团利用合适的偶合或活化试剂与将要被偶联的分子反应。偶联反应可以用仍然结合在固体载体上的dsRNA进行或者在液相中剪切dsRNA后进行。用HPLC纯化dsRNA偶联物通常提供纯的偶联物。
在某些情况下,配体可以是多功能的和/或dsRNA可以偶联至多于一个配体。例如,dsRNA可以偶联到用于提高摄取的一个配体和用于提高释放的第二配体。
载体编码的RNAi剂
在本发明另一方面中,由转录单元表达的Eg5和VEGF特异性的dsRNA分子插入DNA或RNA载体中(参见,例如,Couture,A等人,TIG.(1996),12:5-10;Skillern,A.等人,国际PCT公布WO00/22113,Conrad,国际PCT公布WO00/22114,及Conrad,美国专利6,054,299)。这些转基因可以作为线性构建体、环状质粒或病毒载体被引入,其可以被掺入并作为整合进入宿主基因组中的转基因遗传。也可以构建转基因以允许它作为染色体外的质粒遗传(Gassmann等人,Proc.Natl.Acad.Sci.USA(1995)92:1292)。
dsRNA的单独链可以通过两个独立表达载体上的启动子转录,并共转染到靶细胞中。可选择地,dsRNA的各单独链可以通过都位于同一表达质粒上的启动子转录。在优选的实施方式中,dsRNA表达为由连接多核苷酸序列结合的反向重复序列,以使得dsRNA具有茎和环结构。
重组dsRNA表达载体一般为DNA质粒或病毒载体。dsRNA表达病毒载体可以基于腺伴随病毒(作为综述,参见,Muzyczka等人,Curr.TopicsMicro.Immunol.(1992)158:97-129)、腺病毒(参见,例如,Berkner等人,BioTechniques(1998)6:616;Rosenfeld等人(1991,Science252:431-434);及Rosenfeld等人(1992),Cell68:143-155);或甲病毒以及本领域已知的其他种类,但不限于此。逆转录病毒已被用于在体外和/或体内将各种基因引入许多不同的细胞类型中,包括上皮细胞(例如,参见,Eglitis等人,Science(1985)230:1395-1398;Danos和Mulligan,Proc.NatI.Acad.Sci.USA(1998)85:6460-6464;Wilson等人,1988,Proc.Natl.Acad.Sci.USA85:3014-3018;Armentano等人,1990,Proc.Natl.Acad.Sci.USA87:61416145;Huber等人,1991,Proc.Natl.Acad.Sci.USA88:8039-8043;Ferry等人,1991,Proc.Natl.Acad.Sci.USA88:8377-8381;Chowdhury等人,1991,Science254:1802-1805;vanBeusechem.等人,1992,Proc.Natl.Acad.Sci.USA89:7640-19;Kay等人,1992,HumanGeneTherapy3:641-647;Dai等人,1992,Proc.Natl.Acad.Sci.USA89:10892-10895;Hwu等人,1993,J.Immunol.150:4104-4115;美国专利4,868,116;美国专利4,980,286;PCT申请WO89/07136;PCT申请WO89/02468;PCT申请WO89/05345;及PCT申请WO92/07573)。能够转导和表达插入细胞的基因组中的基因的重组逆转录病毒载体可以通过将该重组逆转录病毒基因组转染进入合适的包装细胞株(如PA317和Psi-CRIP)中来产生(Comette等人,1991,HumanGeneTherapy2:5-10;Cone等人,1984,Proc.Natl.Acad.Sci.USA81:6349)。重组腺病毒载体可用于感染易感宿主(例如,大鼠、仓鼠、狗和黑猩猩)中的很多种细胞和组织(Hsu等人,1992,J.InfectiousDisease,166:769),且也具有不需要用于感染的有丝分裂活性细胞的优势。
可以使用能够接受要表达的dsRNA分子的编码序列的任意病毒载体,如源自腺病毒(AV)、腺伴随病毒(AAV)、逆转录病毒(如慢病毒(LV)、棒状病毒、鼠白血病病毒)、疱疹病毒等的载体。病毒载体的嗜性(tropism)可以适当地通过用来自其他病毒的包膜蛋白或其他表面抗原对载体进行准型化或者通过取代不同的病毒衣壳蛋白而进行修饰。
例如,本发明的慢病毒载体可以用来自疱疹性口炎病毒(VSV)、狂犬病毒、埃博拉病毒、莫科拉病毒等的表面蛋白准型化。可以通过对载体进行工程化以表达不同的衣壳蛋白血清型而使本发明的AAV载体靶向不同的细胞。例如,在血清型2基因组上表达血清型2衣壳的AAV载体称作AAV2/2。AAV2/2载体中的这种血清型2衣壳基因可以由血清型5衣壳基因取代以产生AAV2/5载体。用于构建表达不同衣壳蛋白血清型的AAV载体的技术是本领域的技术,参见,例如RabinowitzJE等人(2002),JVirol76:791-801,其整体公开通过引用结合入本文。
适合本发明使用的重组病毒载体的选择、将用于表达dsRNA的核酸序列插入载体中的方法和将病毒载体递送至感兴趣细胞的方法都是本领域的技术。参见,例如,DornburgR(1995),GeneTherap.2:301-310;EglitisMA(1988),Biotechniques6:608-614;MillerAD(1990),HumGeneTherap.1:5-14;AndersonWF(1998),Nature392:25-30;及RubinsonDA等人,Nat.Genet.33:401-406,其整体公开通过引用结合入本文。
优选的病毒载体是那些源自AV和AAV的载体。在特别优选的实施方式中,本发明的dsRNA由具有例如U6或H1RNA启动子或巨细胞病毒(CMV)启动子的重组AAV载体表达为两个独立的互补单链RNA分子。
用于表达本发明的dsRNA的适合AV载体、用于构建重组AV载体的方法和将所述载体递送至靶标细胞的方法在XiaH等人(2002),Nat.Biotech.20:1006-1010中进行了描述。
用于表达本发明的dsRNA的适合的AAV载体、用于构建重组AV载体的方法和将所述载体递送至靶标细胞中的方法在SamulskiR等人(1987),J.Virol.61:3096-3101;FisherKJ等人(1996),J.Virol,70:520-532;SamulskiR等人(1989),J.Virol.63:3822-3826;美国专利5,252,479;美国专利5,139,941;国际专利申请WO94/13788;和国际专利申请WO93/24641中进行了描述,其整体公开通过引用结合入本文。
在本发明的DNA质粒或病毒载体中驱动dsRNA表达的启动子可以是真核RNA聚合酶I(如核糖体RNA启动子)、RNA聚合酶II(如CMV早期启动子或肌动蛋白基因启动子或U1snRNA启动子)或一般地RNA聚合酶III启动子(如U6snRNA或7SKRNA启动子)或原核启动子,例如T7启动子,假定表达质粒也编码由T7启动子转录所需的T7RNA聚合酶。启动子也可以引导对胰腺的转基因表达(参见,例如,胰腺的胰岛素调控序列(Bucchini等人,1986,Proc.Natl.Acad.Sci.USA83:2511-2515))。
此外,转基因的表达可以精确调控,例如,通过使用可诱导的调控序列和表达系统(例如对于某些生理调节剂(例如,循环糖水平或激素)敏感的调控序列)精确调控(Docherty等人,1994,FASEBJ.8:20-24)。这类可诱导的适于在细胞或哺乳动物中控制转基因表达的表达系统包括通过蜕皮激素、通过雌激素、孕激素、四环素、二聚化的化学诱导剂和异丙基-β-D1的-硫代半乳糖苷(EPTG)的调节。本领域的技术人员能够基于dsRNA转基因的预期用途选择适当的调控/启动子序列。
一般来说,能够表达dsRNA分子的重组载体如下所述递送,并保持在靶细胞中。可选择地,可以使用提供dsRNA分子的瞬时表达的病毒载体。必要时,这类载体可重复施用。一旦表达,dsRNA结合靶RNA并调节其功能或表达。dsRNA表达载体的递送可以是全身性的,如通过静脉内或肌肉内施用,通过向从患者移植接着再引入患者中的靶细胞的施用,或通过任何其他允许引入希望的靶细胞的方式。
dsRNA表达的DNA质粒通常作为与阳离子脂质载体(如Oligofectamine)或非阳离子脂基载体(如Transit-TKOTM)的复合物被转染进入靶细胞中。本发明也考虑:在一个星期或更长时间内靶向于单个EG5基因(或VEGF基因)或多个Eg5基因(或VEGF基因)的不同区域的dsRNA介导的敲落(knockdown)的多脂质转染。可以使用各种已知的方法监测将本发明的载体成功引入到宿主细胞中。例如,瞬时转染可以用报告分子(如荧光标记,如绿色荧光蛋白(GFP))指示。可以使用向转染的细胞提供对于特定的环境因素(例如抗生素和药物)的抗性(如潮霉素B抗性)的标记确保离体细胞的稳定转染。
Eg5特异性的dsRNA分子和VEGF特异性dsRNA分子也可以插入载体中并用作人类患者的基因治疗载体。可以通过例如,静脉内注射、局部施用(参见美国专利5,328,470)或通过立体定向注射(参见,例如,Chen等人(1994)Proc.Natl.Acad.Sci.USA91:3054-3057)向受试者递送基因治疗载体。基因治疗载体的药物制剂可以在可接受的稀释剂中包括该基因治疗载体,或可以包括基因治疗载体嵌入其中的缓释基质,。可选择地,当可以从重组细胞(如逆转录病毒载体)完整地产生完整基因递送载体时,该药物制剂可以包含一个或多个产生基因递送系统的细胞。
含有dsRNA的药物组合物
在一个实施方式中,本发明提供了包含如本文所述的dsRNA和药学上可接受的载体的药物组合物以及施用该药物组合物的方法。包含dsRNA的药物组合物用于治疗与Eg5/KSP和/或VEGF基因的表达或活性相关的疾病或病症,如由Eg5/KSP和/或VEGF表达介导的病理过程(如肝癌)。这类药物组合物根据递送方式进行配制。
剂量
本文中所述的药物组合物以足以抑制EG5/KSP和/或VEGF基因表达的剂量给药。通常,dsRNA的合适剂量是每日每千克接受者体重0.01至200.0毫克,一般为每日每千克接受者体重1至50毫克。例如,可以以每单次给药0.01mg/kg、0.05mg/kg、0.5mg/kg、1mg/kg、1.5mg/kg、2mg/kg、3mg/kg、5.0mg/kg、10mg/kg、20mg/kg、30mg/kg、40mg/kg或50mg/kg施用dsRNA。
可以每天一次施用药物组合物,或可以在一天内以适当的间隔以2、3或多个亚剂量施用dsRNA。单剂量对于EG5/KSP和/或VEGF水平的效应是持久的,使得以不超过7天的间隔,或以不超过1、2、3或4周的时间间隔施用随后的剂量。
在一些实施方式中,通过控释制剂使用连续输注或递送施用dsRNA。在这种情况下,各亚剂量中所含的dsRNA必须相应地较小以达到总的日剂量。剂量单位也可以复合用于在数天时间内递送,如使用在数天的时间内提供缓释的dsRNA的常规缓释制剂。缓释制剂是本领域所熟知的,并且尤其用于将物质递送到特定位点,例如可以与本发明的试剂一起使用。在这个实施方式中,剂量单位包含相应的多倍日剂量。
熟练的技术人员可以理解某些因素可能影响有效治疗受试者所需要的剂量和时机,所述因素包括但不限于疾病或病症的严重度、先前的治疗、受试者的一般健康情况和/或年龄以及其他存在的疾病。另外,利用治疗有效量的组合物对受试者进行治疗可以包括单一治疗或一系列的治疗。如本文其他地方所阐述的,可以利用常规的方法或者在利用合适的动物模型进行的体内检测的基础上评估本发明所涵盖的单独dsRNA的有效量和体内半衰期。
小鼠遗传学的进展已经产生了多个用于各种人类疾病研究的小鼠模型,如由EG5/KSP和/或VEGF的表达介导的病理过程。这种模型用于dsRNA的体内检测,以及用于确定治疗有效量。合适的小鼠模型是,例如,含有表达人EG5/KSP和/或VEGF的质粒的小鼠。另一种合适的小鼠模型是携带表达人EG5/KSP和/或VEGF的转基因的转基因小鼠。
在细胞培养或实验动物中,可以通过标准制药程序确定这类化合物的毒性和疗效,例如,用于确定LD50(对50%群体致死的剂量)和ED50(在50%群体中治疗有效的剂量)。毒性和治疗效应之间的剂量比例是治疗指数,它可以以LD50/ED50比例表示。显示高的治疗指数的化合物是优选的。
从细胞培养试验和动物研究获得的数据可用于制成用于人类的剂量范围。本发明描述的组合物的剂量一般在具有很少或没有毒性的包括ED50的循环浓度范围内。剂量可能会随着所用的剂型和使用的给药途径而有所不同。对于用于本发明描述的方法的任何化合物,可以初步从细胞培养试验评估治疗有效剂量。可以在动物模型中制定剂量,以实现化合物或在适当的时候靶标序列的多肽产品的循环血浆浓度范围(例如,实现多肽的下降的浓度),其包括如细胞培养所确定的IC50(即达到症状的半最大抑制的测试化合物的浓度)。这些信息可以被用来更准确地确定人类中的有用剂量。可以测量血浆中的水平,例如,通过高效液相色谱法。
除了如上所述的施用之外,本发明描述的dsRNA可以与其他已知的有效治疗靶基因表达介导的病理过程的药物组合施用。在任何情况下,负责医生可以基于使用本领域已知的或本文所述的疗效标准测量观察到的结果调整dsRNA施用的量和时机。
施用
本发明的药物组合物可以根据是否需要局部或全身治疗和根据要治疗的区域以多种方式施用。施用可以是局部的、肺部的例如通过吸入或吹入粉末或气溶胶,包括通过喷雾器;气管内、鼻内、表皮和透皮、及皮下、经口或肠道外例如皮下施用。
通常情况下,当治疗患有高脂血症的哺乳动物时,通过肠胃外方式全身施用dsRNA分子。肠胃外施用包括静脉内、动脉内、皮下、腹膜内或肌肉内注射或灌注;或颅内,如脑实质内(intraparenchymal)、鞘内或腔室内施用。例如,偶联的或不偶联的或者用或不用脂质体配制的dsRNA可以静脉内施用于患者。对于此,可以将dsRNA分子配制成组合物,例如,无菌和非无菌的水溶液、在一般溶剂(如醇类)中的非水溶液、或在液体或固体油基质中的溶液。这类溶液还可以包含缓冲剂、稀释剂及其他合适的添加剂。对于肠胃外、鞘内或腔室内施用,dsRNA分子可以配制成组合物如无菌水溶液,其还可以包含缓冲剂、稀释剂和其他适当的添加剂(例如,渗透增强剂、载体化合物和其他药学上可接受的载体)。本文中更详细地描述了制剂。
可以以靶向于特定的组织如肝脏(例如,肝脏的肝细胞)的方式来递送dsRNA。
制剂
可以根据制药行业熟知的传统技术制备方便地以单位剂量形式存在的本发明的药物制剂。这些技术包括使活性成分和药用载体或赋形剂结合的步骤。在一般情况下,通过以下步骤制备制剂:使活性成分和液体载体或细分的固体载体或这两种均匀且密切地结合,且然后,如有必要,使产品成形。
本发明的组合物可以配制成任意多种可能的剂型,例如但不限于片剂、胶囊、凝胶胶囊、液体糖浆、软胶囊、栓剂和灌肠剂。本发明的组合物还可以制成水性、非水性或混合介质中的悬浮液。水性悬浮液可以进一步包含提高悬浮液粘度的物质,包括但不限于羧甲基纤维素钠、山梨醇和/或葡聚糖。悬浮液还可以包含稳定剂。
本发明的药物组合物包括但不限于溶液、乳剂和含脂质体的制剂。这些组合物可以从多种成分生成,所述成分包括但不限于预制液体、自乳化的固体和自乳化的半固体。本发明的一个方面是在治疗肝脏病症(如高脂血症)时靶向于肝脏的制剂。
此外,靶向于EG5/KSP和/或VEGF基因的dsRNA可以配制成含有与其他分子、分子结构或核酸混合物混合、包封、偶联或以其他方式结合的dsRNA的组合物。例如,含有一种或多种靶向于EG5/KSP和/或VEGF基因的dsRNA剂的组合物可以包含其他治疗剂,例如其他癌症治疗剂或一种或多种靶向于非EG5/KSP和/或VEGF基因的dsRNA化合物。
口服、肠胃外、局部和生物制剂
用于口服施用的组合物和制剂包括粉末或颗粒、微米颗粒、纳米颗粒、在水或非水性介质中的悬浮液或溶液、胶囊、凝胶胶囊、扁囊剂、片剂或微片剂(minitablet)。可能需要增稠剂、芳香剂、稀释剂、乳化剂、分散助剂或粘合剂。在一些实施方式中,口服制剂是其中本发明描述的dsRNA与一种或多种渗透增强剂、表面活性剂和螯合剂一起施用的制剂。合适的表面活性剂包括脂肪酸和/或其酯或盐、胆酸和/或其盐。合适的胆酸/盐包括鹅脱氧胆酸(CDCA)和熊脱氧胆酸(ursodeoxychenodeoxycholicacid,UDCA)、胆酸、脱氢胆酸、脱氧胆酸、甘胆酸(glucholicacid)、甘氨胆酸(glycholicacid)、甘氨脱氧胆酸、牛磺胆酸、牛磺脱氧胆酸、牛磺-24,25-二氢-梭链孢酸钠和甘氨二氢梭链孢酸钠(sodiumglycodihydrofusidate)。合适的脂肪酸包括花生四烯酸、十一烷酸、油酸、月桂酸、辛酸、癸酸、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸酯、三癸酸酯、甘油单油酸酯(monoolein)、二月桂精、甘油l-单癸酸酯、1-十二烷基氮杂环庚-2-酮、酰基肉毒碱、酰基胆碱、或甘油单酯、甘油二酯或其药学上可接受的盐(如钠盐)。在一些实施方式中,可以使用渗透增强剂的组合,如脂肪酸/盐与胆酸/盐的组合。一个示例性的组合是月桂酸、辛酸和UDCA的钠盐。其他渗透增强剂包括聚氧乙烯-9-月桂基醚、聚氧乙烯-20-十八烷基醚。本发明描述的dsRNA可以以包括喷射干燥的颗粒的颗粒形式经口递送或复合以形成微米或纳米颗粒。dsRNA复合剂包括聚氨基酸,聚亚胺,聚丙烯酸酯,聚烷基丙烯酸酯、聚氧乙烷(polyoxethane)、聚烷基氰基丙烯酸酯,阳离子化的明胶、白蛋白、淀粉、丙烯酸酯、聚乙二醇(PEG)和淀粉,聚烷基氰基丙烯酸酯,DEAE衍生的聚亚胺、短梗霉多糖、纤维素和淀粉。合适的复合剂包括壳聚糖、N-三甲基壳聚糖、聚-L-赖氨酸、聚组氨酸、聚鸟氨酸、聚精胺、鱼精蛋白、聚乙烯基吡啶、聚硫代二乙基氨基甲基乙烯(polythiodiethylaminomethylethylene)P(TDAE)、聚氨基苯乙烯(如对-氨基)、聚(甲基氰基丙烯酸酯)、聚(乙基氰基丙烯酸酯)、聚(丁基氰基丙烯酸酯)、聚(异丁基氰基丙烯酸酯)、聚(异己基氰基丙烯酸酯)、DEAE-甲基丙烯酸酯、DEAE-己基丙烯酸酯、DEAE-丙烯酰胺、DEAB-白蛋白和DEAE-葡聚糖、聚甲基丙烯酸酯、聚己基丙烯酸酯、聚(D,L-乳酸)、聚(DL-乳酸-聚乙醇酸共聚物)(PLGA)、藻酸盐和聚乙二醇(PEG)。dsRNA的口服制剂以及它们的制备在美国专利6,887,906、美国专利公布20030027780和美国专利6,747,014中进行了详细描述,其各通过引用并入本文中。
用于肠胃外、脑实质内(进入大脑)、鞘内、腔室内或肝内施用的组合物和剂型可以包括无菌水溶液,其还可能包含缓冲剂、稀释剂及其他合适的添加剂(例如但不限于,渗透增强剂、载体化合物及其他药学上可接受的载体或赋形剂)。
用于局部施用的药物组合物和制剂可以包括透皮贴剂、软膏、洗液、乳膏、凝胶、滴剂、栓剂、喷雾剂、液体和粉末。常规的药物载体、水性的、粉末或油性基质、增稠剂等也可能是必需的或想要的。合适的局部制剂包括其中本发明描述的dsRNA与局部递送剂(如脂类、脂质体、脂肪酸、脂肪酸酯、类固醇、螯合剂和表面活性剂)混合的制剂。合适的脂类和脂质体包括中性的(如二油酰磷脂酰乙醇胺(DOPE)、二肉豆蔻酰磷脂酰胆碱(DMPC)、二硬脂酰磷脂酰胆碱)、阴离子的(如二肉豆蔻酰磷脂酰甘油DMPG)和阳离子的(如二油酰基四甲基氨基丙烷DOTAP和二油酰基磷脂酰基乙醇胺DOTMA)。可以将本发明描述的dsRNA包封在脂质体内或者可以与其形成复合物,尤其是与阳离子脂质体形成复合物。可选择地,dsRNA可以与脂质复合,尤其是与阳离子脂质复合。合适的脂肪酸和酯包括但不限于花生四烯酸、油酸、花生酸、月桂酸、辛酸、癸酸、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸酯、三癸酸酯、甘油单油酸酯、二月桂精、甘油1-单癸酸酯、1-十二烷基氮杂环庚-2-酮、酰基肉毒碱、酰基胆碱、或C1-10烷基酯(如肉豆蔻酸异丙酯IPM)、甘油单酯、甘油二酯或它们的药学上可接受的盐。局部制剂在美国专利6,747,014中进行了详细描述,其通过引用整体结合入本文。此外,可以以例如美国专利6,271,359中所描述的生物或非生物的方法向哺乳动物施用dsRNA分子。非生物的递送可以通过包括但不限于以下的多种方法实现:(1)用本发明提供的dsRNA核酸分子加载脂质体,和(2)将dsRNA分子与脂质或脂质体复合,以形成核酸-脂质或核酸-脂质体复合物。脂质体可以由通常用于体外转染细胞的阳离子性和中性脂质构成。阳离子脂质可以与带负电荷的核酸复合(例如,电结合)以形成脂质体。阳离子脂质体的例子包括但不限于:lipofectin、lipofectamine、lipofectace和DOTAP。形成脂质体的方法是本领域公知的。例如,可以从磷脂酰胆碱、二肉豆蔻酰基磷脂酰胆碱、二棕榈酰磷脂酰胆碱、二肉豆蔻酰磷脂酰甘油或二油酰磷脂酰乙醇胺形成脂质体组合物。可商购许多亲脂性物质,包括LipofectinTM(Invitrogen/LifeTechnologies,Carlsbad,Calif.)和EffecteneTM(Qiagen,Valencia,Calif.)。此外,可以使用可商购的阳离子脂质(如DDAB或DOTAP)优化全身性递送方法,阳离子脂质可以各与中性脂质(如DOPE或胆固醇)混合。在某些情况下,可以使用如Templeton等人(NatureBiotechnology,15:647-652(1997))中描述的脂质体。在其他实施方式中,可以使用聚阳离子(如聚乙烯亚胺)以实现体内和离体递送(Boletta等人,J.AmSoc.Nephrol.7:1728(1996))。可以在美国专利6,271,359、PCT公布WO96/40964及Morrissey,D.等人2005.NatBiotechnol.23(8):1002-7中找到关于脂质体用于递送核酸的进一步的信息。
可以通过包括但不限于使用病毒载体的各种方法实现生物递送。例如,病毒载体(如腺病毒和疱疹病毒载体)可以用于向肝细胞递送dsRNA分子。标准分子生物学技术可以用于将本发明提供的一种或多种dsRNA引入以前开发的用于将核酸递送至细胞中的许多不同的病毒载体中的一种。这些获得的病毒载体可以用来通过例如感染向细胞递送一种或多种dsRNA。
制剂dsRNA的鉴定
通过在线混合或无挤压法(extrusion-freemethod)制备的制剂可以以类似的方式鉴定。例如,制剂通常通过目视检查来鉴定。它们应该是不含聚集物或沉积物的发白的半透明的溶液。可以通过使用例如MalvernZetasizerNanoZS(Malvern,USA)的光散射测量微粒大小和粒度分布。微粒大小应该是大约20-300nm,如40-100nm。粒度分布应该是单峰的。使用染料排除分析评估制剂中的总siRNA浓度以及捕获分数(entrappedfraction)。配制的siRNA的样品可以在制型破坏性表面活性剂(例如0.5%的Triton-X100)存在或不存在的情况下,与RNA结合的染料(如Ribogreen(MolecularProbes)一起孵育。可以通过来自包含表面活性剂的样品的信号相对于标准曲线确定制剂中的总siRNA。通过从总siRNA含量减去“游离的”siRNA含量(如通过不存在表面活性剂的情况下的信号所测量的)确定捕获分数。捕获siRNA的百分比通常>85%。对于SNALP制剂,微粒大小为至少30nm,至少40nm,至少50nm,至少60nm,至少70nm,至少80nm,至少90nm,至少100nm,至少110nm和至少120nm。合适的范围通常为大约至少50nm至大约至少110nm、大约至少60nm至大约至少100nm、或大约至少80nm至大约至少90nm。
脂质体制剂
除了微乳液以外,还有已经进行了研究并用于药物制剂的许多组织化的表面活性剂结构。这些结构包括单分子层、胶束、双分子层和囊泡。囊泡(如脂质体)由于它们的特异性和它们在药物递送方面提供的作用的持久性已经引起广泛关注。如本发明中所使用的,术语“脂质体”是指由排列成一个或多个球形双分子层的两性脂质构成的囊泡。
脂质体是单层的或多层的囊泡,其具有由亲脂性物质形成的膜和水性内部。水性部分包含待递送的组合物。阳离子脂质体具有能够与细胞壁融合的优点。非阳离子脂质体虽然不能与细胞壁如此有效地融合,但它在体内被巨噬细胞摄取。
为了跨越完整的哺乳动物皮肤,脂质囊泡必须在受合适的透皮梯度的影响下穿过一系列的微细孔,其各具有小于50nm的直径。因此,理想的是使用高度可变形并能够穿过这种微细孔的脂质体。
脂质体的其他优势包括:由天然磷脂获得的脂质体是生物相容的和生物可降解的;脂质体可以掺入宽范围的水溶性和脂溶性的药物;脂质体能够防止包封在其内腔中的药物被代谢和降解(Rosoff,inPharmaceuticalDosageForms,Lieberman,Rieger和Banker(主编),1988,MarcelDekker,Inc.,NewYork,N.Y.,第1卷,第245页)。在脂质体制剂的制备中的重要考虑因素是脂质表面电荷、囊泡大小和脂质体的水性容积。
脂质体可用于将活性成分转移和递送至作用位点。因为脂质体膜与生物膜在结构上相似,因此当将脂质体应用于组织时,脂质体就会开始与细胞膜融合并且随着脂质体和细胞的融合,脂质体的内容物就会注入活性物质可以发挥作用的细胞中。
深入研究的焦点是脂质体制剂作为多种药物的递送模式。越来越多的证据表明对于局部施用,脂质体与其他剂型相比具有几种优势。这些优势包括与所施用药物的高系统性吸收相关的副作用降低,所施用的药物在预期靶标处的积累提高,和向皮肤内施用宽范围的亲水性和疏水性药物的能力。
几篇报告已经详细叙述了脂质体向皮肤内递送物质(包括大分子量DNA)的能力。已经将包括止痛剂、抗体、激素和大分子量DNA的化合物向皮肤施用。大多数应用会导致靶向于上表皮。
脂质体分成两大类。阳离子脂质体是带正电的脂质体,其与带负电的DNA分子相互作用以形成稳定的复合物。带正电的DNA/脂质体复合物结合带负电的细胞表面,并内化到内体中。由于内体中的酸性pH,脂质体破裂,从而释放出它们的内容物至细胞质中(Wang等人,Biochem.Biophys.Res.Commun.,1987,147,980-985)。
pH敏感的或带负电荷的脂质体捕获DNA,而不是与其复合。由于DNA和脂质两者具有类似的带电性,它们发生排斥而不是形成复合物。然而,一些DNA被捕获至这些脂质体的水性内部中。pH敏感性脂质体已经用于向培养物中的细胞单层递送编码胸苷激酶基因的DNA。在靶细胞中检测到外源基因的表达(Zhou等人,JournalofControlledRelease,1992,19,269-274)。
脂质体组合物的一个重要类型包括天然衍生的磷脂酰胆碱以外的磷脂。例如,中性脂质体组合物可以由二肉豆蔻酰磷脂酰胆碱(DMPC)或二棕榈酰磷脂酰胆碱(DPPC)形成。阴离子脂质体组合物通常由二肉豆蔻酰磷脂酰甘油形成,而阴离子融合脂质体主要由二油酰磷脂酰乙醇胺(DOPE)形成。另一种类型的脂质体组合物由卵磷脂(PC)形成,如大豆PC和蛋黄PC。另一类型由磷脂和/或磷脂酰胆碱和/或胆固醇的混合物形成。
几项研究评价了脂质体药物制剂向皮肤的局部递送。包含干扰素的脂质体应用于豚鼠皮肤上导致减轻皮肤疱疹溃疡,而通过其他方式(例如,作为溶液或乳剂)递送干扰素则是无效的(Weiner等人,JournalofDrugTargeting,1992,2,405-410)。另外,另一项研究测试了作为脂质体制剂的一部分施用的干扰素相对于利用水性系统施用干扰素的效率,并得出结论:脂质体制剂优于水性施用方式(duPlessis等人,AntiviralResearch,1992,18,259-265)。
还检验了非离子脂质体系统,尤其是包含非离子表面活性剂和胆固醇的系统,以确定它们在药物向皮肤递送中的用途。使用包含NovasomeTMI(二月桂酸甘油酯/胆固醇/聚氧乙烯-10-硬脂酰醚)和NovasomeTMII(二硬脂酸甘油酯/胆固醇/聚氧乙烯-10-硬脂酰醚)的非离子脂质体制剂向小鼠皮肤的真皮内递送环孢菌素A。结果表明,这种非离子脂质体系统在促进环孢素A沉积到不同的皮肤层中方面是有效的(Hu等人S.T.P.Pharma.Sci.,1994,4,6,466)。
脂质体还包括“空间稳定化的”脂质体,本文使用的该术语指包含一种或多种特殊脂质的脂质体,当其掺入脂质体中时导致与没有这种特殊脂质的脂质体相比具有提高的循环寿命。空间稳定化的脂质体的实例是其中脂质体的形成囊泡的脂质部分的一部分(A)包含一种或多种糖脂(如单唾液酸神经节苷脂GM1),或(B)由一种或多种亲水聚合物(如聚乙二醇(PEG)部分)衍生的脂质体。不希望受任何特定理论的限制,在本领域中认为,至少对于包含神经节苷脂、鞘磷脂或PEG衍生的脂质的空间稳定化脂质体,这些空间稳定化的脂质体的循环半衰期增加是由于减少网状内皮系统(RES)的细胞中的摄取而产生的(Allen等人,FEBSLetters,1987,223,42;Wu等人,CancerResearch,1993,53,3765)。
包含一种或多种糖脂的各种脂质体是本领域已知的。Papahadjopoulos等人(Ann.N.Y.Acad.Sci.,1987,507,64)报告了单唾液酸神经节苷脂GM1、硫酸半乳糖脑苷脂和磷脂酰肌醇提高脂质体的血液半衰期的能力。Gabizon等人(Proc.Natl.Acad.Sci.U.S.A.,1988,85,6949)对这些发现进行了详细说明。Allen等人的美国专利4,537,025和WO55/04924公开了包含(1)鞘磷脂和(2)神经节苷脂GM1或半乳糖脑苷脂硫酸酯的脂质体。美国专利5,543,152(webb等人)公开了包含鞘磷脂的脂质体。WO97/13499(Lim等人)中公开了包含1,2-sn-二肉豆蔻酰磷脂酰胆碱的脂质体。
本领域内已知许多包含用一种或多种亲水聚合物衍生的脂质的脂质体和它们的制备方法。Sunamoto等人(Bull.Chem.Soc.Jpn.,1980,53,2778)描述了包含非离子去垢剂2C1215G的脂质体,其包含PEG部分。Illum等人(FEBSLett.,1984,167,79)指出聚苯乙烯颗粒的聚二醇类的亲水涂层会引起血液半衰期的显著增长。Sears(美国专利4,426,330和4,534,899)描述了通过与聚亚烷基二醇(如PEG)的羧基基团结合而修饰的合成磷脂。Klibanov等人(FEBSLett.,1990,268,235)描述了表明包含用PEG或PEG硬脂酸酯衍生的磷脂酰乙醇胺(PE)的脂质体血液循环半衰期显著提高的试验。Blume等人(BiochimicaetBiophysicaActa,1990,1029,91)将这种发现扩展至其他PEG衍生的磷脂,如DSPE-PEG,其由二硬脂酰磷脂酰乙醇胺(DSPE)和PEG的组合形成。在其外表面上具有共价结合的PEG部分的脂质体在Fisher的欧洲专利EP0445131B1和WO90/04384中进行了阐述。Woodle等人(美国专利5,013,556和5,356,633)和Martin等人(美国专利5,213,804和欧洲专利EP0496813B1)描述了包含用PEG衍生的1-20摩尔百分比的PE的脂质体组合物以及它们的使用方法。包含许多其他脂质-聚合物偶联物(conjugate)的脂质体在WO91/05545和美国专利5,225,212(两者都属于Martin等人)和WO94/20073(Zalipsky等人)中进行了描述。在WO96/10391(Choi等人)中描述了包含PEG修饰的神经酰胺脂类的脂质体。美国专利5,540,935(Miyazaki等人)和美国专利5,556,948(Tagawa等人)描述了包含PEG的脂质体,其还可以在它们表面上进一步用功能部分衍生。
本领域已知许多的包含核酸的脂质体。Thierry等人的WO96/40062公开了将高分子量核酸包封到脂质体中的方法。Tagawa等人的美国专利5,264,221公开了蛋白质结合的脂质体并声称这种脂质体的内容物可以包括dsRNA。Rahman等人的美国专利5,665,710描述了将寡聚脱氧核苷酸包封到脂质体中的特定方法。Love等人的WO97/04787公开了包含靶向于raf基因的dsRNA的脂质体。
传递体(transfersome)是再另一种类型的脂质体,且是高度变形的脂质聚集体(它是药物递送媒介的有吸引力的候选物)。传递体可以被描述成脂滴,其可高度变形以至于它们能够轻易地穿透比该液滴小的小孔。传递体可以适应它们所使用的环境,例如它们自优化的(适应皮肤中小孔的形状)、自修复的,通常不需要碎裂就能到达它们的靶标并且通常为自装载的。为了制备传递体,有可能要向标准的脂质体组合物中加入表面边界活化剂,通常为表面活性剂。已经将传递体用于向皮肤递送血清白蛋白。传递体介导的血清白蛋白的递送已经显示为与包含血清白蛋白的溶液的皮下注射一样有效。
表面活性剂在制剂如乳剂(包括微乳剂)和脂质体中有广泛应用。对天然的和合成的许多不同类型的表面活性剂的特性进行分类和分级的最常见的方式是使用亲水/亲油平衡(HLB)。亲水基团(也称为“头部”)的性质提供了为在制剂中使用的不同表面活性剂进行分类的最有用的方式(Rieger,inPharmaceuticalDosageForms,MarcelDekker,Inc.,NewYork,N.Y.,1988,第285页)。
如果表面活性剂分子不是离子化的,则其归类为非离子表面活性剂。非离子表面活性剂在药物和化妆品中有广泛的应用,并可以在宽范围的pH值内使用。通常,根据它们的结构,它们的HLB值在2至大约18间变化。非离子表面活性剂包括非离子的酯,如乙二醇酯、丙二醇酯、甘油酯、聚甘油酯、山梨聚糖酯、蔗糖酯和乙氧基化酯。非离子的链烷醇酰胺和醚(如脂肪醇乙氧基化物、丙氧基化醇和乙氧基化/丙氧基化嵌段聚合物)也包括在这一类中。聚氧乙烯表面活性剂是非离子表面活性剂类中最常用的成员。
如果表面活性剂分子在溶于水或分散在水中时带有负电荷,则表面活性剂被归类为阴离子表面活性剂。阴离子表面活性剂包括羧酸酯(如皂类)、酰基乳酰酯、氨基酸的酰基酰胺化合物、硫酸酯类(如烷基硫酸酯和乙氧基化烷基硫酸酯)、磺酸酯(如烷基苯磺酸酯、酰基羟乙磺酸酯、酰基牛磺酸酯和磺基琥珀酸酯以及磷酸酯。阴离子表面活性剂类的最重要的成员为烷基硫酸酯和皂类。
如果表面活性剂分子在溶于水或分散在水中时带有正电荷,则表面活性剂归类为阳离子表面活性剂。阳离子表面活性剂包括季铵盐和乙氧基化胺。季铵盐是这个类别中最常使用的成员。
如果表面活性剂分子能够带有正电荷或者负电荷,则所述表面活性剂归类为两性表面活性剂。两性表面活性剂包括丙烯酸衍生物、取代的烷基酰胺化合物、N-烷基甜菜碱和磷脂。
已经综述了表面活性剂在药物产品、制剂中和乳剂中的应用(Rieger,inPharmaceuticalDosageForms,MarcelDekker,Inc.,NewYork,N.Y.,1988,第285页)。
SNALP
在一个实施方式中,本发明描述的dsRNA完全包封在脂质制剂中以形成SPLP、pSPLP、SNALP或其他核酸-脂质微粒。本文中所使用的术语“SNALP”指稳定的核酸-脂质微粒,包括SPLP。本文中所使用的术语“SNLP”指包含包封在脂质囊泡中的质粒DNA的核酸-脂质微粒。SNALP和SPLP通常包含阳离子脂质、非阳离子脂质和防止微粒(例如,PEG-脂质偶联物)聚集的脂质。SNALP和SPLP特别有利于全身应用,因为它们表现出在静脉(i.v.)注射后的延长的循环寿命并在远端位点(例如,与施用位点物理分离的位点)聚集。SPLP包括“pSPLP”,它包括如PCT公布WO00/03683中所示的包封的凝结剂-核酸复合物。本发明的微粒通常具有大约50nm至大约150nm、更典型的大约60nm至大约130nm、更典型的大约70nm至大约110nm、最典型的大约70至大约90nm的平均直径,并且基本上无毒。此外,当核酸存在于本发明的核酸-脂质微粒中时,核酸在水溶液中对核酸酶的降解有抗性。例如,美国专利5,976,567、5,981,501、6,534,484、6,586,410、6,815,432和PCT公布WO96/40964公开了核酸-脂质微粒及其制备方法。
在一个实施方式中,脂质对药物的比例(质量/质量比)(例如,脂质对dsRNA的比率)范围为大约1:1至大约50:1,大约1:1至大约25:1,大约3:1至大约15:1,大约4:1至大约10:1,大约5:1至大约9:1,或大约6:1至大约9:1。
阳离子脂质可能是,例如,N,N-二油基-N,N-二甲基氯化铵(DODAC)、N,N-二硬脂基-N,N-二甲基溴化铵(DDAB)、N-(I-(2,3-二油酰基氧基)丙基)-N,N,N-三甲基氯化铵(DOTAP)、N-(I-(2,3-二油基氧基)丙基)-N,N,N-三甲基氯化铵(DOTMA)、N,N-二甲基-2,3-二油基氧基)丙胺(DODMA)、1,2-二亚油烯基氧基-N,N-二甲基氨基丙烷(DLinDMA)、l,2-二亚麻基氧基(Dilinoleyoxy)-N,N-二甲基氨基丙烷(DLenDMA)、1,2-二亚油烯基氨基甲酰氧基-3-二甲基氨基丙烷(DLin-C-DAP)、1,2-二亚油烯基氧基-3-(二甲基氨基)乙酰氧基丙烷(DLin-DAC)、1,2-二亚油烯基氧基-3-吗啉丙烷(DLin-MA)、1,2-二亚油酰基-3-二甲基氨基丙烷(DLinDAP)、1,2-二亚油烯基硫代-3-二甲基氨基丙烷(DLin-S-DMA)、1-亚油酰基-2-亚油烯基氧基-3-二甲基氨基丙烷(DLin-2-DMAP)、1,2-二亚油烯基氧基-3-三甲基氨基丙烷氯化物盐(DLin-TMA.Cl)、1,2-二亚油酰基-3-三甲基氨基丙烷氯化物盐(DLin-TAP.Cl)、1,2-二亚油烯基氧基-3-(N-甲基哌嗪)丙烷(DLin-MPZ)或3-(N,N-二亚油烯基氨基)-1,2-丙二醇(DLinAP)、3-(N,N-二油基氨基)-1,2-丙二醇(DOAP)、1,2-二亚油烯基氧基-3-(2-N,N-二甲基氨基)乙氧基丙烷(DLin-EG-DMA)、2,2-二亚油烯基-4-二甲基氨基甲基-[1,3]-二氧戊环(DLin-K-DMA)或其类似物、或其混合物。阳离子脂质可以占存在于微粒中的总脂质的大约20摩尔%至大约50摩尔%、或大约40摩尔%。
在另一个实施方式中,化合物2,2-二亚油烯基-4-二甲氨基乙基-[1,3]-二氧戊环可用于制备脂质-siRNA纳米微粒。2008年10月23日提交的美国临时专利申请61/107,998描述了2,2-二亚油烯基-4-二甲氨基乙基-[1,3]-二氧戊环的合成,其通过参考引入本文。
在一个实施方式中,脂粒-siRNA微粒包括40%的2-二亚油烯基-4-二甲氨基乙基-[1,3]-二氧戊环:10%的DSPC:40%胆固醇:10%的PEG-C-DOMG(摩尔百分比),微粒大小为63.0±20nm和0.027的siRNA/脂质比例。
非阳离子脂质可以是阴离子脂质或中性脂质,包括但不限于二硬脂酰磷脂酰胆碱(DSPC)、二油酰磷脂酰胆碱(DOPC)、二棕榈酰磷脂酰胆碱(DPPC)、二油酰磷脂酰甘油(DOPG)、二棕榈酰磷脂酰甘油(DPPG)、二油酰磷脂酰乙醇胺(DOPE)、棕榈酰油酰磷脂酰胆碱(POPC)、棕榈酰油酰磷脂酰乙醇胺(POPE)、二油酰-磷脂酰乙醇胺4-(N-马来酰亚胺基甲基)-环己烷-l-羧酸酯(DOPE-mal)、二棕榈酰磷脂酰乙醇胺(DPPE)、二肉豆蔻酰磷酸乙醇胺(DMPE)、二硬脂酰磷脂酰乙醇胺(DSPE)、16-O-单甲基PE、16-O-二甲基PE、18-1-反式PE、1-硬脂酰-2-油酰-磷脂酰乙醇胺(SOPE)、胆固醇或其混合物。如果包括胆固醇,非阳离子脂质可以占存在于微粒中的总脂质的大约5摩尔%至大约90摩尔%、大约10摩尔%或大约58摩尔%。
抑制微粒聚集的偶联脂质可以是,例如,聚乙二醇(PEG)-脂质,包括但不限于PEG-二酰基甘油(DAG)、PEG-二烷氧基丙基(DAA)、PEG-磷脂、PEG-神经酰胺(Cer)或其混合物。PEG-DAA偶联物可以是,例如PEG-二月桂基氧基丙基(Ci2)、PEG-二肉豆蔻基氧基丙基(Ci4)、PEG-二棕榈基氧基丙基(Ci6)或PEG-二硬脂基氧基丙基(Ci8)。防止微粒聚集的偶联脂质可以是存在于微粒中的总脂质的大约0摩尔%至大约20摩尔%或大约2摩尔%。
在一些实施方式中,核酸-脂质微粒还包括占例如存在于微粒中的总脂质的大约10摩尔%至大约60摩尔%或大约48摩尔%的胆固醇。
LNP01
在一个实施方式中,类脂质(lipidoid)ND98·4HCl(分子量1487)(式1)、胆固醇(Sigma-Aldrich)和PEG-神经酰胺C16(AvantiPolarLIpids)可用于制备脂质-siRNA纳米微粒(即LNP01微粒)。可以制备如下的各在乙醇中的原液:ND98,133毫克/毫升;胆固醇,25毫克/毫升;PEG-神经酰胺C16,100毫克/毫升。ND98、胆固醇和PEG-神经酰胺C16原液然后可以以例如42:48:10的摩尔比合并。合并后的脂质溶液可与水性siRNA(例如,在pH值5的醋酸钠中)混合,以使得最终的乙醇浓度为大约35-45%,且最终的醋酸钠浓度为大约100-300mM。脂质-siRNA纳米微粒通常在混合时自发形成。根据所需粒度分布,例如,产生的纳米微粒混合物可以使用热桶(thermobarrel)挤出机(如Lipex挤出机(NorthernLipids,Inc))通过聚碳酸酯膜(如100nm的截止值)挤出。在某些情况下,挤出步骤可以省略。例如,可以通过透析或切向流过滤实现乙醇除去和同时的缓冲液交换。缓冲液可以与例如pH值大约7如pH值大约6.9、pH值大约7.0、pH值大约7.1、pH值大约7.2、pH值大约7.3或pH值大约7.4的磷酸盐缓冲盐水(PBS)交换。
例如,在国际申请公开WO2008/042973中描述了LNP01制剂,其通过参考引入本文。
乳剂
本发明的组合物可以制备并配制成乳剂。乳剂一般为一种液体以直径通常超过0.1μm的小液滴形式分散在另一种液体中的异质体系(Idson,inPharmaceuticalDosageForms,Lieberman,Rieger和Banker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第l卷,第199页;Rosoff,inPharmaceuticalDosageForms,Lieberman,Rieger和Banker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第l卷,第245页;BlockinPharmaceuticalDosageForms,Lieberman,Rieger和Banker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第2卷,第335页;Higuchi等人,inRemington'sPharmaceuticalSciences,MackPublishingCo.,Easton,Pa.,1985,第301页)。乳剂通常是包含彼此紧密混合并相互分散的2种不混溶液相的双相系统。通常,乳剂可以为油包水(w/o)或水包油(o/w)的种类。当水相细分并作为微小液滴分散到大块油相中时,所产生的组合物被称为油包水(w/o)乳剂。可选择地,当油相细分并作为微小液滴分散到大块水相中时,所产生的组合物被称为水包油(o/w)乳剂。除了分散相和活性药物(其可以作为在水相、油相中的溶液,或者以其自身作为独立相存在)外,乳剂还可以包含其他组分。如果需要,乳剂中也可以存在药物赋形剂如乳化剂、稳定剂、染料和抗氧化剂。药物乳剂也可以为由多于两种的相组成的多重乳剂,如油包水包油(o/w/o)和水包油包水(w/o/w)乳剂的情况。这种复杂的制剂通常具有某些简单的二相乳剂所不具有的优势。其中o/w乳剂的单个油滴还包有小水滴的多重乳剂形成w/o/w乳剂。同样地,在油连续相中稳定的小水珠中包封小油滴的系统构成o/w/o乳剂。
乳剂特征在于具有较小或没有热力学稳定性。通常,乳剂的分散相或不连续相很好地分散在外相或连续相中并通过乳化剂或制剂的粘性保持这种形式。乳剂的任一相可以为半固体或固体,如在乳剂型软膏基质或乳膏剂的情况中。其他稳定乳剂的方式需要使用可以引入到乳剂的任一相中的乳化剂。乳化剂可以宽泛地分成四种类型:合成的表面活性剂、天然存在的乳化剂、吸收基质和良好分散的固体(Idson,inPharmaceuticalDosageForms,Lieberman,RiegerandBanker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第l卷,第199页)。
已经发现合成的表面活性剂,也称为表面活性试剂,在乳剂制剂中有广泛应用,并且已经在文献中进行了综述(Rieger,inPharmaceuticalDosageForms,Lieberman,Rieger和Banker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第1卷,第285页;Idson,inPharmaceuticalDosageForms,Lieberman,Rieger和Banker(编辑),MarcelDekker,Inc.,NewYork,N.Y.,1988,第1卷,第199页)。表面活性剂通常是两性的,且包含亲水部分和疏水部分。表面活性剂的亲水和疏水性的比率称为亲水/疏水平衡(HLB),它是制剂制备过程中分类和选择表面活性剂的重要工具。表面活性剂可以根据亲水基团的性质分成不同的类型:非离子型、阴离子型、阳离子型和两性离子型(Rieger,inPharmaceuticalDosageForms,Lieberman,RiegerandBanker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第l卷,第285页)。
用于乳剂制剂中的自然存在的乳化剂包括羊毛脂、蜂蜡、磷脂、卵磷脂和阿拉伯树胶。吸收基质具有亲水特性,所以它们能够吸取水以形成w/o乳剂并仍然保持它们的半固体稠度,如无水羊毛脂和亲水凡士林。细分的固体也已经被用做优良的乳化剂,尤其是与表面活性剂组合和在粘性制品中使用。这些包括极性无机固体如重金属氢氧化物,不溶胀的粘土如斑脱土(bentonite)、绿坡缕石(attapulgite)、锂蒙脱石、高岭土、蒙脱石、胶状硅酸铝和胶状硅酸镁铝,色素和非极性固体如碳或三硬脂酸甘油酯。
在乳剂剂型中还包含多种非乳化物质,它们影响乳剂的性质。这些非乳化物质包括脂肪、油、蜡、脂肪酸、脂肪醇、脂肪酯、湿润剂、亲水胶体、防腐剂和抗氧化剂(Block,inPharmaceuticalDosageForms,Lieberman,Rieger和Banker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第1卷,第335页;Idson,inPharmaceuticalDosageForms,Lieberman,Rieger和Banker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第1卷,第199页)。
亲水胶体或水胶体包括天然存在的树胶和合成的聚合物如多糖(如阿拉伯树胶、琼脂、褐藻酸、角叉菜胶、瓜耳胶、刺梧桐树胶和黄蓍胶),纤维素衍生物(如羧甲基纤维素和羧丙基纤维素)和合成的聚合物(如卡波姆、纤维素醚和羧基乙烯基聚合物)。这些物质在水中分散或溶胀以形成胶状溶液,其通过在分散相小滴周围形成强的界面膜层并通过增强外相的粘度来稳定乳剂。
由于乳剂通常包含多种可以容易地支持微生物生长的成分(如碳水化合物、蛋白质、甾醇和磷脂),所以这些制剂通常含有防腐剂。乳剂制剂中包括的通常使用的防腐剂包括对羟基苯甲酸甲基酯、对羟基苯甲酸丙基酯、季铵盐、苯扎氯铵、对羟基苯甲酸酯和硼酸。通常也将抗氧化剂加入到乳剂制剂中,以预防制剂的变质。所用的抗氧化剂可以为自由基清除剂如生育酚、没食子酸烷基酯、丁基化的羟基茴香醚、丁基化的羟基甲苯,或还原剂如抗坏血酸和偏亚硫酸氢钠,以及抗氧化剂协同剂如柠檬酸、酒石酸和卵磷脂。
乳剂制剂通过皮肤的、口腔的和肠胃外途径的应用和它们的生产方法已经在文献(Idson,inPharmaceuticalDosageForms,Lieberman,RiegerandBanker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第l卷,第199页)中进行了综述。因为配制简单并且在吸收和生物利用度方面的效能,经口递送的乳剂制剂已经被广泛使用(Rosoff,inPharmaceuticalDosageForms,Lieberman,Rieger和Banker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第1卷,第245页;Idson,inPharmaceuticalDosageForms,Lieberman,Rieger和Banker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第l卷,第199页)。矿物油基的缓泻药、油溶性的维生素和高脂营养制品属于通常作为o/w乳剂经口施用的物质。
在本发明的一个实施方式中,dsRNA与核酸的组合物被制成微乳剂。微乳剂可以定义为水、油和两亲物质的体系,它是单一的光学各向同性的和热力学稳定的液体溶液(Rosoff,inPharmaceuticalDosageForms,Lieberman,Rieger和Banker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第1卷,第245页)。典型地,微乳剂是通过如下方法制备的体系,首先将油分散到水性表面活性剂溶液中,然后加入足量的第四组分(通常为中等链长度的醇)而形成透明体系。因此,微乳剂也被描述成由表面活性分子的界面膜稳定的两种不混溶液体的热力学稳定的各向同胜的澄清分散体(Leung和Shah,in:ControlledReleaseofDrugs:PolymersandAggregateSystems,Rosoff,M.,Ed.,1989,VCHPublishers,NewYork,第185-215页)。通常微乳剂通过3至5种组分的组合(包括油、水、表面活性剂、辅助表面活性剂和电解质)来制备。微乳剂是油包水(w/o)型还是水包油(o/w)型取决于所使用的油和表面活性剂的性质以及表面活性剂分子的极性头部和烃尾部的结构和几何包装(Schott,inRemington'sPharmaceuticalSciences,MackPublishingCo.,Easton,Pa.,1985,第271页)。
已经广泛地研究了利用相图的现象学方法,并且产生了对于本领域技术人员来说容易理解的关于如何配制微乳剂的知识(Rosoff,inPharmaceuticalDosageForms,Lieberman,Rieger和Banker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第1卷,第245页;Block,inPharmaceuticalDosageForms,Lieberman,Rieger和Banker(编辑),1988,MarcelDekker,Inc.,NewYork,N.Y.,第1卷,第335页)。与常规乳剂相比,微乳剂的优点是能将水不溶性药物溶解到同时形成的热力学稳定的液滴制剂中。
微乳剂制备中所使用的表面活性剂包括但不限于单独的或与辅助表面活性剂组合使用的离子表面活性剂、非离子表面活性剂、Brij96、聚氧乙烯油基醚、聚脂肪酸甘油酯、单月桂酸四甘油酯(ML310)、单油酸四甘油酯(MO310)、单油酸六甘油酯(PO310)、五油酸六甘油酯(PO500)、单癸酸十甘油酯(MCA750)、单油酸十甘油酯(MO750)、倍半油酸(sequioleate)十甘油酯(SO750)、十油酸十甘油酯(DAO750)。所述辅助表面活性剂通常是短链醇(如乙醇、1-丙醇和1-丁醇),其作用是通过渗透到表面活性剂膜中并因此由于表面活性剂分子间产生的空余空间从而产生无序膜而提高界面流动性。然而,微乳剂可以不用辅助表面活性剂进行制备,并且无醇的自乳化微乳剂体系是本领域已知的。典型地,水相可以是(但不限于)水、药物的水溶液、甘油、PEG300、PEG400、聚甘油、丙二醇和乙二醇的衍生物。油相可以包括但不限于如Captex300、Captex355、CapmulMCM、脂肪酸酯、中等链(C8-C12)的单、二和三-甘油酯、聚氧乙基化的甘油脂肪酸酯、脂肪醇,聚二醇化的甘油酯、饱和的聚二醇化的C8-C10甘油酯、植物油和硅油。
从药物溶解度和增强的药物吸收方面看,微乳剂是特别令人感兴趣的。已经提议使用基于脂质的微乳剂(o/w和w/o两者)以增强包括肽在内的药物的口服生物利用度(Constantinides等人,PharmaceuticalResearch,1994,11,1385-1390;Ritschel,Meth.Find.Exp.Clin.Pharmacol.,1993,13,205)。微乳剂具有以下优势:提高药物溶解度,防止药物受到酶的水解,可能由于表面活性剂导致的膜流动性和渗透性的改变而增强药物的吸收,制备简单,比固体剂型更容易口服施用,临床效能提高和毒性降低(Constantinides等人,PharmaceuticalResearch,1994,11,1385;Ho等人,J.Pharm.Sci.,1996,85,138-143)。通常,微乳剂可以在其成分在环境温度下混合在一起时自发地形成。当配制热不稳定的药物、肽或dsRNA时,这可能特别有利。在化妆品和药物应用领域,微乳剂有效地用于透皮递送活性组分。我们期望本发明的微乳剂组合物和制剂会有利于提高dsRNA和核酸从胃肠道的系统吸收,并提高dsRNA和核酸的局部细胞摄取。
本发明的微乳剂还可以包含其他成分和添加剂如山梨聚糖单硬脂酸酯(Grill3)、Labrasol和渗透增强剂,以提高制剂的性能并增强本发明的dsRNA和核酸的吸收。本发明的微乳剂中使用的渗透增强剂可以分成五大类中的一种:表面活性剂、脂肪酸、胆汁盐、螯合剂和非螯合的非表面活性剂(Lee等人,CriticalReviewsinTherapeuticDrugCarrierSystems,1991,第92页)。各个类型都已经在以上进行了讨论。
渗透增强剂
在一个实施方式中,本发明使用各种渗透增强剂以实现核酸尤其是dsRNA至动物皮肤的有效递送。大多数药物以离子和非离子的形式存在于溶液中。然而,通常只有脂溶性的或亲脂的药物可容易地穿过细胞膜。已经发现,如果用渗透增强剂处理要穿过的细胞膜,甚至连非亲脂性药物都可以穿过细胞膜。除了帮助非亲脂药物穿过细胞膜的扩散外,渗透增强剂也能增强亲脂性药物的渗透性。
渗透增强剂可以归类为属于5大类之一,即表面活性剂、脂肪酸、胆汁盐、螯合剂和非螯合的非表面活性剂(Lee等人,CriticalReviewsinTherapeuticDrugCarrierSystems,1991,第92页)。在下面对各类以上提及的渗透增强剂进行详细描述。
表面活性剂:在本发明的上下文中,表面活性剂(或“表面活性试剂”)为化学实体,当其溶解在水性溶液中时,它降低溶液的表面张力或者水性溶液和另一种液体之间的界面张力,结果是dsRNA通过粘膜的吸收得到增强。除了胆汁盐和脂肪酸之外,这些渗透增强剂还包括例如月桂基硫酸钠、聚氧乙烯基-9-月桂基醚和聚氧乙烯基-20-鲸蜡基醚(Lee等人,CriticalReviewsinTherapeuticDrugCarrierSystems,1991,第92页),以及全氟化合物乳剂如FC-43(Takahashi等人,J.Pharm.Pharmacol.,1988,40,252)。
脂肪酸:用作渗透增强剂的各种脂肪酸和它们的衍生物包括,例如油酸、月桂酸、癸酸(正癸酸)、肉豆蔻酸、棕桐酸、硬脂酸、亚油酸、亚麻酸、二癸酸酯、三癸酸酯、甘油一油酸酯(1-单油酰-rac-甘油)、二月桂精、辛酸、花生四烯酸、甘油1-单癸酸酯、1-十二烷基氮杂环庚-2-酮、酰基肉毒碱、酰基胆碱、它们的C1-10烷基酯(如甲基、异丙基和叔丁基酯)和它们的甘油单酯和甘油二酯(即油酸酯、月桂酸酯、癸酸酯、豆蔻酸酯、棕榈酸酯、硬脂酸酯、亚油酸酯等)(Lee等人,CriticalReviewsinTherapeuticDrugCarryierSystems,1991,第92页;Muranishi,CriticalReviewsinTherapeuticDrugCarrierSystems,1990,7,1-33;ElHariri等人,J.Pharm.Pharmacol.,1992,44,651-654)。
胆汁盐:胆汁盐的生理作用包括促进脂质和脂溶性维生素的分散和吸收(Brunton,第38章:Goodman&Gilman'sThePharmacologicalBasisofTherapeutics,第9版,Hardman等人编著,McGraw-Hill,NewYork,1996,第934-935页)。各种天然胆汁盐和它们的合成衍生物作为渗透增强剂起作用。因此术语“胆汁盐”包括任何胆汁中天然存在的成分和任何它们的合成衍生物。合适的胆汁盐包括例如胆酸(或其药学上可接受的钠盐,胆酸钠)、脱氢胆酸(脱氢胆酸钠)、脱氧胆酸(脱氧胆酸钠)、甘胆酸(甘胆酸钠)、甘氨胆酸(甘氨胆酸钠)、甘氨脱氧胆酸(甘氨脱氧胆酸钠)、牛磺胆酸(牛磺胆酸钠)、牛磺脱氧胆酸(牛磺脱氧胆酸钠)、鹅脱氧胆酸(鹅脱氧胆酸钠)、熊脱氧胆酸(UDCA)、牛磺-24,25-二氢-梭链孢酸钠(STDHF)、甘氨二氢梭链孢酸钠和聚氧乙烯-9-月桂基醚(POE)(Lee等人,CriticalReviewsinTherapeuticDrugCarrierSystems,1991,第92页;Swinyard,第39章In:Remington'sPharmaceuticalSciences,第18版,Gennaro编辑,MackPublishingCo.,Easton,Pa.,1990,第782-783页;Muranishi,CriticalReviewsinTherapeuticDrugCarrierSystems,1990,7,1-33;Yamamoto等人,J.Pharm.Exp.Ther.,1992,263,25;Yamashita等人,J.Pharm.Sci.,1990,79,579-583)。
螯合剂:本发明所使用的螯合剂可以定义为通过与金属离子形成复合物将其从溶液中除去的化合物,结果是加强dSRNA通过粘膜的吸收。关于它们在本发明中作为渗透增强剂的应用,因为大多数鉴定的DNA核酸酶需要二价金属离子用于催化反应而因此受到螯合剂的抑制,螯合剂还具有作为DNase抑剂剂的附加优势(Jarrett,J.Chromatogr.,1993,618,315-339)。合适的螯合剂包括但不限于乙二胺四乙酸二钠(EDTA)、柠檬酸、水杨酸盐(如水杨酸钠、5-甲氧基水杨酸盐和高香草酸盐)、胶原的N-酰基衍生物、月桂醇聚醚(laureth)-9和β-二酮的N-氨基酰基衍生物(烯胺)(Lee等人,CriticalReviewsinTherapeuticDrugCarrierSystems,1991,第92页;Muranishi,CriticalReviewsinTherapeuticDrugCarrierSystems,1990,7,1-33;Buur等人,J.ControlRel.,1990,14,43-51)。
非螯合的非表面活性剂:如本文所使用的,非螯合的非表面活性剂渗透增强化合物可以定义为显示出不显著的螯合剂或表面活性剂的活性但是仍可增强dsRNA通过消化道粘膜的吸收的化合物(Muranishi,CriticalReviewsinTherapeuticDrugCarrierSystems,1990,7,1-33)。这类渗透增强剂包括例如不饱和环脲、1-烷基-和1-链烯基氮杂环-烷酮衍生物(Lee等人,CriticalReviewsinTherapeuticDrugCarrierSystems,1991,第92页),以及非甾族抗炎剂如双氯芬酸钠、吲哚美辛和苯基丁氮酮(Yamashita等人,J.Pharm.Pharmacol.,1987,39,621-626)。
增强dsRNA在细胞水平上的摄取的试剂也可以加入到本发明的药物组合物和其他组合物中。例如,已知阳离子脂质如lipofectin(Junichi等人,美国专利号5,705,188)、阳离子甘油衍生物和聚阳离子分子如聚赖氨酸(Lollo等人,PCT申请WO97/30731)也增强dsRNA的细胞摄取。
其他试剂也可以用于增强所施用的核酸的渗透,包括二醇类(如乙二醇和丙二醇)、吡咯类(如2-吡咯)、氮酮类(azones)和萜类(如苎烯和薄荷酮)。
载体
本发明的dsRNA可以配制成药学上可接受的载体或稀释剂。“药学上可接受的载体”(本文也称为“赋形剂”)是药学上可接受的溶剂、悬浮剂或其他任何药用惰性媒介。药学上可接受的载体可以是液体或固体,且可以考虑预计的给药方式对其进行选择以提供理想的体积、稠度以及其他相关的转运和化学性质。典型的药学上可接受的载体包括(举例来说),但不限于:水,盐溶液,粘合剂(例如,聚乙烯吡咯烷酮或羟丙基甲基纤维素),填料(如乳糖和其他糖类、明胶或硫酸钙),润滑剂(例如,淀粉、聚乙二醇或醋酸钠);崩解剂(如淀粉或淀粉乙醇酸钠)和润湿剂(如月桂基硫酸钠)。
本发明的某些组合物还在制剂中引入载体化合物。如本文所使用的,“载体化合物”或“载体”可以指核酸或其类似物,它是惰性的(即本身不具有生物活性),但却被降低具有生物活性的核酸的生物利用度(例如通过降解生物活性核酸或促进其从循环系统中除)的体内过程识别为核酸。核酸和载体化合物的共同施用(典型的是后一种物质过量)能够导致从肝、肾或其他循环外脏器中回收的核酸量显著减少,据推测原因是载体化合物和核酸之间竞争共同的受体。例如,当与聚肌苷酸、葡聚糖硫酸酯、聚胞嘧啶核苷酸(polycytidicacid)或4-乙酰胺基-4’-异硫氰基-芪-2,2-二磺酸共同施用时,可以减少部分地硫代磷酸酯化的dsRNA在肝组织中的回收(Miyao等人,DsRNARes.Dev.,1995,5,115-121;Takakura等人,DsRNA&Nucl.AcidDrugDev.,1996,6,177-183)。
赋形剂
与载体化合物相比,“药物载体”或“赋形剂”是用于向动物递送一种或多种核酸的药学上可接受的溶剂、悬浮剂或任何其他药学惰性媒介。所述赋形剂可以是液体或固体,且考虑预计的给药方式进行选择以在与核酸和特定药物组合物的其他组分组合时提供理想的体积、稠度等。典型的药物载体包括但不限于粘合剂(如预胶化的玉米淀粉、聚乙烯基吡咯烷酮或羟丙基甲基纤维素等),填料(如乳糖和其他糖、微晶纤维素、果胶、明胶、硫酸钙、乙基纤维素、聚丙烯酸酯或磷酸氢钙等),润滑剂(如硬脂酸镁、滑石、二氧化硅、胶状二氧化硅、硬脂酸、硬脂酸金属盐、氢化植物油、玉米淀粉、聚乙二醇、苯甲酸钠、乙酸钠等),崩解剂(如淀粉、淀粉乙醇酸钠等),和湿润剂(如月桂基硫酸钠等)。
不与核酸发生有害反应的、适合于肠胃外施用的药学上可接受的有机或无机赋形剂也可以用来配制本发明的组合物。合适的药学上可接受的载体包括但不限于水、盐溶液、醇类、聚乙二醇、明胶、乳糖、直链淀粉、硬脂酸镁、滑石、硅酸、粘性石蜡、羟甲基纤维素、聚乙烯基吡咯烷酮等。
用于局部施用核酸的制剂可以包括在普通溶剂(如醇类)中的无菌或非无菌的水性溶液、非水性溶液,或者核酸在液体或固体油基质中的溶液。该溶液还可以包含缓冲剂、稀释剂和其他合适的添加剂。可以使用不与核酸发生有害反应的、适合于非肠胃外施用的药学上可接受的有机或无机赋形剂。
合适的药学上可接受的赋形剂包括但不限于是:水、盐溶液、醇、聚乙二醇、明胶、乳糖、直链淀粉、硬脂酸镁、滑石、硅酸、粘性石蜡、羟甲基纤维素、聚乙烯基吡咯烷酮等。
其他成分
本发明的组合物可以另外包含其他以本领域熟知的使用水平在药物组合物中常用的辅助组分。因此,例如组合物可以包含额外的、相容性的药学活性物质如止痒剂、收敛剂、局部麻醉剂或抗炎剂,或者可以包含可用于物理配制本发明组合物的各种剂型的其他物质,如染料、芳香剂、防腐剂、抗氧化剂、遮光剂、增稠剂和稳定剂。然而,当加入这类物质时,它们不应当过度干扰本发明组合物的成分的生物活性。该制剂可以进行灭菌,并且如果需要的话,可以与助剂如润滑剂、防腐剂、稳定剂、湿润剂、乳化剂、用于调节渗透压的盐、缓冲剂、着色物质、调味剂和/或芳香物质等混合,它们不与制剂中的核酸发生有害的相互作用。
水性悬浮液可以包含提高悬浮液粘性的物质,包括例如羧甲基纤维素钠、山梨醇和/或葡聚糖。悬浮液还可以包含稳定剂。
联合治疗
一方面,本发明的组合物可以用于联合治疗。术语“联合治疗”包括施用进一步与其他生物活性成分(例如,但不限于,第二和不同的抗肿瘤剂)和非药物疗法(例如,但不限于手术或放射治疗)结合施用对象化合物。例如,本发明的化合物可以与其他药学活性化合物、优选能够提高本发明的化合物的效果的化合物结合使用。本发明的化合物可以与其他药物治疗同时施用(作为单一制剂或单独的制剂)或顺序施用。一般地,联合治疗包括在治疗的单个周期或疗程中施用两种或多种药物。
在本发明的一个方面,对象化合物可以与一种或多种调节涉及各种疾病状态的蛋白激酶的单独药剂结合施用。这种激酶的例子可以包括但不限于:丝氨酸/苏氨酸特异性激酶、受体酪氨酸特异性激酶和非受体酪氨酸特异性激酶。丝氨酸/苏氨酸激酶包括有丝分裂原激活的蛋白激酶(MAPK)、减数分裂特异性激酶(MEK)、RAF和极光激酶(aurorakinase)。受体激酶家族的例子包括表皮生长因子受体(EGFR)(例如,HER2/neu、HER3、HER4、ErbB、ErbB2、ErbB3、ErbB4、Xmrk、DER、Let23),成纤维细胞生长因子(FGF)受体(例如,FGF-Rl、GFF-R2/BEK/CEK3、FGF-R3/CEK2、FGF-R4/TKF、KGF-R),肝细胞生长/离散因子受体(HGFR)(例如,MET、RON、SEA、SEX)、胰岛素受体(例如,IGFI-R),Eph(例如,CEK5、CEK8、EBK、ECK、EEK、EHK-I、EHK-2、ELK、EPH、ERK、HEK、MDK2、MDK5、SEK),AxI(例如,Mer/Nyk、Rse),RET和血小板源生长因子受体(PDGFR)(例如,PDGFα-R、PDGβ-R、CSFl-R/FMS、SCF-R/C-KIT、VEGF-R/FLT、NEK/FLK1、FLT3/FLK2/STK-1)。非受体酪氨酸激酶家族包括但不限于BCR-ABL(例如,p43abl、ARG),BTK(例如,ITK/EMT、TEC),CSK、FAK、FPS、JAK、SRC、BMX、FER、CDK和SYK。
在本发明的另一方面,对象化合物可以与一种或多种调节非激酶的生物靶标或过程的试剂结合施用。这些靶标包括组蛋白脱乙酰基酶(HDAC)、DNA甲基转移酶(DNMT)、热休克蛋白(例如,HSP90)以及蛋白体。
在一个实施方式中,对象化合物可与抑制一种或多种生物靶标的抗肿瘤药(例如,小分子、单克隆抗体、反义RNA和融合蛋白)结合,如伏立诺他胶囊(Zolinza)、它赛瓦(Tarceva)、易瑞沙(Iressa)、泰克泊(Tykerb)、格列卫(Gleevec)、索坦(Sutent)、扑瑞赛(Sprycel)、多吉美(Nexavar)、索拉非尼(Sorafenib)、CNF2024、RG108、BMS387032、Affmitak、阿瓦斯汀(Avastin)、赫赛汀(Herceptin)、爱必妥(Erbitux)、AG24322、PD325901、ZD6474、PD184322、Obatodax、ABT737和AEE788的。这样的组合可以获得与单独的任何试剂所取得的疗效相比增强的疗效,且可以防止或延缓抗药性突变变种的出现。
在某些优选实施方式中,本发明的化合物结合化疗药物施用。化疗药物包括肿瘤领域内的宽范围的治疗性处理。出于缩小肿瘤、消灭手术后剩余的残留癌细胞、诱导症状消退、维持症状消退和/或减轻与癌症或其治疗相关的症状的目的,在疾病的不同阶段施用这些药剂。这类药剂的例子包括但不限于:烷基化剂如芥子气衍生物(氮芥、环磷酰胺、苯丁酸氮芥、美法仑、异环磷酰胺)、乙撑亚胺(ethylenimine)(噻替哌、六甲基蜜胺(hexamethylmelanine))、烷基磺酸酯(白消安)、肼和三嗪(克瘤灵(Altretamine)、甲基苄肼、氮烯唑胺和替莫唑胺)、亚硝基脲(卡氮芥、洛莫司汀和链脲菌素)、异环磷酰胺和金属盐(卡铂、顺铂、奥沙利铂);植物生物碱,例如鬼臼毒素(Podophyllotoxin)(依托泊苷和Tenisopide)、紫杉烷类(紫杉醇和多西紫杉醇)、长春花生物碱(长春新碱、长春碱、长春地辛和长春瑞滨)和喜树碱(Camptothecan)类似物(伊立替康(Irinotecan)和拓扑替康(topotecan));抗肿瘤抗生素,如色霉素(更生霉素和普卡霉素(Plicamycin))、蒽环类(多柔比星、柔红霉素、表柔比星、米托蒽醌、戊柔比星(Valrubicin)和依达比星)和各种抗生素,如丝裂霉素、放线菌素和博莱霉素;抗代谢物,如叶酸拮抗剂(甲氨蝶呤、培美曲塞(Pemetrexed)、雷替曲塞(Raltitrexed)、氨基喋呤(Aminopterin))、嘧啶拮抗剂(5-氟尿嘧啶、氟尿苷、阿糖胞苷、卡培他滨和吉西他滨)、嘌呤拮抗剂(6-巯基嘌呤和6-硫鸟嘌呤)及腺苷脱氨酶抑制剂(克拉屈滨、氟达拉滨、巯嘌呤、氯法拉滨、硫鸟嘌呤、奈拉滨(nelarabine)和喷司他丁);拓扑异构酶抑制剂如拓扑异构酶I抑制剂(伊立替康(ironotecan)、拓扑替康)和拓扑异构酶II抑制剂(安吖啶、依托泊苷、磷酸依托泊苷、替尼泊苷);单克隆抗体(阿仑单抗、吉妥珠单抗奥唑米星(Gemtuzumabozogamicin)、美罗华、曲妥珠单抗(trastuzumab)、替伊莫单抗(IbritumomabTioxetan)、西妥昔单抗、帕尼单抗(panitumumab)、托西莫单抗(Tositumomab)、贝伐单抗(bevacizumab);和各种抗肿瘤药,如核苷酸还原酶抑制剂(羟基脲);肾上腺皮质类固醇抑制剂(米托坦);酶(天冬酰胺酶和培门冬酶);抗微管药物(雌莫司汀);和类维生素A(蓓萨罗丁(Bexarotene)、异维A酸、维甲酸(ATRA))。在某些优选的实施方式中,本发明的化合物与化疗保护剂结合施用。化疗保护剂发挥作用以保护身体或减少化疗的副作用。这类药剂的例子包括但不限于阿米福汀(amfostine)、美司钠(mesna)和右雷佐生(dexrazoxane)。
在本发明的一个方面,对象化合物与放射治疗结合施用。通常利用光子(X射线或伽玛射线)或粒子辐射的机器从内部(靠近癌症位点植入放射性材料)或从外部传送辐射。在联合治疗还包括放射治疗的情况中,可在任何适当的时间进行放射治疗,只要由治疗药物和放射治疗的共同作用实现有益的效果。例如,在合适的情况下,当暂时将放射治疗与治疗药物施用分开(可能数天甚至数周)时,仍然取得有益的作用。
可以理解,本发明的化合物可以与免疫治疗剂结合使用。免疫治疗的一种形式是通过在远离肿瘤的位置施用疫苗组合物产生宿主源的主动全身性肿瘤特异性免疫反应。已经提出各种不同类型的疫苗,包括分离的肿瘤抗原疫苗和抗个体基因型疫苗。另一种方法是利用来自待治疗的受试者的肿瘤细胞或者这种细胞的衍生体(Schirrmacher等人(1995)J.CancerRes.Clin.Oncol.121:487综述)。在美国专利5,484,596中,HannaJr.等人要求保护用于处理可切除的癌以防止肿瘤复发或转移的方法:包括手术去除肿瘤,用胶原酶分散细胞,照射细胞,并用至少三次大约107个细胞的连续剂量对患者进行免疫。
可以理解,本发明的化合物可以有利地与一种或多种辅助治疗药物结合使用。合适的用于辅助治疗的药物的例子包括:类固醇类,例如皮质类固醇(安西缩松、倍他米松、倍他米松二丙酸酯、倍他米松戊酸酯、布地奈德、氯倍他索、氯倍他索醋酸酯、氯倍他索丁酸酯、氯倍他索17-丙酸酯、可的松、地夫可特、去羟米松、二氟米松戊酸酯、地塞米松、地塞米松磷酸钠、地索奈德糠酸酯、醋酸氟轻松、氟轻松、哈西缩松、氢化可的松、氢化可的松丁酸酯、氢化可的松琥珀酸钠、氢化可的松戊酸酯、甲基强的松龙、莫米松、泼尼卡酯、泼尼松龙、曲安西龙、丙炎松和卤贝他索丙酸酯(HalobetasolPropionate));5HTi激动剂,如曲坦(triptan)(如舒马曲坦或那拉曲坦);腺苷Al激动剂;EP配体;NMDA调节剂,如甘氨酸拮抗剂;钠通道阻滞剂(如拉莫三嗪);P物质拮抗剂(如NKi拮抗剂);大麻类物质;对乙酰氨基酚或非那西丁;5-脂氧合酶抑制剂;白三烯受体拮抗剂;DMARD(如甲氨蝶呤);加巴喷丁和相关化合物;三环抗抑郁剂(如阿米替林)、神经元稳定抗癫痫药物;单胺能摄取抑制剂(如文拉法辛);基质金属蛋白酶抑制剂;一氧化氮合酶(NOS)抑剂剂,如iNOS或nNOS抑制剂;肿瘤坏死因子α的释放或活性抑制剂;抗体治疗,如单克隆抗体治疗;抗病毒剂,如核苷抑制剂(如拉米夫定)或免疫系统调节剂(如干扰素);阿片类止痛剂;局部麻醉剂;兴奋剂,包括咖啡因;H2-拮抗剂(如雷尼替丁);质子泵抑剂剂(如奥美拉唑);抗酸剂(如氢氧化铝或氢氧化镁);抗气胀药(antiflatulent)(如二甲基硅油)、减充血剂(如苯肾上腺素、苯丙醇胺、伪麻黄碱、羟甲唑啉、肾上腺素、萘唑啉、丁苄唑啉、丙己君(propylhexedrine)或左旋去氧麻黄碱);镇咳药(如可待因、氢可酮、卡拉米芬(carmiphen)、妥克拉司或右美沙芬);利尿剂;或镇静和非镇静抗组胺药。
本发明的化合物可以与靶向于其他基因的siRNA共同施用。例如,本发明的化合物可以与靶向于c-Myc基因的siRNA共同施用。例如,AD-12115可以与c-MycsiRNA共同施用。在美国专利申请12/373,039中公开了靶向c-Myc的siRNAs的例子,其通过引用引入本文中。
治疗由Eg5和VEGF基因表达引起的疾病的方法
本发明尤其涉及包含至少两种dsRNA(一种靶向于Eg5基因,和一种靶向于VEGF基因)的组合物用于治疗癌症(例如肝癌)的用途,例如用于抑制肿瘤生长和肿瘤转移。例如,组合物(如药物组合物)可以用于治疗实体瘤如肝内肿瘤,例如可能发生在肝脏癌症中的肝内肿瘤。包含靶向于Eg5的dsRNA和靶向于VEGF的dsRNA的组合物也可以用于治疗其他肿瘤和癌症,如乳腺癌、肺癌、头颈癌、脑癌、腹腔癌、结肠癌、结肠直肠癌、食管癌、胃肠癌、神经胶质瘤、舌癌、神经母细胞瘤、骨肉瘤、卵巢癌、胰癌、前列腺癌、视网膜母细胞瘤、威尔姆氏肿瘤、多发性骨髓瘤,以及用于治疗皮肤癌如黑色素瘤,用于治疗淋巴瘤和血癌。本发明还涉及包含Eg5dsRNA和VEGFdsRNA的组合物用于在不同类型的癌症中抑制腹水液体和胸腔积液的聚积的用途,例如肝癌、乳腺癌、肺癌、头部癌、颈部癌、脑癌、腹腔癌、结肠癌、结肠直肠癌、食管癌、胃肠癌、神经胶质瘤、舌癌、神经母细胞瘤、骨肉瘤、卵巢癌、胰癌、前列腺癌、视网膜母细胞瘤、威尔姆氏肿瘤、多发性骨髓瘤、皮肤癌、黑色素瘤、淋巴瘤和血癌。由于对Eg5和VEGF表达的抑制作用,本发明的组合物或由其制备的药物组合物可以提高生活质量。
在一个实施方式中,治疗患有与AFP的表达相关的肿瘤或分泌AFP的肿瘤(例如肝细胞瘤或畸胎瘤)的患者。在某些实施方式中,患者患有恶性畸胎瘤、内胚窦瘤(卵黄囊癌)、神经母细胞瘤、肝胚细胞瘤、肝细胞癌、睾丸癌或卵巢癌。
本发明还涉及dsRNA或其药物组合物用于例如与其他药物和/或其他治疗方法结合(如与已知的药物和/或已知的治疗方法,如那些目前所应用于治疗癌症和/或用于防止肿瘤转移的方法结合)治疗癌症或用于防止肿瘤转移的用途。优选的是与放射治疗和化疗剂如顺铂、环磷酰胺、5-氟尿嘧啶、阿霉素、柔红菌素或它莫西芬结合。
本发明还可以通过包括特定的RNAi剂,与另一种抗肿瘤化疗剂(如任何常规化疗剂)组合实施。特定结合剂与这类其他药剂的组合可以加强化学治疗方案。熟练的技术人员容易想到能引入到本发明的方法中的许多化学治疗方案。可以使用任何化学治疗剂,包括烷基化剂、抗代谢物、激素和拮抗剂、放射性同位素以及天然物质。例如,本发明的化合物可以与抗生素(如阿霉素)和其他蒽环类似物、氮芥类(如环磷酰胺)、嘧啶类似物(如5-氟尿嘧啶)、顺铂、羟基脲、紫杉醇以及它的天然的和合成的衍生物等一起施用。作为另一个例子,在其中肿瘤包括促性腺素依赖性细胞和非促性腺素依赖性细胞的混合肿瘤(如乳腺的腺癌)的情况下,化合物可以与亮丙瑞林或戈舍瑞林(LH-RH的合成肽类似物)联合施用。其他抗肿瘤方案包括四环素化合物与另一种治疗方式(如手术、放射等)(本文也称为“辅助抗肿瘤方式”)一起使用。因此,本发明的方法可以与这种常规疗法一起应用而具有降低副作用和增强疗效的效果。
抑制EG5基因和VEGF基因表达的方法
在再另一方面,本发明提供了用于抑制哺乳动物中Eg5基因和VEGF基因的表达的方法。该方法包括向哺乳动物施用本发明描述的组合物,以此沉默Eg5靶基因和VEGF靶基因的表达。
在一个实施方式中,抑制Eg5基因表达和VEGF基因表达的方法包括施用包含两种不同的dsRNA分子的组合物,一种dsRNA分子具有与要治疗的哺乳动物的Eg5基因的RNA转录物的至少一部分互补的核苷酸序列,另一种具有dsRNA分子与要治疗的哺乳动物的VEGF基因的RNA转录物的至少一部分互补的核苷酸序列。当要治疗的生物体为哺乳动物(如人)时,组合物可以通过本领域已知的任意方式施用,包括但不限于经口或肠胃外途径,包括静脉内、肌肉内、皮下、透皮、空气(气溶胶)、鼻、直肠和局部(包括口含和舌下)施用。在优选的实施方式中,组合物通过静脉输注或注射施用。
除非另有定义,本文所使用的所有技术和科学术语与本发明所属的技术领域中的普通技术人员通常所理解的意思相同。虽然在本发明的实施或检验中可以使用与本文所描述的方法和物质类似或相同的方法和物质,但是以下描述了合适的方法和物质。本文提及的所有出版物、专利申请、专利和其他参考文献通过引用整体结合入本文。在发生冲突的情况下,以本说明书(包括定义)为准。另外,物质、方法和实施例仅为说明性的并不意图限制本发明的范围。
实施例
实施例1.dsRNA合成
试剂来源
在本文没有特别给出试剂来源时,这种试剂可以以分子生物学应用的质量/纯度标准从任何分子生物学试剂供应商处获取。
siRNA合成
为筛选dsRNA,利用Expedite8909合成仪(AppliedBiosystems,AppleraDeutschlandGmbH,Darmstadt,Germany)和作为固相载体的可控微孔玻璃(ProligoBiochemieGmbH,Hamburg,Germany)以1微摩尔的规模通过固相合成产生单链RNA。通过分别利用相应的亚磷酰胺和2'-O-甲基亚磷酰胺(ProligoBiochemieGmbH,Hamburg,Germany)的固相合成产生RNA和包含2'-O-甲基核苷酸的RNA。利用标准的核苷亚磷酰胺化学反应(如在核酸化学的当前方法(currentprotocolsinnucleicacidchemistry)(Beaucage,S.L.等人(编辑),JohnWiley&Sons,Inc.,NewYork,NY,USA)中所描述的化学反应),在寡核苷酸链序列内的选定位点处引入这些构建块(buildingblock)。通过用Beaucage试剂(ChruachemLtd,Glasgow,UK)的乙腈(1%)溶液替换碘氧化剂溶液引入硫代磷酸酯键。进一步的辅助试剂从MallinckrodtBaker(Griesheim,Germany)获得。
根据已知的方法进行通过阴离子交换HPLC对粗的寡核糖核苷酸的脱保护和纯化。利用分光光度计(DU640B,BeckmanCoulterGmbH,Unterschleiβheim,Germany)通过各个RNA溶液在260nm波长的UV吸收确定产量和浓度。通过在退火缓冲液(20mM磷酸钠,pH6.8;100mM氯化钠)中混合等摩尔的互补链产生双链RNA,在85-90℃的水浴中加热3分钟并在3-4小时的时间内冷却至室温。退火的RNA溶液储存在-20℃直至使用。
偶联物
下面是对在3’-胆固醇偶联的siRNA(本文称为-Chol-3')的合成的预言性描述,适当修饰的固体载体用于RNA合成。所述修饰固体载体如下制备:
2-氮杂丁烷-1,4-二羧酸二乙基酯AA
将4.7M的氢氧化钠水溶液(50mL)加入到水(50mL)中的搅拌的、冰冷的甘氨酸乙酯盐酸盐(32.19g,0.23摩尔)溶液。然后加入丙烯酸乙酯(23.1g,0.23摩尔),并在室温下搅拌混合物直至通过TLC确认反应完全。19小时后,用二氯甲烷(3x100mL)对溶液分层。有机层用无水硫酸钠干燥、过滤并蒸干。蒸馏残留物以得到AA(28.8g,61%)。
3-{乙氧羰基甲基-[6-(9H-芴-9-基甲氧羰基-氨基)-己酰基]-氨基}-丙酸乙酯AB
将Fmoc-6-氨基-己酸(9.12g,25.83毫摩尔)溶解于二氯甲烷(50mL)中并用冰冷却。在0℃向所述溶液中加入二异丙基碳二亚胺(diisopropylcarbodiimde)(3.25g,3.99mL,25.83毫摩尔)。然后加入氮杂丁烷-1,4-二羧酸二乙酯(5g,24.6摩尔)和二甲氨基吡啶(0.305g,2.5毫摩尔)。将所述溶液升至室温并进一步搅拌6小时。通过TLC确定反应的完全。反应混合物在真空下浓缩并加入乙酸乙酯以使二异丙基脲沉淀。过滤悬浮液。滤过液用5%盐酸水溶液、5%碳酸氢钠和水进行洗涤。合并的有机层经硫酸钠干燥并浓缩以产生粗产物,用柱色谱(50%的EtOAC/己烷)纯化粗产物以产生11.87g(88%)的AB。
3-[(6-氨基-己酰基)-乙氧羰基甲基-氨基]-丙酸乙酯AC
将3-{乙氧羰基甲基-[6-(9H-芴-9-基甲氧羰基氨基)己酰基]-氨基}-丙酸乙酯AB(11.5g,21.3毫摩尔)在0℃下溶解于二甲基甲酰胺中的20%哌啶中。持续搅拌溶液l小时。反应混合物在真空下浓缩,将水加入到残留物中,并用乙酸乙酯萃取产物。通过将粗产物转化为其盐酸盐进行纯化。
3-({6-[17-(1,5-二甲基-己基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊并[a]菲-3-基氧羰基氨基]-己酰基}乙氧羰基甲基-氨基)-丙酸乙酯AD
将3-[(6-氨基-己酰基)-乙氧羰基甲基-氨基]-丙酸乙酯AC的盐酸盐(4.7g,14.8毫摩尔)容纳于二氯甲烷中。将悬浮液在冰上冷却至0℃。向悬浮液中加入二异丙基乙胺(3.87g,5.2mL,30毫摩尔)。向所获得的溶液中加入氯甲酸胆固醇酯(6.675g,14.8毫摩尔)。将反应混合物搅拌过夜。用二氯甲烷稀释反应混合物并用10%的盐酸洗涤。产物通过快速色谱纯化(10.3g,92%)。
1-{6-[17-(1,5-二甲基-己基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊并[a]菲-3-基氧羰基氨基]-己酰基}-4-氧代-吡咯烷-3-羧酸乙酯AE
将叔丁醇钾(1.1g,9.8毫摩尔)在30mL干甲苯中调成浆。混合物在冰上冷却至0℃并在20分钟内搅拌的同时缓慢加入5g(6.6毫摩尔)二酯AD。在添加的过程中保持温度在5℃以下。在0℃持续搅拌30分钟并加入1mL冰醋酸,然后立即加入4gNaH2PO4·H2O在40mL水中的溶液。所获得的混合物各用100mL的二氯甲烷萃取两次,合并的有机提取物各用10mL的磷酸缓冲液洗涤两次、干燥、并蒸发至干。将残留物溶解于60mL的甲苯中,冷却至0℃并用三个50mL份的pH9.5的冷碳酸盐缓冲液萃取。水性提取物用磷酸调节至pH3,并用5个40mL份的氯仿萃取,将氯仿合并、干燥并蒸发至干。残留物通过利用25%乙酸乙酯/己烷的柱色谱纯化以产生1.9g的b-酮酯(39%)。
[6-(3-羟基-4-羟甲基-吡咯烷-1-基)-6-氧代-己基]-氨基甲酸17-(1,5-二甲基-己基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊并[a]菲-3-基酯AF
在1小时的时间内向四氢呋喃(10mL)中的b-酮酯AE(1.5g,2.2毫摩尔)和硼氢化钠(0.226g,6毫摩尔)回流混合物中逐滴加入甲醇(2mL)。在回流温度下持续搅拌l小时。冷却至室温后,加入1NHCl(12.5mL),用乙酸乙酯(3x40mL)萃取该混合物。合并的乙酸乙酯层经无水硫酸钠干燥并在真空下浓缩以产生产物,产物用柱色谱(10%MeOH/CHCl3)纯化(89%)。
(6-{3-[双-(4-甲氧基-苯基)-苯基-甲氧基甲基]-4-羟基-吡咯烷-1-基}-6-氧代-己基)-氨基甲酸17-(1,5-二甲基-己基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊并[a]菲-3-基酯AG
通过用吡啶(2x5mL)真空蒸发干燥二醇AF(1.25gm1.994毫摩尔)。搅拌条件下加入无水吡啶(10mL)和4,4’-二甲氧基三苯甲基氯(0.724g,2.13毫摩尔)。反应在室温下进行过夜。反应通过加入甲醇淬灭。反应混合物在真空下浓缩并向残留物中加入二氯甲烷(50mL)。用1M碳酸氢钠水溶液洗涤有机层。有机层经无水硫酸钠干燥、过滤并浓缩。残留的吡啶通过用甲苯蒸发除去。粗产物通过柱色谱(2%MeOH/氯仿,在5%MeOH/CHCl3中Rf=0.5)纯化(1.75g,95%)。
琥珀酸单-(4-[双-(4-甲氧基-苯基)-苯基-甲氧基甲基]-1-{6-[17-(1,5-二甲基-己基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15,16,17-十四氢-1H-环戊并[a]菲-3-基氧羰基氨基]-己酰基}-吡咯烷-3-基)酯AH
化合物AG(1.0g,1.05毫摩尔)与琥珀酸酐(0.150g,1.5毫摩尔)和DMAP(0.073g,0.6毫摩尔)混合,并在真空中40℃下干燥过夜。混合物溶解到无水二氯乙烷(3mL)中,加入三乙胺(0.318g,0.440mL,3.15毫摩尔),且溶液在室温下在氩气氛中搅拌16小时。然后用二氯甲烷(40mL)稀释并用冰冷的柠檬酸水溶液(5wt%,30mL)和水(2X20mL)洗涤。有机相经无水硫酸钠干燥并浓缩至干燥。残留物原样用于下一步骤。
胆固醇衍生的CPGAI
将琥珀酸酯AH(0.254g,0.242毫摩尔)溶解于二氯甲烷/乙腈的混合物(3:2,3mL)中。向该溶液中连续加入乙腈(1.25mL)中的DMAP(0.0296g,0.242毫摩尔)、乙腈/二氯乙烷(3:1,1.25mL)中的2,2’-二硫-双(5-硝基吡啶)(0.075g,0.242毫摩尔)。向所产生的溶液中加入乙腈(0.6ml)中的三苯基膦(0.064g,0.242毫摩尔)。反应混合物的颜色变为亮橙色。使用手动震荡器简短搅拌溶液(5分钟)。加入长链烷基胺-CPG(LCAA-CPG)(1.5g,61mM)。搅拌悬浮液2小时。CPG通过烧结漏斗过滤,并接连用乙腈、二氯甲烷和醚洗涤。利用乙酸酐/吡啶将未反应的氨基基团掩蔽。通过UV测量测定CPG的获取载量(37mM/g)。
带有5'-12-十二烷酸双癸酰胺基团(5'-12-dodecanoicacidbisdecylamidegroup)(本文称为"5'-C32-")或5’-胆固醇基衍生基团(本文称为"5'-Chol-")的siRNA的合成根据WO2004/065601中所述进行,除了对于胆固醇基衍生物,氧化步骤利用Beaucage试剂进行以在核酸低聚物的5’末端引入硫代磷酸酯键。
靶向于Eg5基因的dsRNA
初始筛选组
进行siRNA设计以确定靶向于Eg5的siRNA(也称为KIF11、HSKP、KNSL1和TRIP5)。使用Eg5的人mRNA序列,RefSeqID号:NM_004523。
设计可与人和小鼠Eg5交叉反应的siRNA双链体。合成24个双链体用于筛选(表1a)。第二筛选组用266个靶向人EG5以及它的恒河猴直系同源基因的siRNA(表2a)定义。扩展的筛选组利用328个靶向人EG5的siRNA进行选择,没有必要发现(hit)其他物种的任何Eg5mRNA(表3a)。
从NCBI核苷酸数据库中下载了人和部分恒河猴Eg5mRNA的序列,并且人的序列进一步用作参考序列(人EG5:NM_004523.2,4908bp;和恒河猴EG5:XM_001087644.1,878bp,仅是人EG5的5’部分)。
对于表中:凡例:A,G,C,U-核糖核苷酸:T-脱氧胸苷:u,c-2’-O-甲基核苷酸:s-硫代磷酸酯键。
表1a.Eg5/KSPdsRNA双链体的序列
表1b.Eg5/KSPds双链体的分析
表2a.Eg5/KSPdsRNA双链体的序列
表2b.Eg5/KSPdsRNA双链体的分析
表3.Eg5/KSPdsRNA双链体的序列和分析
靶向于VEGF基因的dsRNA
确定VEGF-A121mRNA序列的外显子1-5中的400个靶序列。参考转录物是:NM_003376。
表4a包括确定的靶序列。靶向于这些序列的相应siRNA进行生物信息筛选。
为了确保序列对于VEGF序列是特异性的且对于来自任何其他基因的序列不是特异性的,靶序列使用NCBI提供的BLAST搜索引擎相对于GenBank中的序列进行核对。Altschul等人,J.Mol.Biol.215:403,1990;和AltschulandGish,Meth.Enzymol.266:460,1996中描述了BLAST算法的用途。
还对于siRNA与猴子、大鼠和人VEGF序列交叉反应的能力排序。
在这400个潜在的靶序列中,通过实验筛选选择80个进行分析,以确定少数的先导候选序列。对于这80个靶序列114设计总共114个siRNA分子(表4b)。
表4a.VEGF-121中的靶序列
表4b:靶向VEGF的双链体
链:S=正义,AS=反义
实施例2.通过细胞增殖的Eg5siRNA体外筛选
由于Eg5的沉默已被证明导致有丝分裂停止(Weil,D等人[2002]Biotechniques33:1244-8),细胞存活分析用于siRNA活性筛选。将HeLa细胞(14000每孔[筛选1和3]或每孔10000[筛选2])接种于96孔板中,并同时用Lipofectamine2000(Invitrogen)以30nM的孔中最终siRNA浓度及50nM(第一筛选)和25nM(第二筛选)的最终浓度转染。在第三筛选中以25nM的浓度测试了双链体的子集(见表5)。
转染后72小时,进行细胞增殖检测:向培养基中添加WST-1试剂(Roche),并随后在450nm进行吸光度测量。对照(非转染)的细胞的吸光度值被认为是100%,siRNA转染的孔的吸光度与对照值比较。对于三个筛选各检测一式六份(sextuplicate)。以一定范围内的siRNA浓度进一步测试siRNA的子集。在HeLa细胞中进行检测(每孔14000;方法同上,表5)。
表5:25nM的靶向Eg5的双链体对于细胞活力的效应
在表5中显示出最大生长抑制的9个siRNA双链体在HeLa细胞中以一定范围的浓度重新进行测试。测试的siRNA浓度为100nM、33.3nM、11.1nM、3.70nM、1.23nM、0.41nM、0.14nM和0.046nM。检测一式六份,计算导致细胞增殖50%抑制的各个siRNA的浓度(IC50)。对于各双链体,在二倍至四倍之间进行这种剂量-反应分析。表6给出了平均IC50值(nM)。
表6:siRNA的IC 50 :HeLa细胞中的细胞增殖
双链体 平均IC50
AL-DP-6226 15.5
AL-DP-6229 3.4
AL-DP-6231 4.2
AL-DP-6232 17.5
AL-DP-6239 4.4
AL-DP-6242 5.2
AL-DP-6243 2.6
AL-DP-6244 8.3
AL-DP-6248 1.9
实施例3.通过mRNA抑制的Eg5siRNA体外筛选
直接在转染前将HeLaS3(ATCC号:CCL-2.2,LCGPromochemGmbH,Wesel,Germany)以1.5×104细胞/孔接种于96孔板(GreinerBio-OneGmbH,Frickenhausen,Germany)上75μl的培养基(Ham’sF12,10%胎牛血清,100u青霉素/100μg/ml链霉素,全部来自BookroomAG,Berlin,Germany)中。转染一式四份。对于各孔,0.5μl的Lipofectamine2000(InvitrogenGmbH,Karlsruhe,Germany)与12微升的Opti-MEM(Invitrogen)混合并在室温下孵育15分钟。对于在100微升转染体积中50nM的siRNA浓度,1μl的5μM的siRNA与每孔11.5μl的Opti-MEM混合,与Lipofectamine2000-Opti-MEM混合物合并,并再次在室温下孵育15分钟。将siRNA-Lipofectamine2000-复合物完全应用于细胞(每孔各25μl),并且细胞在潮湿的孵育器(HeroesGmbH,Hanau)中37℃和5%二氧化碳下孵育24小时。分别以50nM和25nM进行一次单剂量筛选。
通过向含100μl培养基的各孔应用50μl的裂解混合物(来自Genospectra,Fremont,USA的QuantiGenebDNA-试剂盒的内容物)收获细胞,并在53℃下裂解30分钟。随后,50μl的所列项目(lists)与对人Eg5和人GAPDH特异性的探针组一起孵育,并根据QuantiGene制造商的方案进行。最后,用Victor2-Light(PerkinElmer,Wiesbaden,Germany)以RLU(相对光单位)测定化学发光,并且对于各孔用hEg5探针组获得的值相对于在京的GAPDH值标准化。使用指向Eg5的siRNA获得的值与用非特异性的siRNA(指向HCV)获得的值(其设定为100%)(表1b、2b和3b))相关。
由筛选获得的有效siRNA进一步通过剂量反应曲线表征。按以下浓度进行剂量反应曲线的转染:100nM、16.7nM、2.8nM、0.46nM、77pM、12.8pM、2.1pM、0.35pM、59.5fM、9.9fM和模拟(无siRNA),并根据上述方案用Opti-MEM稀释至12.5微升的最终浓度。通过使用MicrosoftExcel内加软件XL-fit4.2(IDBS,Guildford,Surrey,UK)并应用剂量反应模型号205(表1b、2b和3b)进行数据分析。
通过应用来自Roche的WST-增殖分析(如前所述)进一步分析先导siRNAAD12115。
通过以100nM至10fM的最终浓度在HeLa细胞中的转染分析表2中表现出最大活性的34个双链体的子集。转染一式四份。对于各个双链体,进行两个剂量反应分析。对于各个双链体,计算产生KSPmRNA的20%(IC20)、50%(IC50)和80%(IC80)降低的浓度(表7)。
表7:Eg5/KSP双链体在HeLa细胞中的剂量反应mRNA抑制
以pM给出的浓度
(ND-未测定)
实施例4.单次推注施用LNP01配制的siRNA后幼鼠中的肝Eg5/KSP 的沉默
从出生开始一直到大约23天龄,可以在生长的大鼠肝中检测到Eg5/KSP表达。使用双链体AD-6248,在幼鼠中评估配制的Eg5/KSPsiRNA的靶沉默。
测试的KSP双链体
双链体
方法
动物的给药。经尾静脉注射向雄性幼年Sprague-Dawley大鼠(19天龄)施用单剂量的类脂质(“LNP01”)配制的siRNA。10只动物的组接受10毫克/千克(mg/kg)体重剂量的AD6248或非特异性的siRNA。剂量水平指在制剂中施用的siRNA双链体的量。第三组接受磷酸盐缓冲盐水。在siRNA施用后两天处死动物。切除肝,在液氮中快速冷冻并粉碎成粉末。
mRNA的测量。测定来自所有处理组肝脏中的Eg5/KSPmRNA的水平。在含有蛋白酶K的组织裂解缓冲液中对各个肝粉末样品(大约10毫克)进行匀浆。对于各个样品,使用Quantigene分支DNA分析(GenoSpectra)一式三份地测量Eg5/KSP和GAPDHmRNA的水平。对于各个样品,Eg5/KSP的平均值相对于GAPDH平均值进行标准化。测定组平均值,并相对于各实验的PBS组进行标准化。
统计分析。通过按照Tukeypost-hoc检验的ANOVA确定显著性。
结果
数据总结
给出Eg5/KSPmRNA的平均值(±标准差)。显示相对于PBS组的统计学显著性(p值)(ns,不显著[p>0.05])。
表8.实验1
在用10mg/kg剂量的配制AD6248处理之后,获得肝Eg5/KSPmRNA的统计显著性降低。
实施例5.在静脉输注LNP01配制的VSP后大鼠肝VEGF的沉默
向大鼠施用包含两种siRNA的等摩尔混合物的“类脂质”制剂。如本文所用,VSP指具有两种siRNA的组合物,一种针对Eg5/KSP,一种针对VEGF。对于这个实验,使用针对VEGF的双链体AD3133和针对Eg5/KSP的AD12115。由于在成年大鼠肝中几乎检测不到Eg5/KSP的表达,因此只测量siRNA处理后的VEGF水平。
施用的siRNA双链体(VSP)
凡例:A,G,C,U-核糖核苷酸;u,c-2’-O-甲基核糖核苷酸:s-硫代磷酸酯。
各个链的未修饰形式和各个siRNA的靶如下
方法
动物的给药。通过向股静脉中的两小时输注向成年雄性Sprague-Dawley大鼠施用类脂质(“LNP01”)配制的siRNA。4只动物的组接受5、10和15毫克/千克(mg/kg)体重剂量的配制siRNA。剂量水平指在制剂中施用的siRNA双链体的总量。第四组接受磷酸盐缓冲盐水。在siRNA输注结束后72小时处死动物。切除肝,在液氮中快速冷冻并粉碎成粉末。
制剂过程
类脂质ND98·4HCl(分子量1487)(上述式1)、胆固醇(Sigma-Aldrich)和PEG-神经酰胺C16(AvantiPolarLipids)用于制备脂质-siRNA纳米微粒。制备在乙醇中的各原液:ND98,133毫克/毫升;胆固醇,25毫克/毫升;PEG-神经酰胺C16,100毫克/毫升。ND98、胆固醇和PEG-神经酰胺C16的原液然后以42:48:10的摩尔比混合。合并后的脂质溶液与水性siRNA(在pH值5的醋酸钠中)快速混合,以使得最终的乙醇浓度为大约35-45%,且最终的醋酸钠浓度为100-300mM。脂质-siRNA纳米微粒通常在混合时自发形成。根据所需粒度分布,在某些情况下,产生的纳米微粒混合物使用热桶挤出机(Lipex挤出机,NorthernLipids,Inc)通过聚碳酸酯膜(100nm的截止值)挤出。在其它情况下,挤出步骤省略。通过透析或切向流过滤实现乙醇去除和同时的缓冲液交换。缓冲液与pH值7.2的磷酸盐缓冲盐水(PBS)交换。
制剂的鉴定
通过标准方法或无挤出法制备的制剂可以以类似的方式鉴定。制剂首先通过目视检查来鉴定。它们应该是不含聚集体或沉积物的发白的半透明溶液。使用MalvernZetasizerNanoZS(Malvern,USA)通过动态光散射测量脂质-纳米微粒的微粒大小和粒度分布。微粒大小应该是大约20-300nm,理想地为40-100nm。粒度分布应该是单峰的。使用染料排除法评估制剂中的总siRNA浓度以及捕获分数。在制剂破坏表面活性剂(0.5%的Triton-X100)存在或不存在的情况下,配制的siRNA的样品与RNA结合染料Ribogreen(MolecularProbe)一起孵育。通过来自含表面活性剂的样品的信号相对于标准曲线确定制剂中的总siRNA。通过从总siRNA含量减去“游离的”siRNA含量(如通过不存在表面活性剂的情况下的信号所测量的)确定捕获分数。捕获siRNA的百分比通常>85%。对于SNALP制剂,微粒大小为至少30nm,至少40nm,至少50nm,至少60nm,至少70nm,至少80nm,至少90nm,至少100nm,至少110nm和至少120nm。优选的范围为大约至少50nm至大约至少110nm,优选大约至少60nm至大约至少100nm,最优选大约至少80nm至大约至少90nm。在一个例子中,各微粒大小包含至少大约1:1比例的Eg5dsRNA与VEGFdsRNA。
mRNA的测量。在含有蛋白酶K的组织裂解缓冲液中对各肝粉末样品(大约10毫克)进行匀浆。对于各个样品,使用Quantigene分支DNA分析(GenoSpectra)一式三份地测量VEGF和GAPDHmRNA的水平。对于各个样品,VEGF的平均值相对于GAPDH平均值标准化。确定组平均值,并对于各个实验相对于PBS组标准化。
蛋白质测量。在1毫升RIPA缓冲液中,对各个肝粉末样品(大约60毫克)进行匀浆。使用MicroBCA蛋白质检测试剂盒(Pierce)确定总蛋白浓度。使用VEGFELISA分析(R&D系统),来自各动物的总蛋白样品用于确定VEGF蛋白水平。确定组平均值,并相对于各实验的PBS组标准化。
统计分析。通过按照Tukeypost-hoc检验的ANOVA确定显著性。
结果
数据总结
对于各处理组给出mRNA(VEGF/GAPDH)和蛋白质(rel.VEGF)的平均值(±标准差)。对于各实验,显示相对于PBS组的统计显著性(p值)。
表9
在所有3个siRNA剂量水平上,测得肝VEGFmRNA和蛋白质的统计显著性减少。
实施例6.人类肝肿瘤的小鼠模型中VSPSNALP的评估
这些研究利用含有靶向于KSP/Eg5的dsRNA和靶向于VEGF的dsRNA的VSPsiRNA混合物(cocktail)。如本文所用,VSP指具有两种siRNA的组合物,一种针对Eg5/KSP,一种针对VEGF。对于这个实验,使用双链体AD3133(指向VEGF)和AD12115(指向Eg5/KSP)。在SNALP中配制siRNA混合物。
最大的研究规模使用20-25只小鼠。为了测试siRNASNALP混合物治疗肝癌的疗效,将1x106肿瘤细胞直接注射到试验小鼠的左侧肝叶中。通过缝合封闭切口,并使得小鼠恢复2-5小时。小鼠在48-72小时内完全恢复。在接种肿瘤后8-11天开始SNALPsiRNA的处理。
采用的SNALP制剂是:(i)VSP(KSP+VEGFsiRNA混合物(1:1摩尔比));(ii)KSP(KSP+LucsiRNA的混合物)和(iii)VEGF(VEGF+LucsiRNA的混合物)。所有制剂包含等量(毫克)的各种活性siRNA。所有小鼠接受总的siRNA/脂质剂量,且使用初始的柠檬酸缓冲液条件,将各混合物配制成1:57的cDMASNALP(1.4%的PEG-cDMA;57.1%的DLinDMA,7.1%的DPPC;和34.3%的胆固醇),6:1的脂质:药物。
人Hep3B研究A:VSP-SNALP的抗肿瘤活性
通过肝内接种在scid/beige小鼠中建立人肝癌细胞Hep3B肿瘤。向组A(n=6)动物施用PBS;向组B(n=6)动物施用VSPSNALP;向组C(n=5)动物施用KSP/LucSNALP;和向组D(n=5)动物施用VEGF/LucSNALP。
在肿瘤接种后8天开始SNALP处理。每周两次(星期一及星期四)以3mg/kg的总siRNA给予SNALP,总计6个剂量(累计18mg/kg的siRNA)。在第25天施用最终剂量,和终点是第27天。
通过(a)体重;(b)肝重量;(c)在第27天的目测+摄影;(d)人特异性的mRNA分析;和(e)在第27天检测的血液甲胎蛋白水平检测肿瘤负荷。
下面的表10说明在接种的(左侧)肝叶中测量的肿瘤负荷的视觉评分结果。评分:“-”=没有可见的肿瘤;“+”=注射部位具有肿瘤组织的迹象;“++”=从肝叶突出的离散的肿瘤结节;"+++"=从肝叶两侧突出的大肿瘤;"++++"=大的肿瘤,在整个肝叶上的多个结节。
表10
作为体重的百分比的肝脏重量如图1所示。
体重如图2A-2D所示。
从该研究得出以下结论。(1)VSPSNALP在Hep3B1H模型中表现出强的抗肿瘤效果;(2)VSP混合物的抗肿瘤活性似乎在很大程度上与KSP成分有关;(3)通过单剂量组织学分析证实了抗KSP的活性;和(4)VEGFsiRNA在此模型中没有显示出对于肿瘤生长抑制的可测量的效应。
人类Hep3B的研究B:用VSP治疗延长存活时间
在第二项Hep3B研究中,通过向scid/beige小鼠肝内接种建立人类肝癌Hep3B肿瘤。这些小鼠缺乏淋巴细胞和自然杀伤(NK)细胞,这是免疫介导的抗肿瘤作用的最小范围。组A(n=6)小鼠未处理;向组B(n=6)小鼠施用荧光素酶(Luc)1955SNALP(批号AP10-02);和向组C(n=7)小鼠施用VSPSNALP(批号AP10-01)。SNALP为1:57的cDMASNALP和6:1的脂质:药物。
在肿瘤接种后8天开始SNALP处理。每周两次(星期一及星期四)以3mg/kg的siRNA给予SNALP,总计6个剂量(累计18mg/kg的siRNA)。在第25天施用最终剂量,和研究终点是第27天。
通过(1)体重;(2)在第27天的目视检查+摄影;(3)人特异性mRNA分析;和(4)在第27天测量的血液甲胎蛋白测量肿瘤负荷。
在给药的各天(第8、11、14、18、21和25天)和处死的那天测量体重(图3)。
表11.
评分:“-”=没有可见的肿瘤;“+”=注射部位具有肿瘤组织的迹象;“++”=从肝叶突出的离散的肿瘤结节;"+++"=从肝叶两侧突出的大肿瘤;"++++"=大的肿瘤,在整个肝叶中的多个结节。
体重和肿瘤负荷之间的相关性如图4、5和6所示。
给予Hep3B小鼠单剂量的VSPSNALP(2mg/kg)也导致在通过组织学染色检验的肝组织样品中形成有丝分裂纺锤体。
通过定量RT-PCR(pRT-PCR)(Taqman)量化肿瘤负荷。通过物种特异性Taqman分析将人GAPDH相对于小鼠GAPDH标准化。上表中通过肉眼观察表明的肿瘤评分与GADPH水平相关(图7A)。
进行血清ELISA以测量肿瘤分泌的甲胎蛋白(AFP)。如下所述,如果AFP水平在治疗后下降,则肿瘤没有增长。与对照的处理相比,一些动物中VSP处理降低AFP水平(图7B)。
人HepB3研究C:
在第三项研究中,将人HCC细胞(HepB3)直接注入SCID/beige小鼠的肝中,并在20天后开始处理。向组A动物施用PBS;向组B动物施用4mg/kgLuc-1955SNALP;向组C动物施用4mg/kgSNALP-VSP;向组D动物施用2mg/kgSNALP-VSP;和向组E动物施用1mg/kgSNALP-VSP。处理是使用单次静脉(iv)给药,并在24小时后处死小鼠。
通过qRT-PCR(Taqman)检测肿瘤负荷和靶沉默。也如上所述,目视地测量肿瘤评分,结果如下表所示。如图8所示,hGAPDH水平与如下表所示的肉眼观察的肿瘤评分相关。
表12.
评分:“+”=可变的肿瘤获取量/一些小的肿瘤,“++”=从肝叶突出的离散的肿瘤结节;"+++"=从肝叶两侧突出的大肿瘤。
通过TaqMan分析检测人(肿瘤来源的)KSP沉默,且结果如图10所示。hKSP的表达相对于hGAPDH标准化。在4mg/kg的SNALP-VSP下观察到大约80%的肿瘤KSP沉默,且在1mg/kg下疗效是明显的。图9中的透明条代表小(低GAPDH)肿瘤的结果。
通过TaqMan分析检测人(肿瘤来源的)VEGF沉默,且结果如图10所示。hVEGF的表达相对于hGAPDH标准化。在4mg/kg的SNALP-VSP下观察到大约60%的肿瘤VEGF沉默,且在1mg/kg下疗效是明显的。图10中的透明条代表小(低GAPDH)肿瘤的结果。
通过TaqMan分析检测小鼠(肝源的)VEGF沉默,且结果如图11A所示。mVEGF的表达相对于hGAPDH标准化。在4mg/kg的SNALP-VSP下观察到大约50%的肝VEGF沉默,且在1mg/kg下疗效是明显的。
人HepB3研究D:各dsRNA对肿瘤生长的影响
在第四项研究中,将人HCC细胞(HepB3)直接注射入SCID/beige小鼠的肝中,并在8天后开始处理。每周两次用静脉(iv)推注治疗,总计6个剂量。在第25天施用最终剂量,且终点是第27天。
通过总的组织学(grosshistology)、人特异性的mRNA分析(hGAPDHqPCR)和血液甲胎蛋白水平(通过ELISA的血清AFP)检测肿瘤负荷。
在研究1中,用PBS处理组A,用SNALP-KSP+Luc(3mg/kg)处理组B,用SNALP-VEGF+Luc(3mg/kg)处理组C,和用ALN-VSP02(3mg/kg)处理组D。
在研究2中,用PBS处理组A,用SNALP-KSP+Luc(1mg/kg)处理组B,用ALN-VSP02(1mg/kg)处理组C。
在用ALN-VSP02处理后,GAPDHmRNA水平和血清AFP水平都显示下降(图11B)。
组织学研究:
通过在小鼠中肝内接种建立人肝癌Hep3B肿瘤。在肿瘤接种后20天开始SNALP处理。以2mg/kg的总siRNA通过单次静脉(IV)给予(i)VSPSNALP或(ii)对照(Luc)SNALP处理荷瘤小鼠(每组三只)。
单次SNALP施用后24小时收集肝/肿瘤样品用于常规H&E组织学研究。
尸检时,大的肉眼观察的肿瘤结节(5-10毫米)是明显的。
ALN-VSP在Hep3B小鼠中的效应:
ALN-VSP(KSPdsRNA和VEGFdsRNA的混合物)的处理减小肿瘤负荷和肿瘤源性KSP和VEGF的表达。也观察到GAPDHmRNA水平(作为肿瘤负荷的量度)在施用ALN-VSPdsRNA后下降(见图12A-12C)。通过视觉肉眼观察的肿瘤负荷的减少在施用ALN-VSP之后也是明显的。
单次静脉推注ALN-VSP也导致有丝分裂纺锤体的形成,其在Hep3B小鼠肝组织标本可明显地检测到。这个现象表明细胞周期抑止。
实施例7.相对于SNALP-Luc处理的动物,SNALP-VSP动物的存活率
为了测试siRNASNALP对于癌症受试者的生存率的影响,通过在小鼠中肝内接种建立肿瘤,并用SNALP-siRNA处理小鼠。这些研究利用了含有靶向于KSP/Eg5和VEGF的dsRNA的VSPsiRNA混合物。对照是靶向于Luc的dsRNA。在SNALP中配制siRNA混合物。
将肿瘤细胞(人肝癌Hep3B,1x106)直接注射到scid/beige小鼠的左侧肝叶中。这些小鼠缺乏淋巴细胞和自然杀伤(NK)细胞,这是免疫介导的抗肿瘤作用的最小范围。通过缝合封闭切口,并允许小鼠恢复2-5小时。小鼠在48-72小时内完全恢复。
所有小鼠接受总的siRNA/脂质静脉注射(iv)剂量,且各混合物使用原始的柠檬酸缓冲条件配制成1:57的cDMASNALP(1.4%的PEG-cDMA;57.1%的DLinDMA,7.1%的DPPC;和34.3%的胆固醇),6:1的脂质:药物。
肿瘤接种后,在下面指明的天数(18或26天)开始siRNA-SNALP处理。在4mg/kg剂量18或26天之后,每周两次施用siRNA-SNALP,进行3周。监测存活率,并基于人道满足点(humanesurrogateendpoint)对动物实施安乐死(如动物的体重、腹胀/变色以及整体健康)。
观察到肿瘤后18天开始治疗的生存数据总结于表13、表14和图13A中。
表13.Kaplan-Meier(生存)数据(%存活)
表14.对于各动物的存活天数
动物 处理组 存活
1 SNALP-Luc 28
2 SNALP-Luc 33
3 SNALP-Luc 33
4 SNALP-Luc 33
5 SNALP-Luc 36
6 SNALP-Luc 38
7 SNALP-Luc 57
8 SNALP-VSP 38
9 SNALP-VSP 51
10 SNALP-VSP 51
11 SNALP-VSP 51
12 SNALP-VSP 53
13 SNALP-VSP 53
14 SNALP-VSP 57
15 SNALP-VSP 57
图13A显示SNALP-VSP动物和SNALP-Luc处理的动物相对于肿瘤接种后的天数的平均存活率。SNALP-VSP动物的平均存活时间相对于SNALP-Luc处理的动物延长大约15天。
表15.对于各动物在处理前和处理结束时的血清甲胎蛋白(AFP)的浓 度(浓度以μg/ml计)
在实验过程中,使用血清AFP水平监测肿瘤负荷。甲胎蛋白(AFP)是胎儿期过程中由卵黄囊和肝产生的主要血浆蛋白。这种蛋白质被认为是血清白蛋白的胎儿对应物,且人AFP和白蛋白基因按相同的转录方向成串地存在于第4染色体上。AFP被发现以单体以及二聚体和三聚形式存在,并结合铜、镍、脂肪酸和胆红素。AFP水平在出生后逐渐降低,到8-12个月达到成人水平。正常成人的AFP水平较低,但可检测到。AFP在正常成人中没有已知的功能,且在成人中的AFP表达通常与肿瘤的子集(如肝癌和畸胎瘤)相关。AFP是用于监测睾丸癌、卵巢癌和恶性畸胎瘤的肿瘤标志物。分泌AFP的原发肿瘤包括内胚窦瘤(卵黄囊癌)、神经母细胞瘤、肝母细胞瘤和肝细胞癌。在患有AFP分泌肿瘤的患者中,AFP的血清水平往往与肿瘤大小关联。血清水平可用于评估对于治疗的反应。通常情况下,如果AFP水平在治疗后下降,则肿瘤没有增长。化疗后立即出现的AFP的暂时增加可能表明肿瘤并不是在增长而是在缩小(并随着肿瘤细胞死亡而释放AFP)。切除通常与血清水平下降相关。如图14所示,SNALP-VSP处理的动物中的肿瘤负荷明显降低。
在植入后26、29、32、35、39和42天重复SNALP-siRNA处理的实验。数据如图13B显示。SNALP-VSP动物相比于SNALP-Luc处理的动物平均存活期延长大约15天,大约19天或38%。
实施例8.建立的肿瘤中单星体的诱导
在分裂的细胞中KSP的抑制导致可在组织切片中容易观察到的单星体形成。为了确定在SNALP-VSP处理的肿瘤中是否出现单星体形成,向荷瘤动物(在Hep3B细胞植入后3周)经尾静脉注射施用2mg/kg的SNALP-VSP。对照动物接受2mg/kg的SNALP-Luc。24小时后,处死动物,并处理荷瘤肝叶以进行组织学分析。H&E染色组织切片的典型图像如图15中所示。广泛的单星体形成在ALNVSP02处理的肿瘤(A)中是明显的,但不是在SNALP-Luc处理的肿瘤(B)中。在后者中,正常的有丝分裂象是明显的。单星体的产生是KSP抑制的特有特征,并提供表明SNALP-VSP在建立的肝肿瘤中具有显著活性的进一步证据。
实施例9.ALN-VSP02(SNALP-VSP)的制造方法和产品规格
ALN-VSP02产品包含用于通过输注用于IV施用的配制成无菌脂质微粒制剂的2mg/mL药物物质ALN-VSPDS01(称为SNALP)。药物物质ALN-VSPDS01由等摩尔比的两种siRNA(靶向于KSP的ALN-12115和靶向于VEGF的ALN-3133)组成。药品包装于具有5毫升填充容积的10毫升的玻璃小瓶中。
在本文使用下列术语:
*又名=AD-12115,AD12115;**又名=AD-3133,AD3133
9.1药物物质ALN-VSPDS01的制备
使用市售的合成器和原材料化学合成药物物质ALN-VSPDS01、ALN-12115和ALN-3133的两种siRNA成分。制造方法包括通过常规的固相寡核苷酸合成,使用亚磷酰胺(phosphoramidite)化学和具有用叔丁二甲基硅烷基(TBDMS)保护的2’羟基或用2’甲氧基(2’OMe)取代的2'羟基的5’-O-二甲氧基三苯基甲基(DMT)保护基合成各双链体的两个单链寡核苷酸(ALN12115的A19562正义链和A19563反义链及ALN3133的A3981正义链和A3982反义链)。寡核苷酸链的组装在固体载体(如可控的微孔玻璃或聚苯乙烯)上通过亚磷酰胺方法进行。循环由5'脱保护、偶合、氧化和加帽(capping)组成。通过以下步骤进行各偶合反应:使用5(乙硫基)1H四唑试剂使得适当保护的核糖、2’OMe或脱氧核糖核苷亚酰胺(amidite)活化,接着偶合载体固定的保护核苷或寡核苷酸的游离5’羟基。经过适当次数的循环后,通过酸处理去除最后的5’保护基。通过甲胺水溶液处理从固体载体切除粗的寡核苷酸,同时除去氰乙基保护基以及核碱基保护基。然后使用含氟化氢的试剂切割2’OTBDMS基团,以产生粗的寡核糖核苷酸,其使用强阴离子交换高效液相色谱(HPLC)接着使用超滤脱盐而纯化。对纯化的单链进行分析以在退火成双链体之前确认正确的分子量、分子序列,杂质特征和寡核苷酸含量。退火的双链中间体ALN12115和ALN3133进行冻干并在20℃下存储或以1:1的摩尔比混合,且溶液经冻干以产生药物物质ALNVSPDS01。如果双链中间体作为干粉储存,它们在混合前在水中重新溶解。通过HPLC法监测混合过程来获得等摩尔比率。
制造方法流程图如图16所示。
示例规格如表16a所示。
表16c显示长达12个月的ALN-VSPDS01药物物质的稳定性测试的结果。选择检测方法以评估物理性质(外观、pH值、水分)、纯度(通过SEC和变性阴离子交换色谱法)和效力(通过变性阴离子交换色谱法[AX-HPLC])。
表16a.ALN-VSPDS01的示例规格
表16b.药物物质的稳定性
9.2药物产品ALN-VSP02(SNALP-VSP)的制备
ALNVSP02是两种siRNA(以1:1的摩尔比)与等渗缓冲液中的脂质赋形剂的无菌制剂。脂质赋形剂与两种siRNA结合,保护它们免于在循环系统中降解,并帮助它们递送到靶组织。通过重复的系列实验比较各种不同制剂的理化性质、稳定性、药效学、药代动力学、毒性和产品可制造性选择具体的脂质赋形剂和各脂质赋形剂的数量比例(如表17所示)。赋形剂DLinDMA是可滴定的氨基脂,其在低pH值下(如在哺乳动物细胞的核内体中存在的pH值)带正电,但在全血的更中性的pH下相对不带电。这一特征有助于在低pH值下高效封装带负电的siRNA,从而防止空微粒的形成,但仍允许通过在使用前用更中性的存储缓冲液代替制剂缓冲液来调整(减少)微粒的电荷。为了向微粒提供理化稳定性,掺入胆固醇和中性脂质DPPC。聚乙二醇脂质偶联物PEG2000CDMA有助于药物产品的稳定性,并为预期的应用提供最佳的循环时间。ALNVSP02脂质微粒具有低多分散性特征的大约80-90nm的平均直径。代表性的低温透射电子显微镜(cryoTEM)图像如图17中显示。在中性pH值下,微粒基本上不带电,且Zeta电位值低于6mV。基于该制造工艺,没有明显的空(非负载的)微粒。
表17:ALN-VSP02的定量的组合物
*在药品微粒的整个粒径分布上维持药品中两种siRNA的1:1摩尔比。
脂质的溶液(乙醇中)和ALNVSPDS01药物物质的溶液(在水性缓冲液中)混合,并稀释以形成具有大约80-90nm的平均微粒大小的siRNA脂质微粒的胶状分散体。这种分散体然后通过0.45/0.2微米过滤器过滤,浓缩,并通过切向流过滤进行渗滤(diafilter)。经过在线测试和浓度调整至2.0mg/mL后,产品经无菌过滤,无菌填充到玻璃小瓶中,塞住,加盖,并在5±3℃下放置。乙醇和所有水性缓冲液成分是USP级的;所有使用的水是USP注射级无菌水。代表性的ALN-VSP02过程如图18中的流程图所示。
表18a:示例ALN-VSP02规格
9.4容器/密封系统
在具有5毫升填充体积的10毫升玻璃小瓶中包装ALNVSP02药品。容器密封系统包括USP/EPI型硼硅玻璃小瓶、聚四氟乙烯贴面的丁基橡胶瓶塞和铝翻转盖(flipoffcap)。药品储存在5±3℃下。
9.5药品ALN-VSP02的稳定性
稳定性数据(25℃/60%相对湿度)见于表18b和18c中。
表18b:在储存条件下的示例ALN-VSP02的稳定性
表18c:在25℃/环境湿度下的示例ALN-VSP02稳定性
实施例10.ALN-VSP02在人癌细胞系中的体外疗效
通过处理后的KSPmRNA、VEGFmRNA和细胞活力的测量确定ALN-VSP02处理在人类癌细胞系中的效力。在各个细胞系中测定KSP和VEGF的IC50(nM)值。
表19:细胞系
第1天,细胞在完全培养基中接种在96孔板中,以在第2天达到70%的密度。第2天,用Opti-MEM降血清培养基(InvitrogenCatN:11058-021)替换培养基,并用开始为1.8μM降低至10pM的浓度范围的ALN-VSP02或对照SNALP-Luc转染细胞。6个小时后,培养基改为完全培养基。对于各实验、各细胞系进行3个重复培养。
转染后24小时收获细胞。使用bDNA测量KSP的水平;使用人TaqMan检测测量VEGFmRNA水平。
按照生产商的说明在48和/或72小时使用细胞滴度蓝试剂(CellTiterBluereagent)(PromegaCatN:G8080)测量存活力。
如表20所示,VSP02的nM浓度在多种人类细胞系中有效降低KSP和VEGF的表达。经过处理的细胞存活率不是
表20:结果
实施例11.在建立的Hep3B肝内肿瘤中VSPSNALP相对于索拉非尼 的抗肿瘤效力
携带建立的Hep3B肝内肿瘤的scid/beige小鼠中研究多剂量VSPSNALP相对于索拉非尼的抗肿瘤效应。索拉非尼是经核准用于治疗肝细胞癌(HCC)的蛋白激酶小分子抑制剂。
如本文所述,在scid/beige小鼠中通过肝内接种建立肿瘤。在接种后11天开始处理。用以下对小鼠进行处理:索拉非尼和对照siRNA-SNALP,索拉非尼和VSPsiRNA-SNALP,或仅VSPsiRNA-SNALP。只用缓冲液(对于索拉非尼为DMSO,和对于siRNA-SNALP为PBS)处理对照小鼠。从周一至周五腹腔内(intraparenterally)施用索拉非尼,持续3星期,以15mg/kg体重总计15次注射。在注射SNALP之后最短1小时施用索拉非尼。根据最近记录的体重,在第1、4、7、10、14和17天以3mg/kg的剂量(10ml/kg)通过侧尾静脉静脉内施用siRNA-SNALPS,3周时间(总计6个剂量)。
根据包括进行性体重减轻的肿瘤负荷及包括状态、腹胀/变色和活动性的临床症状的评估对小鼠实施安乐死。
生存百分比的数据如图20中所示。相比单独施用索拉非尼或VSPsiRNA-SNALP,共施用VSPsiRNA-SNALP与索拉非尼提高存活比例。相比于索拉非尼,VSPsiRNA-SNALP提高存活比例。
实施例12.使用AD-12115和AD-3133变异体的VSP的体外效力
设计并合成靶向于Eg5/KSP和VEGF的两组双链体。各组包括在AD-12115和AD-3133的靶位点的各个方向迭铺(tiling)10个核苷酸的双链体。
各个双链体的靶、正义链和反义链的序列列于下表中。
使用本文所述的分析方法测试各个双链体的表达抑制。双链体单独和/或组合施用,例如,Eg5/KSPdsRNA结合VEGFdsRNA。在一些实施方式中,以如本文所述的SNALP制剂施用dsRNA。
表21:靶向于VEGF和Eg5/KSP的dsRNA的序列(迭铺)
实施例13.具有单一平端的VEGF靶向dsRNA
设计并合成靶向于VEGF的一组双链体。该组包括在AD-3133的靶位点的各个方向迭铺10个核苷酸的双链体。各个双链体在对应于反义链的3’末端的末端包括2个碱基的突出端,和在对应于反义链的5’末端的末端没有突出端,例如平端。
这些双链体的各个链的序列如下表所示。
使用本文所述的分析方法测试各个双链体的表达抑制。单独和/或与Eg5/KSPdsRNA(例如,AD-12115)组合施用VEGF双链体。在一些实施方式中,以如本文所述的SNALP制剂施用dsRNA。
表22:靶向于VEGF的平端dsRNA的靶序列
表23:靶向于VEGF的平端dsRNA的链序列
实施例14.在人中Eg5/KSP和VEGF表达的抑制
人类受试者用具有靶向于Eg5/KSP基因的SNALP配制的dsRNA和靶向于VEGF基因的SNALP配制的dsRNA的药物组合物,如ALNVSP02,治疗以抑制Eg5/KSP和VEGF基因的表达。
选择或确定需要治疗的受试者。受试者可以需要治疗癌症,如肝癌。
在时间的零点,向受试者皮下施用该组合物的合适的第一剂量。该组合物如本文所述配制。一段时间之后,评估受试者的状态,例如,通过测量肿瘤生长、测量血清AFP水平等。测量可以伴随所述受试者中Eg5/KSP和/或VEGF表达,和/或Eg5/KSP和/或VEGF基因的成功siRNA靶向的产物的测量。也可以测量其他相关指标。按照受试者的需要调整剂量的数量和强度。
治疗后,受试者的状态与治疗前存在的状态相比,或者相对于具有类似病症但未经治疗的受试者的状态进行比较。
本领域的技术人员熟悉除了那些在本公开中明确阐述的方法和组合物之外使得他们在所附的权利要求的全部范围内实施本发明的方法和组合物。

Claims (28)

1.一种包含抑制细胞中人驱动蛋白家族成员11(Eg5/KSP)基因的表达的第一双链核糖核酸(dsRNA)和抑制细胞中人VEGF的表达的第二dsRNA的组合物,其中:所述第一dsRNA和所述第二dsRNA都配制成稳定的核酸脂质微粒(SNALP);
所述第一dsRNA由第一正义链和第一反义链组成,且所述第一正义链包括第一序列和所述第一反义链包括与SEQIDNO:1311(5’-UCGAGAAUCUAAACUAACU-3’)的至少15个连续核苷酸互补的第二序列,其中所述第一序列与所述第二序列互补,和其中所述第一dsRNA在长度上为15至30个碱基对;和所述第二dsRNA由第二正义链和第二反义链组成,所述第二正义链包括第三序列和所述第二反义链具有与SEQIDNO:1538(5’-GCACAUAGGAGAGAUGAGCUU-3’)的至少15个连续核苷酸互补的第四序列,其中所述第三序列与所述第四序列互补,和其中各个链在长度上为15至30个碱基对。
2.根据权利要求1的组合物,其中,所述第一反义链包括与SEQIDNO:1311(5’-UCGAGAAUCUAAACUAACU-3’)互补的第二序列和第二反义链包括与SEQIDNO:1538(5’-GCACAUAGGAGAGAUGAGCUU-3’)互补的第四序列。
3.根据权利要求1的组合物,其中,所述第一dsRNA由SEQIDNO:1534(5’-冯UCGAGAAUCUAAACUAACUTT-3’)构成的正义链和SEQIDNO:1535(5’-AGUUAGUUUAGAUUCUCGATT-3’)构成的反义链组成,第二dsRNA由SEQIDNO:1536(5’-GCACAUAGGAGAGAUGAGCUU-3’)构成的正义链和SEQIDNO:1537(5’-AAGCUCAUCUCUCCUAUGUGCUG-3’)构成的反义链组成。
4.根据权利要求3的组合物,其中,如下修饰每个链以包括由小写字母“c”或“u”表示的2'-O-甲基核糖核苷酸和由小写字母“s”表示的硫代磷酸酯:
第一dsRNA由SEQIDNO:1240(5’-ucGAGAAucuAAAcuAAcuTsT-3’)构成的正义链和由SEQIDNO:1241(5’-AGUuAGUUuAGAUUCUCGATsT)构成的反义链组成;
第二dsRNA由SEQIDNO:1242(5’-GcAcAuAGGAGAGAuGAGCUsU-3’)构成的正义链和SEQIDNO:1243(5’-AAGCUcAUCUCUCCuAuGuGCusG-3’)构成的反义链组成。
5.根据权利要求1、2或3的组合物,其中,所述第一和第二dsRNA包含至少一个修饰的核苷酸。
6.根据权利要求5的组合物,其中,所述修饰的核苷酸选自2'-O-甲基修饰的核苷酸、包含5'-硫代磷酸酯基的核苷酸和与胆固醇衍生物或十二烷酸二癸酰胺基团连接的末端核苷酸。
7.根据权利要求5的组合物,其中,所述修饰的核苷酸选自2'-脱氧-2'-氟修饰的核苷酸、2'-脱氧修饰的核苷酸、锁定核苷酸、无碱基核苷酸、2'-氨基修饰的核苷酸、2'-烷基修饰的核苷酸、吗啉核苷酸、氨基磷酸酯和包含非天然碱基的核苷酸。
8.根据权利要求1、2和3的组合物,其中,所述第一和第二dsRNA各包含至少一个2'-O-甲基修饰的核糖核苷酸和至少一个包含5'-硫代磷酸酯基的核苷酸。
9.根据权利要求1-3和5-8的组合物,其中,所述各dsRNA的各链长度为19-23碱基。
10.根据权利要求1-3和5-8的组合物,其中,所述各dsRNA的各链长度为21-23碱基。
11.根据权利要求1-3和5-8的组合物,其中,所述第一dsRNA的各链的长度是21碱基,且第二dsRNA的正义链长度为21碱基和第二dsRNA的反义链长度为23碱基。
12.根据权利要求1-11的组合物,其中,所述第一和第二dsRNA以等摩尔比例存在。
13.根据权利要求1-12的组合物,其中,所述SNALP包含DLinDMA、胆固醇、DPPC和PEG2000-C-DMA。
14.根据权利要求1-13的组合物,包含表17中列出的比例的成分。
15.根据权利要求1-14的组合物,其中,所述组合物在接触表达Eg5的细胞时抑制Eg5的表达至少40%、50%、60%、70%、80%或至少90%。
16.根据权利要求1-15的组合物,其中,所述组合物在接触表达VEGF的细胞时抑制VEGF的表达至少40%、50%、60%、70%、80%或至少90%。
17.根据权利要求1-16的组合物,其中,向细胞施用所述组合物将降低所述细胞中的Eg5和VEGF的表达。
18.根据权利要求1-17的组合物,其中,所述组合物以nM浓度施用。
19.根据权利要求1-18的组合物,其中,向细胞施用所述组合物将增加细胞中单星体的形成。
20.根据权利要求1-19的组合物,其中,向哺乳动物施用所述组合物导致一种选自以下的效应:在所述哺乳动物中防止肿瘤生长、减少肿瘤生长、或延长生存时间。
21.根据权利要求1-20的组合物,其中,使用至少一种选自以下的分析测量所述效应:体重的测定、器官重量的测定、目视检查、mRNA分析、血清AFP分析和生存监测。
22.根据权利要求1-21的组合物,还包含索拉非尼。
23.根据上述权利要求任何一项的组合物,其中,所述第一dsRNA包含两个突出端,和所述第二dsRNA在反义链3'端包含突出端和在反义链5'端包含平端。
24.一种抑制细胞中Eg5/KSP和VEGF的表达的方法,包括向细胞施用权利要求1-22的任何一种组合物。
25.一种在需要治疗癌症的哺乳动物中防止肿瘤的生长、减少肿瘤的生长或延长生存时间的方法,包括向所述哺乳动物施用权利要求1-22的组合物。
26.根据权利要求25的方法,其中,所述哺乳动物患有肝癌。
27.根据权利要求25的方法,其中,所述哺乳动物是患有肝癌的人类。
28.根据权利要求24或25的方法,还包括施用索拉非尼。
CN201510567473.4A 2008-03-05 2009-03-05 用于抑制Eg5和VEGF基因表达的组合物和方法 Active CN105267233B (zh)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US3401908P 2008-03-05 2008-03-05
US61/034,019 2008-03-05
US8336708P 2008-07-24 2008-07-24
US61/083,367 2008-07-24
US8638108P 2008-08-05 2008-08-05
US61/086,381 2008-08-05
US11207908P 2008-11-06 2008-11-06
US61/112,079 2008-11-06
US15066409P 2009-02-06 2009-02-06
US61/150,664 2009-02-06
CN200980115656.5A CN102014932B (zh) 2008-03-05 2009-03-05 用于抑制Eg5和VEGF基因表达的组合物和方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200980115656.5A Division CN102014932B (zh) 2008-03-05 2009-03-05 用于抑制Eg5和VEGF基因表达的组合物和方法

Publications (2)

Publication Number Publication Date
CN105267233A true CN105267233A (zh) 2016-01-27
CN105267233B CN105267233B (zh) 2019-07-26

Family

ID=40959839

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200980115656.5A Active CN102014932B (zh) 2008-03-05 2009-03-05 用于抑制Eg5和VEGF基因表达的组合物和方法
CN201510567473.4A Active CN105267233B (zh) 2008-03-05 2009-03-05 用于抑制Eg5和VEGF基因表达的组合物和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN200980115656.5A Active CN102014932B (zh) 2008-03-05 2009-03-05 用于抑制Eg5和VEGF基因表达的组合物和方法

Country Status (15)

Country Link
US (3) US20100087508A1 (zh)
EP (2) EP2265276A2 (zh)
JP (2) JP2011518117A (zh)
KR (1) KR101397407B1 (zh)
CN (2) CN102014932B (zh)
AU (1) AU2009221775B2 (zh)
BR (1) BRPI0909779A2 (zh)
CA (1) CA2716793A1 (zh)
EA (2) EA019531B1 (zh)
HK (1) HK1220380A1 (zh)
IL (1) IL207956A0 (zh)
MX (1) MX2010009611A (zh)
NZ (1) NZ588280A (zh)
SG (1) SG188121A1 (zh)
WO (1) WO2009111658A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108498376A (zh) * 2018-04-02 2018-09-07 榛硕(武汉)智能科技有限公司 一种甲基硅油乳液及其制备方法
CN112111488A (zh) * 2019-06-21 2020-12-22 苏州吉玛基因股份有限公司 siRNA修饰物及其在抑制血管新生中的应用

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832154B1 (fr) 2001-11-09 2007-03-16 Centre Nat Rech Scient Oligonucleotides inhibiteurs et leur utilisation pour reprimer specifiquement un gene
CA2559161C (en) 2004-03-12 2013-06-11 Alnylam Pharmaceuticals, Inc. Irna agents targeting vegf
NZ571568A (en) 2006-03-31 2010-11-26 Alnylam Pharmaceuticals Inc Double-stranded RNA molecule compositions and methods for inhibiting expression of Eg5 gene
JP5570806B2 (ja) 2006-05-11 2014-08-13 アルナイラム ファーマシューティカルズ, インコーポレイテッド Pcsk9遺伝子の発現を阻害するための組成物および方法
US8598333B2 (en) * 2006-05-26 2013-12-03 Alnylam Pharmaceuticals, Inc. SiRNA silencing of genes expressed in cancer
PT2279254T (pt) 2008-04-15 2017-09-04 Protiva Biotherapeutics Inc Novas formulações lipídicas para entrega de ácido nucleico
CN102421900B (zh) * 2009-03-12 2015-07-22 阿尔尼拉姆医药品有限公司 用于抑制Eg5和VEGF基因表达的脂质配制的组合物以及方法
US20120114710A1 (en) * 2009-05-18 2012-05-10 Lynn Kirkpatrick Carbon nanotubes complexed with multiple bioactive agents and methods related thereto
CA2764832A1 (en) 2009-06-15 2010-12-23 Alnylam Pharmaceuticals, Inc. Lipid formulated dsrna targeting the pcsk9 gene
US9051567B2 (en) 2009-06-15 2015-06-09 Tekmira Pharmaceuticals Corporation Methods for increasing efficacy of lipid formulated siRNA
CA2767127A1 (en) 2009-07-01 2011-01-06 Protiva Biotherapeutics, Inc. Novel lipid formulations for delivery of therapeutic agents to solid tumors
WO2011034798A1 (en) 2009-09-15 2011-03-24 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of eg5 and vegf genes
WO2011088309A1 (en) 2010-01-14 2011-07-21 Regulus Therapeutics Inc. Microrna compositions and methods
WO2012000104A1 (en) 2010-06-30 2012-01-05 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
WO2012015775A2 (en) 2010-07-28 2012-02-02 Dharmacon, Inc. Sirna targeting vegfa and methods for treatment in vivo
CN110123830A (zh) * 2010-11-09 2019-08-16 阿尔尼拉姆医药品有限公司 用于抑制Eg5和VEGF基因的表达的脂质配制的组合物和方法
EP3735017A1 (en) * 2013-02-15 2020-11-04 Mitsubishi Electric Corporation Mobile communication system, base station and user equipment
WO2014182661A2 (en) 2013-05-06 2014-11-13 Alnylam Pharmaceuticals, Inc Dosages and methods for delivering lipid formulated nucleic acid molecules
WO2017079442A1 (en) 2015-11-04 2017-05-11 Icahn School Of Medicine At Mount Sinai Methods of treating tumors and cancer, and identifying candidate subjects for such treatment
US11246868B2 (en) 2016-04-26 2022-02-15 Icahn School Of Medicine At Mount Sinai Treatment of hippo pathway mutant tumors and methods of identifying subjects as candidates for treatment
JP6875500B2 (ja) 2016-07-28 2021-05-26 インスティテュート フォー ベーシック サイエンスInstitute For Basic Science Cas9タンパク質およびガイドRNAを含む眼疾患治療用薬学組成物
AU2017368050A1 (en) 2016-11-29 2019-06-20 Puretech Lyt, Inc. Exosomes for delivery of therapeutic agents
CN112654366A (zh) 2018-06-21 2021-04-13 罗切斯特大学 治疗或抑制亨廷顿病发作的方法
CN111481677B (zh) * 2019-01-25 2021-08-17 浙江大学 血脑屏障渗透性调控剂及其应用
US20230057355A1 (en) 2019-02-13 2023-02-23 University Of Rochester Gene networks that mediate remyelination of the human brain
CA3200234A1 (en) 2020-11-25 2022-06-02 Daryl C. Drummond Lipid nanoparticles for delivery of nucleic acids, and related methods of use
US12064479B2 (en) 2022-05-25 2024-08-20 Akagera Medicines, Inc. Lipid nanoparticles for delivery of nucleic acids and methods of use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012191A1 (en) * 2005-07-27 2007-02-01 Protiva Biotherapeutics, Inc. Systems and methods for manufacturing liposomes
WO2007115168A2 (en) * 2006-03-31 2007-10-11 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of eg5 gene

Family Cites Families (220)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US564562A (en) 1896-07-21 Joseph p
US513030A (en) 1894-01-16 Machine for waxing or coating paper
US3687808A (en) 1969-08-14 1972-08-29 Univ Leland Stanford Junior Synthetic polynucleotides
US4469863A (en) 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US4426330A (en) 1981-07-20 1984-01-17 Lipid Specialties, Inc. Synthetic phospholipid compounds
US4534899A (en) 1981-07-20 1985-08-13 Lipid Specialties, Inc. Synthetic phospholipid compounds
US5023243A (en) 1981-10-23 1991-06-11 Molecular Biosystems, Inc. Oligonucleotide therapeutic agent and method of making same
US4476301A (en) 1982-04-29 1984-10-09 Centre National De La Recherche Scientifique Oligonucleotides, a process for preparing the same and their application as mediators of the action of interferon
JPS5927900A (ja) 1982-08-09 1984-02-14 Wakunaga Seiyaku Kk 固定化オリゴヌクレオチド
FR2540122B1 (fr) 1983-01-27 1985-11-29 Centre Nat Rech Scient Nouveaux composes comportant une sequence d'oligonucleotide liee a un agent d'intercalation, leur procede de synthese et leur application
US4605735A (en) 1983-02-14 1986-08-12 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives
US4948882A (en) 1983-02-22 1990-08-14 Syngene, Inc. Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis
US4824941A (en) 1983-03-10 1989-04-25 Julian Gordon Specific antibody to the native form of 2'5'-oligonucleotides, the method of preparation and the use as reagents in immunoassays or for binding 2'5'-oligonucleotides in biological systems
US4587044A (en) 1983-09-01 1986-05-06 The Johns Hopkins University Linkage of proteins to nucleic acids
US5118800A (en) 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
US5118802A (en) 1983-12-20 1992-06-02 California Institute Of Technology DNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside
US4828991A (en) 1984-01-31 1989-05-09 Akzo N.V. Tumor specific monoclonal antibodies
US5550111A (en) 1984-07-11 1996-08-27 Temple University-Of The Commonwealth System Of Higher Education Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof
FR2567892B1 (fr) 1984-07-19 1989-02-17 Centre Nat Rech Scient Nouveaux oligonucleotides, leur procede de preparation et leurs applications comme mediateurs dans le developpement des effets des interferons
US5258506A (en) 1984-10-16 1993-11-02 Chiron Corporation Photolabile reagents for incorporation into oligonucleotide chains
US5430136A (en) 1984-10-16 1995-07-04 Chiron Corporation Oligonucleotides having selectably cleavable and/or abasic sites
US5367066A (en) 1984-10-16 1994-11-22 Chiron Corporation Oligonucleotides with selectably cleavable and/or abasic sites
US4828979A (en) 1984-11-08 1989-05-09 Life Technologies, Inc. Nucleotide analogs for nucleic acid labeling and detection
FR2575751B1 (fr) 1985-01-08 1987-04-03 Pasteur Institut Nouveaux nucleosides de derives de l'adenosine, leur preparation et leurs applications biologiques
US5405938A (en) 1989-12-20 1995-04-11 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5166315A (en) 1989-12-20 1992-11-24 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5235033A (en) 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
US5185444A (en) 1985-03-15 1993-02-09 Anti-Gene Deveopment Group Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US4762779A (en) 1985-06-13 1988-08-09 Amgen Inc. Compositions and methods for functionalizing nucleic acids
EP0228458B2 (en) 1985-07-05 1997-10-22 Whitehead Institute For Biomedical Research Epithelial cells expressing foreign genetic material
US4980286A (en) 1985-07-05 1990-12-25 Whitehead Institute For Biomedical Research In vivo introduction and expression of foreign genetic material in epithelial cells
US5139941A (en) 1985-10-31 1992-08-18 University Of Florida Research Foundation, Inc. AAV transduction vectors
US5317098A (en) 1986-03-17 1994-05-31 Hiroaki Shizuya Non-radioisotope tagging of fragments
JPS638396A (ja) 1986-06-30 1988-01-14 Wakunaga Pharmaceut Co Ltd ポリ標識化オリゴヌクレオチド誘導体
US4837028A (en) 1986-12-24 1989-06-06 Liposome Technology, Inc. Liposomes with enhanced circulation time
US4920016A (en) 1986-12-24 1990-04-24 Linear Technology, Inc. Liposomes with enhanced circulation time
US5264423A (en) 1987-03-25 1993-11-23 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5276019A (en) 1987-03-25 1994-01-04 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US4904582A (en) 1987-06-11 1990-02-27 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
JP2828642B2 (ja) 1987-06-24 1998-11-25 ハワード フローレイ インスティテュト オブ イクスペリメンタル フィジオロジー アンド メディシン ヌクレオシド誘導体
DE3852823T2 (de) 1987-09-11 1995-05-24 Hughes Howard Med Inst Transduktionsveränderte fibroblasten und ihre anwendung.
US5585481A (en) 1987-09-21 1996-12-17 Gen-Probe Incorporated Linking reagents for nucleotide probes
US4924624A (en) 1987-10-22 1990-05-15 Temple University-Of The Commonwealth System Of Higher Education 2,',5'-phosphorothioate oligoadenylates and plant antiviral uses thereof
US5188897A (en) 1987-10-22 1993-02-23 Temple University Of The Commonwealth System Of Higher Education Encapsulated 2',5'-phosphorothioate oligoadenylates
US5525465A (en) 1987-10-28 1996-06-11 Howard Florey Institute Of Experimental Physiology And Medicine Oligonucleotide-polyamide conjugates and methods of production and applications of the same
DE3738460A1 (de) 1987-11-12 1989-05-24 Max Planck Gesellschaft Modifizierte oligonukleotide
WO1989005345A1 (en) 1987-12-11 1989-06-15 Whitehead Institute For Biomedical Research Genetic modification of endothelial cells
DE68927996T2 (de) 1988-02-05 1997-12-04 Hughes Howard Med Inst Modifizierte hepatozyten und deren anwendung
US5082830A (en) 1988-02-26 1992-01-21 Enzo Biochem, Inc. End labeled nucleotide probe
EP0406309A4 (en) 1988-03-25 1992-08-19 The University Of Virginia Alumni Patents Foundation Oligonucleotide n-alkylphosphoramidates
US5278302A (en) 1988-05-26 1994-01-11 University Patents, Inc. Polynucleotide phosphorodithioates
US5109124A (en) 1988-06-01 1992-04-28 Biogen, Inc. Nucleic acid probe linked to a label having a terminal cysteine
US5216141A (en) 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
US5175273A (en) 1988-07-01 1992-12-29 Genentech, Inc. Nucleic acid intercalating agents
US5262536A (en) 1988-09-15 1993-11-16 E. I. Du Pont De Nemours And Company Reagents for the preparation of 5'-tagged oligonucleotides
GB8824593D0 (en) 1988-10-20 1988-11-23 Royal Free Hosp School Med Liposomes
US5512439A (en) 1988-11-21 1996-04-30 Dynal As Oligonucleotide-linked magnetic particles and uses thereof
US5599923A (en) 1989-03-06 1997-02-04 Board Of Regents, University Of Tx Texaphyrin metal complexes having improved functionalization
US5457183A (en) 1989-03-06 1995-10-10 Board Of Regents, The University Of Texas System Hydroxylated texaphyrins
US5328470A (en) 1989-03-31 1994-07-12 The Regents Of The University Of Michigan Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor
US5391723A (en) 1989-05-31 1995-02-21 Neorx Corporation Oligonucleotide conjugates
US4958013A (en) 1989-06-06 1990-09-18 Northwestern University Cholesteryl modified oligonucleotides
US5451463A (en) 1989-08-28 1995-09-19 Clontech Laboratories, Inc. Non-nucleoside 1,3-diol reagents for labeling synthetic oligonucleotides
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
US5254469A (en) 1989-09-12 1993-10-19 Eastman Kodak Company Oligonucleotide-enzyme conjugate that can be used as a probe in hybridization assays and polymerase chain reaction procedures
US5591722A (en) 1989-09-15 1997-01-07 Southern Research Institute 2'-deoxy-4'-thioribonucleosides and their antiviral activity
US5356633A (en) 1989-10-20 1994-10-18 Liposome Technology, Inc. Method of treatment of inflamed tissues
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5225212A (en) 1989-10-20 1993-07-06 Liposome Technology, Inc. Microreservoir liposome composition and method
US5399676A (en) 1989-10-23 1995-03-21 Gilead Sciences Oligonucleotides with inverted polarity
ATE190981T1 (de) 1989-10-24 2000-04-15 Isis Pharmaceuticals Inc 2'-modifizierte nukleotide
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
US5292873A (en) 1989-11-29 1994-03-08 The Research Foundation Of State University Of New York Nucleic acids labeled with naphthoquinone probe
US5177198A (en) 1989-11-30 1993-01-05 University Of N.C. At Chapel Hill Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates
US5486603A (en) 1990-01-08 1996-01-23 Gilead Sciences, Inc. Oligonucleotide having enhanced binding affinity
US5578718A (en) 1990-01-11 1996-11-26 Isis Pharmaceuticals, Inc. Thiol-derivatized nucleosides
US5681941A (en) 1990-01-11 1997-10-28 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US5587470A (en) 1990-01-11 1996-12-24 Isis Pharmaceuticals, Inc. 3-deazapurines
US5670633A (en) 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5587361A (en) 1991-10-15 1996-12-24 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US5646265A (en) 1990-01-11 1997-07-08 Isis Pharmceuticals, Inc. Process for the preparation of 2'-O-alkyl purine phosphoramidites
US5459255A (en) 1990-01-11 1995-10-17 Isis Pharmaceuticals, Inc. N-2 substituted purines
US5214136A (en) 1990-02-20 1993-05-25 Gilead Sciences, Inc. Anthraquinone-derivatives oligonucleotides
AU7579991A (en) 1990-02-20 1991-09-18 Gilead Sciences, Inc. Pseudonucleosides and pseudonucleotides and their polymers
US5321131A (en) 1990-03-08 1994-06-14 Hybridon, Inc. Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling
US5470967A (en) 1990-04-10 1995-11-28 The Dupont Merck Pharmaceutical Company Oligonucleotide analogs with sulfamate linkages
US5665710A (en) 1990-04-30 1997-09-09 Georgetown University Method of making liposomal oligodeoxynucleotide compositions
GB9009980D0 (en) 1990-05-03 1990-06-27 Amersham Int Plc Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides
EP0455905B1 (en) 1990-05-11 1998-06-17 Microprobe Corporation Dipsticks for nucleic acid hybridization assays and methods for covalently immobilizing oligonucleotides
US5602240A (en) 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
DE69126530T2 (de) 1990-07-27 1998-02-05 Isis Pharmaceutical, Inc., Carlsbad, Calif. Nuklease resistente, pyrimidin modifizierte oligonukleotide, die die gen-expression detektieren und modulieren
US5138045A (en) 1990-07-27 1992-08-11 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5618704A (en) 1990-07-27 1997-04-08 Isis Pharmacueticals, Inc. Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling
US5623070A (en) 1990-07-27 1997-04-22 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5610289A (en) 1990-07-27 1997-03-11 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5541307A (en) 1990-07-27 1996-07-30 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs and solid phase synthesis thereof
US5608046A (en) 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5688941A (en) 1990-07-27 1997-11-18 Isis Pharmaceuticals, Inc. Methods of making conjugated 4' desmethyl nucleoside analog compounds
US5489677A (en) 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5218105A (en) 1990-07-27 1993-06-08 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5677437A (en) 1990-07-27 1997-10-14 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5245022A (en) 1990-08-03 1993-09-14 Sterling Drug, Inc. Exonuclease resistant terminally substituted oligonucleotides
PT98562B (pt) 1990-08-03 1999-01-29 Sanofi Sa Processo para a preparacao de composicoes que compreendem sequencias de nucleo-sidos com cerca de 6 a cerca de 200 bases resistentes a nucleases
US5512667A (en) 1990-08-28 1996-04-30 Reed; Michael W. Trifunctional intermediates for preparing 3'-tailed oligonucleotides
US5214134A (en) 1990-09-12 1993-05-25 Sterling Winthrop Inc. Process of linking nucleosides with a siloxane bridge
US5561225A (en) 1990-09-19 1996-10-01 Southern Research Institute Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages
EP0549686A4 (en) 1990-09-20 1995-01-18 Gilead Sciences Inc Modified internucleoside linkages
US5432272A (en) 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
DK0556345T3 (da) 1990-10-31 1997-06-16 Whitehead Biomedical Inst Retrovirale vektorer,som er egnede til genterapi
DE69132510T2 (de) 1990-11-08 2001-05-03 Hybridon, Inc. Verbindung von mehrfachreportergruppen auf synthetischen oligonukleotiden
GB9100304D0 (en) 1991-01-08 1991-02-20 Ici Plc Compound
JP3220180B2 (ja) 1991-05-23 2001-10-22 三菱化学株式会社 薬剤含有タンパク質結合リポソーム
US5714331A (en) 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5539082A (en) 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
US5719262A (en) 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
DE4216134A1 (de) * 1991-06-20 1992-12-24 Europ Lab Molekularbiolog Synthetische katalytische oligonukleotidstrukturen
US5371241A (en) 1991-07-19 1994-12-06 Pharmacia P-L Biochemicals Inc. Fluorescein labelled phosphoramidites
US5571799A (en) 1991-08-12 1996-11-05 Basco, Ltd. (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response
DE59208572D1 (de) 1991-10-17 1997-07-10 Ciba Geigy Ag Bicyclische Nukleoside, Oligonukleotide, Verfahren zu deren Herstellung und Zwischenprodukte
US5594121A (en) 1991-11-07 1997-01-14 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
US5252479A (en) 1991-11-08 1993-10-12 Research Corporation Technologies, Inc. Safe vector for gene therapy
US5484908A (en) 1991-11-26 1996-01-16 Gilead Sciences, Inc. Oligonucleotides containing 5-propynyl pyrimidines
US5359044A (en) 1991-12-13 1994-10-25 Isis Pharmaceuticals Cyclobutyl oligonucleotide surrogates
US5565552A (en) 1992-01-21 1996-10-15 Pharmacyclics, Inc. Method of expanded porphyrin-oligonucleotide conjugate synthesis
US5595726A (en) 1992-01-21 1997-01-21 Pharmacyclics, Inc. Chromophore probe for detection of nucleic acid
FR2687679B1 (fr) 1992-02-05 1994-10-28 Centre Nat Rech Scient Oligothionucleotides.
DE4203923A1 (de) 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
US5633360A (en) 1992-04-14 1997-05-27 Gilead Sciences, Inc. Oligonucleotide analogs capable of passive cell membrane permeation
US5434257A (en) 1992-06-01 1995-07-18 Gilead Sciences, Inc. Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
US5587308A (en) 1992-06-02 1996-12-24 The United States Of America As Represented By The Department Of Health & Human Services Modified adeno-associated virus vector capable of expression from a novel promoter
EP0577558A2 (de) 1992-07-01 1994-01-05 Ciba-Geigy Ag Carbocyclische Nukleoside mit bicyclischen Ringen, Oligonukleotide daraus, Verfahren zu deren Herstellung, deren Verwendung und Zwischenproduckte
US5272250A (en) 1992-07-10 1993-12-21 Spielvogel Bernard F Boronated phosphoramidate compounds
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
US5574142A (en) 1992-12-15 1996-11-12 Microprobe Corporation Peptide linkers for improved oligonucleotide delivery
US5672659A (en) * 1993-01-06 1997-09-30 Kinerton Limited Ionic molecular conjugates of biodegradable polyesters and bioactive polypeptides
WO1994016736A1 (en) * 1993-01-22 1994-08-04 University Research Corporation Localization of therapeutic agents
JP3351476B2 (ja) 1993-01-22 2002-11-25 三菱化学株式会社 リン脂質誘導体及びそれを含有するリポソーム
US5476925A (en) 1993-02-01 1995-12-19 Northwestern University Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups
EP0685234B1 (en) 1993-02-19 2000-05-10 Nippon Shinyaku Company, Limited Drug composition containing nucleic acid copolymer
US5395619A (en) 1993-03-03 1995-03-07 Liposome Technology, Inc. Lipid-polymer conjugates and liposomes
GB9304618D0 (en) 1993-03-06 1993-04-21 Ciba Geigy Ag Chemical compounds
AU6449394A (en) 1993-03-30 1994-10-24 Sterling Winthrop Inc. Acyclic nucleoside analogs and oligonucleotide sequences containing them
CA2159629A1 (en) 1993-03-31 1994-10-13 Sanofi Oligonucleotides with amide linkages replacing phosphodiester linkages
DE4311944A1 (de) 1993-04-10 1994-10-13 Degussa Umhüllte Natriumpercarbonatpartikel, Verfahren zu deren Herstellung und sie enthaltende Wasch-, Reinigungs- und Bleichmittelzusammensetzungen
US5502177A (en) 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
CA2137297C (en) 1993-12-06 2000-04-18 Tsuyoshi Miyazaki Reactive vesicle and functional substance-fixed vesicle
US5457187A (en) 1993-12-08 1995-10-10 Board Of Regents University Of Nebraska Oligonucleotides containing 5-fluorouracil
US5446137B1 (en) 1993-12-09 1998-10-06 Behringwerke Ag Oligonucleotides containing 4'-substituted nucleotides
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5902880A (en) * 1994-08-19 1999-05-11 Ribozyme Pharmaceuticals, Inc. RNA polymerase III-based expression of therapeutic RNAs
US5596091A (en) 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5627053A (en) 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
US5625050A (en) 1994-03-31 1997-04-29 Amgen Inc. Modified oligonucleotides and intermediates useful in nucleic acid therapeutics
US6054299A (en) 1994-04-29 2000-04-25 Conrad; Charles A. Stem-loop cloning vector and method
US5525711A (en) 1994-05-18 1996-06-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pteridine nucleotide analogs as fluorescent DNA probes
US5543152A (en) 1994-06-20 1996-08-06 Inex Pharmaceuticals Corporation Sphingosomes for enhanced drug delivery
EP0769552A4 (en) * 1994-06-27 1997-06-18 Toagosei Co Ltd ANTISENSE NUCLEIC ACID COMPOUND
US5597696A (en) 1994-07-18 1997-01-28 Becton Dickinson And Company Covalent cyanine dye oligonucleotide conjugates
US5580731A (en) 1994-08-25 1996-12-03 Chiron Corporation N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith
US5597909A (en) 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US5595760A (en) * 1994-09-02 1997-01-21 Delab Sustained release of peptides from pharmaceutical compositions
US5820873A (en) 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
US5716824A (en) * 1995-04-20 1998-02-10 Ribozyme Pharmaceuticals, Inc. 2'-O-alkylthioalkyl and 2-C-alkylthioalkyl-containing enzymatic nucleic acids (ribozymes)
US5587375A (en) * 1995-02-17 1996-12-24 Bristol-Myers Squibb Company Azepinone compounds useful in the inhibition of ACE and NEP
US7422902B1 (en) 1995-06-07 2008-09-09 The University Of British Columbia Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
US5756122A (en) 1995-06-07 1998-05-26 Georgetown University Liposomally encapsulated nucleic acids having high entrapment efficiencies, method of manufacturer and use thereof for transfection of targeted cells
EP0832271B8 (en) 1995-06-07 2005-03-02 INEX Pharmaceuticals Corp. Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
US5981501A (en) 1995-06-07 1999-11-09 Inex Pharmaceuticals Corp. Methods for encapsulating plasmids in lipid bilayers
EP0843555B1 (en) 1995-08-01 2003-08-27 Isis Pharmaceuticals, Inc. Liposomal oligonucleotide compositions
US5858397A (en) 1995-10-11 1999-01-12 University Of British Columbia Liposomal formulations of mitoxantrone
US5994316A (en) 1996-02-21 1999-11-30 The Immune Response Corporation Method of preparing polynucleotide-carrier complexes for delivery to cells
ATE321882T1 (de) 1997-07-01 2006-04-15 Isis Pharmaceuticals Inc Zusammensetzungen und verfahren zur verabreichung von oligonukleotiden über die speiseröhre
US6395713B1 (en) * 1997-07-23 2002-05-28 Ribozyme Pharmaceuticals, Inc. Compositions for the delivery of negatively charged molecules
US6506559B1 (en) 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
PT1068311E (pt) 1998-04-08 2011-07-20 Commw Scient Ind Res Org Processos e meios de obter fenótipos modificados
AR020078A1 (es) 1998-05-26 2002-04-10 Syngenta Participations Ag Metodo para alterar la expresion de un gen objetivo en una celula de planta
CA2335393C (en) 1998-07-20 2008-09-23 Inex Pharmaceuticals Corporation Liposomal encapsulated nucleic acid-complexes
AU6430599A (en) 1998-10-09 2000-05-01 Cytogenix, Inc. Enzymatic synthesis of ssdna
AU6298899A (en) 1998-10-09 2000-05-01 Ingene, Inc. Production of ssdna (in vivo)
DE19956568A1 (de) 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
WO2000050050A1 (en) 1999-02-23 2000-08-31 Isis Pharmaceuticals, Inc. Multiparticulate formulation
US6271359B1 (en) 1999-04-14 2001-08-07 Musc Foundation For Research Development Tissue-specific and pathogen-specific toxic agents and ribozymes
US20050112141A1 (en) 2000-08-30 2005-05-26 Terman David S. Compositions and methods for treatment of neoplastic disease
DE10100586C1 (de) 2001-01-09 2002-04-11 Ribopharma Ag Verfahren zur Hemmung der Expression eines Ziegens
US20030229037A1 (en) * 2000-02-07 2003-12-11 Ulrich Massing Novel cationic amphiphiles
WO2003070918A2 (en) 2002-02-20 2003-08-28 Ribozyme Pharmaceuticals, Incorporated Rna interference by modified short interfering nucleic acid
US20070026394A1 (en) * 2000-02-11 2007-02-01 Lawrence Blatt Modulation of gene expression associated with inflammation proliferation and neurite outgrowth using nucleic acid based technologies
CZ308053B6 (cs) * 2000-12-01 2019-11-27 Max Planck Gesellschaft Izolovaná molekula dvouřetězcové RNA, způsob její výroby a její použití
US20030170891A1 (en) * 2001-06-06 2003-09-11 Mcswiggen James A. RNA interference mediated inhibition of epidermal growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20040209832A1 (en) * 2001-11-30 2004-10-21 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US7981863B2 (en) * 2001-09-19 2011-07-19 Neuronova Ab Treatment of Parkinson's disease with PDGF
US7199107B2 (en) * 2002-05-23 2007-04-03 Isis Pharmaceuticals, Inc. Antisense modulation of kinesin-like 1 expression
US7148342B2 (en) * 2002-07-24 2006-12-12 The Trustees Of The University Of Pennyslvania Compositions and methods for sirna inhibition of angiogenesis
US7956176B2 (en) * 2002-09-05 2011-06-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US20040115201A1 (en) 2002-09-25 2004-06-17 Paz Einat Mitotic kinesin-like protein-1, MKLP1, and uses thereof
DK2284266T3 (da) * 2002-11-14 2014-01-13 Thermo Fisher Scient Biosciences Inc sIRNA-MOLEKYLE MOD TP53
DE10302421A1 (de) 2003-01-21 2004-07-29 Ribopharma Ag Doppelsträngige Ribonukleinsäure mit verbesserter Wirksamkeit
WO2004090108A2 (en) 2003-04-03 2004-10-21 Alnylam Pharmaceuticals Irna conjugates
EP3450559A1 (en) 2003-03-07 2019-03-06 Alnylam Pharmaceuticals, Inc. Therapeutic compositions
WO2006018628A1 (en) 2003-03-07 2006-02-23 Astrazeneca Ab Enantiomers of selected fused pyrimidones and uses in the treatment and preventi on of cancer
WO2005014782A2 (en) 2003-06-13 2005-02-17 Alnylam Europe Ag., Double-stranded ribonucleic acid with increased effectiveness in an organism
EP2567693B1 (en) * 2003-07-16 2015-10-21 Protiva Biotherapeutics Inc. Lipid encapsulated interfering RNA
CA2559161C (en) * 2004-03-12 2013-06-11 Alnylam Pharmaceuticals, Inc. Irna agents targeting vegf
WO2005121348A1 (en) * 2004-06-07 2005-12-22 Protiva Biotherapeutics, Inc. Lipid encapsulated interfering rna
EP1781593B1 (en) * 2004-06-07 2011-12-14 Protiva Biotherapeutics Inc. Cationic lipids and methods of use
WO2007086881A2 (en) * 2005-02-14 2007-08-02 Sirna Therapeutics, Inc. Cationic lipids and formulated molecular compositions containing them
TWI335352B (en) * 2005-03-31 2011-01-01 Calando Pharmaceuticals Inc Inhibitors of ribonucleotide reductase subunit 2 and uses thereof
US7915230B2 (en) * 2005-05-17 2011-03-29 Molecular Transfer, Inc. Reagents for transfection of eukaryotic cells
JP5336853B2 (ja) * 2005-11-02 2013-11-06 プロチバ バイオセラピューティクス インコーポレイティッド 修飾siRNA分子およびその使用法
US8598333B2 (en) * 2006-05-26 2013-12-03 Alnylam Pharmaceuticals, Inc. SiRNA silencing of genes expressed in cancer
AU2007303205A1 (en) 2006-10-03 2008-04-10 Tekmira Pharmaceuticals Corporation Lipid containing formulations
US20080213350A1 (en) * 2007-02-20 2008-09-04 Texas Tech University System Encapsulation of nucleic acids in liposomes
US7858592B2 (en) * 2007-02-26 2010-12-28 The Board Of Regents Of The University Of Texas System Interfering RNAs against the promoter region of P53
CA2710713C (en) * 2007-12-27 2017-09-19 Protiva Biotherapeutics, Inc. Silencing of polo-like kinase expression using interfering rna
PT2279254T (pt) * 2008-04-15 2017-09-04 Protiva Biotherapeutics Inc Novas formulações lipídicas para entrega de ácido nucleico
CN102421900B (zh) * 2009-03-12 2015-07-22 阿尔尼拉姆医药品有限公司 用于抑制Eg5和VEGF基因表达的脂质配制的组合物以及方法
KR20230098713A (ko) * 2009-06-10 2023-07-04 알닐람 파마슈티칼스 인코포레이티드 향상된 지질 조성물
US9051567B2 (en) 2009-06-15 2015-06-09 Tekmira Pharmaceuticals Corporation Methods for increasing efficacy of lipid formulated siRNA
US10799808B2 (en) 2018-09-13 2020-10-13 Nina Davis Interactive storytelling kit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012191A1 (en) * 2005-07-27 2007-02-01 Protiva Biotherapeutics, Inc. Systems and methods for manufacturing liposomes
WO2007115168A2 (en) * 2006-03-31 2007-10-11 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of eg5 gene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDREW X. ZHU ET AL.: "《Development of Sorafenib and Other Molecularly Targeted Agents in Hepatocellular Carcinoma》", 《CANCER》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108498376A (zh) * 2018-04-02 2018-09-07 榛硕(武汉)智能科技有限公司 一种甲基硅油乳液及其制备方法
CN112111488A (zh) * 2019-06-21 2020-12-22 苏州吉玛基因股份有限公司 siRNA修饰物及其在抑制血管新生中的应用

Also Published As

Publication number Publication date
US20160000819A1 (en) 2016-01-07
CN102014932B (zh) 2015-11-25
EA019531B1 (ru) 2014-04-30
EA201071033A1 (ru) 2011-04-29
EP2712926A2 (en) 2014-04-02
CN105267233B (zh) 2019-07-26
JP2015177801A (ja) 2015-10-08
BRPI0909779A2 (pt) 2019-09-24
HK1220380A1 (zh) 2017-05-05
AU2009221775A2 (en) 2010-11-04
KR20100126461A (ko) 2010-12-01
US20100087508A1 (en) 2010-04-08
WO2009111658A2 (en) 2009-09-11
AU2009221775B2 (en) 2015-05-07
JP2011518117A (ja) 2011-06-23
EA201301171A1 (ru) 2014-10-30
CA2716793A1 (en) 2009-09-11
AU2009221775A1 (en) 2009-09-11
IL207956A0 (en) 2010-12-30
US20130023577A1 (en) 2013-01-24
NZ588280A (en) 2012-11-30
CN102014932A (zh) 2011-04-13
MX2010009611A (es) 2010-12-15
SG188121A1 (en) 2013-03-28
US9006197B2 (en) 2015-04-14
WO2009111658A3 (en) 2009-10-29
EP2265276A2 (en) 2010-12-29
KR101397407B1 (ko) 2014-06-19

Similar Documents

Publication Publication Date Title
CN102014932B (zh) 用于抑制Eg5和VEGF基因表达的组合物和方法
JP6032724B2 (ja) 脂質製剤組成物およびEg5遺伝子とVEGF遺伝子の発現を阻害する方法
ES2544861T3 (es) Composiciones y métodos para inhibir la expresión del gen Eg5
JP5894913B2 (ja) Pcsk9遺伝子を標的とする、脂質で製剤化されたdsrna
JP5529142B2 (ja) 血清アミロイドa遺伝子の発現を阻害するための脂質製剤組成物および方法
CN103370054A (zh) 用于抑制Eg5和VEGF基因的表达的脂质配制的组合物和方法
CN102639115A (zh) 脂质配制的组合物及抑制eg5和vegf基因的表达的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1220380

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant