CN105229810B - 压电体薄膜及其制造方法 - Google Patents

压电体薄膜及其制造方法 Download PDF

Info

Publication number
CN105229810B
CN105229810B CN201480026406.5A CN201480026406A CN105229810B CN 105229810 B CN105229810 B CN 105229810B CN 201480026406 A CN201480026406 A CN 201480026406A CN 105229810 B CN105229810 B CN 105229810B
Authority
CN
China
Prior art keywords
piezoelectric film
scandium
atom
carbon atom
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480026406.5A
Other languages
English (en)
Other versions
CN105229810A (zh
Inventor
勅使河原明彦
加纳彦
加纳一彦
秋山守人
西久保桂子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Denso Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Denso Corp
Publication of CN105229810A publication Critical patent/CN105229810A/zh
Application granted granted Critical
Publication of CN105229810B publication Critical patent/CN105229810B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0047Activation or excitation of reactive gases outside the coating chamber
    • C23C14/0052Bombardment of substrates by reactive ion beams
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种压电体薄膜(1),其是通过溅射得到的并且由钪铝氮化物制成的。其碳原子含有率为2.5原子%以下。在压电体薄膜(1)的制造时,在至少含有氮气的气氛下,从碳原子含有率为5原子%以下的钪铝合金靶材(10)向基板上(21)同时溅射钪和铝。另外,也可以对合金靶材的相对面倾斜地照射离子束(31)来进行溅射。另外,也可以从Sc靶材和Al靶材向基板上同时溅射铝和钪。由此,能够提供可发挥优良的压电特性的压电体薄膜及其制造方法。

Description

压电体薄膜及其制造方法
关联申请的相互参照
本申请以2013年5月31日申请的日本专利申请2013-115477为基础,其公开内容通过参照的方式并入本申请中。
技术领域
本申请涉及由钪铝氮化物制成的压电体薄膜及其制造方法。
背景技术
由钪铝氮化物(ScxAl1-xN;0<x<1)制成的压电体薄膜与例如氮化铝薄膜等相比,能够显示更高的压电常数。因此,被期待适用于表面弹性波(SAW)元件、具有宽发光波长的发光二极管(LED)用的发光层、微小机电元件(MEMS)等中。
由钪铝氮化物制成的压电体薄膜可以通过在氮气氛下向基板上溅射钪和铝来制造(参照专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开2009-10926号公报
发明内容
可是,通过溅射得到的由钪铝氮化物制成的压电体薄膜在压电特性方面有偏差。即,即使制作由钪与铝的比率相同的钪铝氮化物制成的压电体薄膜,其压电常数等压电特性也会产生大幅偏差。因此,有可能未必能够获得显示优良的压电特性的压电体薄膜。
本申请是鉴于上述背景而完成的,提供一种能够发挥优良的压电特性的由钪铝氮化物制成的压电体薄膜及其制造方法。
本发明者们发现,压电性能产生偏差的原因在于由钪铝氮化物制成的压电体薄膜中的碳原子。进而发现,通过控制碳原子含有率,能够提高压电体薄膜的压电性能。
即,本申请的一个方案是一种压电体薄膜,其是通过溅射得到的并且由钪铝氮化物制成的压电体薄膜,其中,碳原子含有率为2.5原子%以下。
本申请的另一个方案是一种压电体薄膜的制造方法,其是制造上述压电体薄膜的方法,其中,实施下述一元溅射工序:在至少含有氮气的气氛下,从由钪铝合金制成的合金靶材向基板上同时溅射钪和铝,由此制造上述压电体薄膜,
上述合金靶材由碳原子含有率为5原子%以下的钪铝合金制成。
本申请的再一个方案是一种压电体薄膜的制造方法,其是制造上述压电体薄膜的方法,其中,实施下述二元溅射工序:在至少含有氮气的气氛下,从由钪制成的Sc靶材和由铝制成的Al靶材向基板上同时溅射钪和铝,由此制造上述压电体薄膜,
上述压电体薄膜由通式ScxAl1-xN(0<x<1)所表示的钪铝氮化物制成,上述Sc靶材由碳原子含有率为5/x原子%以下的钪制成。
另外,本申请的另一个方案是一种压电体薄膜的制造方法,其是制造压电体薄膜的方法,其中,实施下述离子照射溅射工序:将由钪铝合金制成的合金靶材与基板相对地配置,对上述合金靶材的相对面倾斜地照射离子束,从上述合金靶材向基板上同时溅射钪和铝,由此制造所述压电体薄膜,
在该离子照射溅射工序中,照射至少含有氮离子的上述离子束,或者在至少含有氮气的气氛下照射上述离子束。
发明效果
上述压电体薄膜通过溅射得到并且由钪铝氮化物制成。溅射时,微量的碳原子有可能从作为其原料的靶材混入到压电体薄膜中。该碳原子的混入有可能成为使压电体薄膜的压电d33常数等压电特性下降的要因。因为上述压电体薄膜如上所述由碳原子含有率低的钪铝氮化物制成,所以能够发挥优良的压电特性。
另外,在由钪铝氮化物制成的压电体薄膜中,碳原子含有率如果超过2.5原子%,则随着碳原子含有率增大,压电d33常数等压电特性的下降幅度也变大。如上所述,通过将碳原子含有率设定为2.5原子%,可以充分抑制压电特性的下降。因此,即使与由不含碳原子的纯钪铝氮化物制成的压电体薄膜相比,本申请的压电体薄膜也能够显示出毫不逊色的优良压电特性。
上述压电体薄膜可以通过一元溅射工序来制造。即,可以通过在至少含有氮气的气氛下、从由钪铝合金制成的合金靶材向基板上同时溅射铝和钪来制造。此时,可以通过使用碳原子含有率为5原子%以下的合金靶材,由此如上述那样制造碳原子含有率为2.5原子%以下的压电体薄膜。
另外,上述压电体薄膜可以通过二元溅射工序来制造。即,可以通过在至少含有氮气的气氛下、从由钪制成的Sc靶材和由铝制成的Al靶材向基板上同时溅射铝和钪来制造。此时,作为上述压电体薄膜,在制造由通式ScxAl1-xN(0<x<1)表示的钪铝氮化物制成的薄膜时,使用碳原子含有率为5/x(原子%)以下的Sc靶材。由此,可以如上述那样制造碳原子含有率为2.5原子%以下的压电体薄膜。
另外,上述压电体薄膜可以通过照射溅射工序来制造。即,将由钪铝合金制成的合金靶材与基板相对地配置,对上述合金靶材的相对面倾斜地照射离子束。而且,可以通过从上述合金靶材向基板上同时溅射铝和钪来制造。
其理由如下所述。即,通过离子束的照射而从靶材发射出来的原子(被溅射原子)的发射角度分布因其原子量的不同而不同。原子量小的原子与原子量大的原子相比,以与离子束的入射方向相同的角度向相反方向发射的比例增多。
因此,如上述照射溅射工序那样,对上述合金靶材的相对面倾斜地照射离子束。这样,合金靶材中所含的碳原子的大部分由于原子量比Sc和Al小,所以以与离子束的入射方向相同的角度并且向相反方向发射。其结果是,能够使碳原子向基板上发射的量变得非常少。因此,可以如上述那样制造碳原子含有率为2.5原子%以下的压电体薄膜。此外,在离子照射溅射工序中,照射至少含有氮离子的离子束,或者在至少含有氮气的气氛下照射离子束。因此,可以通过溅射制造由钪铝氮化物制成的压电体薄膜。
如上所述,可以通过进行一元溅射工序、二元溅射工序或照射溅射工序来制造碳原子含有率为2.5原子%以下的压电体薄膜。该压电体薄膜能够显示高的压电d33常数,并切实地发挥优良的压电特性。
如上所述,根据本申请,可以提供能够发挥优良压电特性的由钪铝氮化物制成的压电体薄膜及其制造方法。
附图说明
图1是显示实施例1中的形成于基板上的压电体薄膜的剖面结构的说明图。
图2是显示实施例1中的压电体薄膜的制造方法的概要的说明图。
图3是显示实施例1中的压电体薄膜中所含的碳原子含有率(原子%)与压电体薄膜的压电d33常数(pC/N)的关系的说明图。
图4是显示实施例2中的压电体薄膜的制造方法的概要的说明图。
具体实施方式
下面,对上述压电体薄膜及其制造方法中的优选的实施方式进行说明。
上述压电体薄膜由钪铝氮化物制成。钪铝氮化物可以用通式ScxAl1-xN(0<x<1)表示。优选的是,x满足0.05≤x≤0.5。在这种情况下,能够进一步提高上述压电体薄膜的压电响应性。更优选的是,0.15≤x≤0.45。
上述压电体薄膜可以形成于基板上。作为基板,可以使用例如由硅、蓝宝石、碳化硅、氮化镓、铌酸锂、铌酸钽、水晶、玻璃、金属、不锈钢、因科内尔镍铬铁合金(Inconel)、高分子膜等制成的基板。作为高分子膜,例如有聚酰亚胺膜等。
上述压电体薄膜可以通过进行上述一元溅射工序、上述二元溅射工序或上述照射溅射工序来制造。在一元溅射工序和照射溅射工序中,使用合金靶材。合金靶材中的钪与铝的比率可以根据目标组成的钪铝氮化物中的钪与铝的比率来适当决定。
另外,在二元溅射工序中,使用Al靶材和Sc靶材。在上述二元溅射工序中,可以通过调整溅射时的功率密度来调整作为目标的压电体薄膜中的钪与铝的比率。
在上述一元溅射工序和上述二元溅射工序中,各种靶材的功率密度可以设定为例如4.3~14W/cm2的范围内。优选设定为6.5~11W/cm2的范围内。靶材的功率密度是用溅射功率除以靶材的面积而得到的值。
合金靶材和Sc靶材可以通过高频感应加热或电弧熔化来制造。在该合金靶材或Sc靶材的制造时,使用碳制坩埚或含有碳的坩埚。碳原子从该坩埚混入到靶材中,碳原子也混入到作为目标的压电体薄膜中。在上述一元溅射工序和上述二元溅射工序中,可以通过分别降低合金靶材和Sc靶材中的碳原子含有率来降低作为目标的压电体薄膜的碳原子含有率。
另外,在上述照射溅射工序中,对上述合金靶材的相对面倾斜地照射离子束。即,将上述相对面上的上述离子束的入射角设定为锐角。将入射角设定得越小,越能够降低压电体薄膜中的碳原子含有率。另一方面,如果减小入射角,则由溅射得到的压电体薄膜的生成速度有下降的倾向。从在不使生成速度大幅降低的情况下充分降低碳原子含有率的观点出发,离子束的入射角优选为15~80°,更优选为25~70°。
此外,在上述照射溅射工序中,也优选合金靶材中的碳原子含量少。照射溅射工序中的合金靶中的碳原子含有率例如可以设定为10原子%以下,更优选为5原子%以下。由此,可以进一步切实地降低压电体薄膜中的碳原子含有率。
另外,溅射可以在含有氮气的气氛下进行。具体地说,例如可以在氮气与氩气等惰性气体的混合气体气氛下进行。在混合气体气氛下进行溅射的情况下,可以将混合气体中的氮气浓度设定为25~50体积%。从提高压电体薄膜的压电响应性的观点出发,氮气浓度优选为30~45体积%。
此外,溅射可以在0.1~0.8Pa的压力下进行。优选的是可以在0.1~0.4Pa的压力下进行。
溅射中的基板的温度例如可以设定为18~600℃的范围内。优选的是可以设定为200~400℃。
在上述照射溅射工序中,照射至少含有氮离子的离子束,或者在至少含有氮气的气氛下照射离子束。在照射含有氮离子的离子束的情况下,例如可以在含有Ar气、氮气或它们的混合气体的气氛下进行照射溅射工序。另外,当在含有氮气的气氛下照射离子束的情况下,可以照射氩等离子束。氩等离子束中也可以含有氮离子。
实施例
(实施例1)
下面,对压电体薄膜的实施例和比较例进行说明。
本例子中,制造碳原子(C)的含有率不同的多个压电体薄膜,进行压电常数的评价。
如图1所示,本例子的压电体薄膜1形成于由硅制成的基板2上,并且由钪铝氮化物制成,含有微量的碳。
在压电体薄膜1的制造时,首先,准备市售的由硅制成的基板和市售的由钪铝合金(Sc0.45Al0.55合金)制成的板状的合金靶材。合金靶材是通过使用了碳制坩埚的高频感应加热来制作的,钪与铝的元素组成比为0.45:0.55(Sc:Al)。此外,本例子中,合金靶材中的Sc含有率(原子%)和后述的压电体薄膜中的Sc含有率(原子%)是根据利用波长分散型荧光X射线分析装置(日本电子株式会社制的“JXA-8500F”)进行分析而得到的结果来算出的。
下面,通过使用溅射装置(Ulvac公司制的高频磁电管溅射装置),在氮气氛下向基板上溅射合金靶中所含的Sc和Al来制作压电体薄膜。
具体地说,如图2所示,在溅射腔室内将基板2与合金靶材10相对地配置。然后在溅射压力为0.16Pa、氮浓度为43体积%、靶功率密度为10W/cm2、基板温度为300℃、溅射时间为200分钟的条件下,从合金靶材10向基板2上溅射钪101和铝102。此外,溅射腔室被减压至5×10-5Pa以下,向腔室内导入99.999体积%的氩气和99.999体积%的氮气。合金靶材10在蒸镀前在Ar气氛下溅射了3分钟。
如图2所示,本例子中,对合金靶材10施加RF电压,在合金靶材10的表面形成了RF等离子体11。由此,通过自偏压效应,等离子体11中的正离子(氮离子和氩离子)朝着合金靶材10加速并碰撞。由于该碰撞,如图2所示,从合金靶材10发射出钪原子101和铝原子102,它们被溅射到与合金靶材10相对地配置的基板2的相对面21上。
这样,在基板2上制作了由钪铝氮化物制成的压电体薄膜1(参照图1)。此外,在本例子中,以施加RF电压为例进行了说明,但在施加DC电压的情况下也同样能够制造压电体薄膜1。
对于得到的压电体薄膜1,通过使用了CuKα射线的全自动X射线衍射装置(MacScience公司制的“M03X-HF”)来测定X射线衍射强度。其结果是,在2θ=36~37°处观察到了衍射峰。由此,确认制得了由钪铝氮化物制成的压电体薄膜1。
另外,使用上述的波长分散型荧光X射线分析装置研究了压电体薄膜1的组成,结果是,将Sc原子数和Al原子数的总量设定为100原子%时的Sc原子含有率为43原子%。即,在钪铝氮化物的通式ScxAl1-xN中,x=0.43。
在本例子中,作为合金靶材,使用碳原子(C)含有率不同的多个钪铝合金的靶材,由此制造多个压电体薄膜(试样1~9)。
各试样的压电体薄膜除了使用了合金靶材的种类、即C含有率(原子%)不同的合金靶材这点以外,均是同样地进行制作。
各试样的制作中使用的合金靶材的C含有率(原子%)和所得到的压电体薄膜中的C含有率(原子%)示于后述的表1中。
此外,C含有率(原子%)是通过二次离子质谱(SIMS)来测定的。
具体地说,使用CAMECA公司制的SIMS装置“IMS 7f”,在一次离子种为Cs+、一次离子加速能量为15keV、二次离子极性为负、带电补偿为金属镀层/电子枪蒸镀(E-gun)的条件下进行测定。合金靶材中的C含有率是相对于合金靶中的Sc原子数和Al原子数的总量100原子%的C原子含有率(原子%)。另外,压电体薄膜中的C含有率是相对于压电体薄膜的Sc原子数、Al原子数和N原子数的总量100原子%的C原子含有率(原子%)。
接着,测定各试样的压电体薄膜的压电d33常数(pC/N)。压电d33常数是使用压力计(Piezotest公司制的“PM200”)在载荷为0.25N、频率为110Hz的条件下测定的。其结果示于表1中。
另外,根据表1,将压电体薄膜中的C含有率(原子%)与压电体薄膜的压电d33常数的关系示于图3中。
表1
由表1和图3可知,由钪铝氮化物制成的压电体薄膜的碳原子含有率如果增加,则压电体薄膜的压电d33常数会加速地下降。通过将压电体薄膜中的碳原子含有率设定为2.5原子%以下,能够将由碳原子含有率导致的压电d33常数的下降幅度降低,压电体薄膜可以显示出超过20pC/N的高压电d33常数(参照图3)。更优选的是压电体薄膜中的碳原子含有率为1.5原子%以下,进一步优选为0.75原子%以下。
另外,为了将压电体薄膜中的碳原子含有率如上所述地设定为2.5原子%以下,可以使用碳原子含有率为5原子%以下的钪铝合金靶(参照表1和图3)。进而,为了获得碳原子含有率为1.5原子%以下的压电体薄膜,可以使用碳原子含有率为3原子%以下的钪铝合金靶。另外,为了获得碳原子含有率为0.75原子%以下的压电体薄膜,可以使用碳原子含有率为1.5原子%以下的钪铝合金靶。
(变形例1)
在实施例1中,通过进行使用了由钪铝合金制成的合金靶材的一元溅射工序来制作了压电体薄膜。可是,也可以通过进行使用了由钪制成的Sc靶材和由铝制成的Al靶材的二元溅射工序来制造压电体薄膜。在这种情况下,除了从Sc靶材和Al靶材向基板上同时溅射铝和钪这点以外,可以与实施例1同样地制造压电体薄膜。
在本例子这样的二元溅射工序中,不是在Al靶中、而是在Sc靶材中含有碳。该碳与实施例1的合金靶材同样地在Sc靶的制造时混入。另一方面,由实施例1可知,从提高压电特性的观点出发,由钪铝氮化物制成的压电体薄膜中的碳原子含有率优选为2.5原子%以下。
因此,在二元溅射工序中,在获得由通式ScxAl1-xN(0<x<1)所表示的钪铝氮化物制成的压电体薄膜时,优选使用碳原子含有率为5/x(原子%)以下的Sc靶材。另外,为了获得碳原子含有率为1.5原子%以下的压电体薄膜,可以使用碳原子含有率为3/x(原子%)以下的Sc靶。另外,为了获得碳原子含有率为0.75原子%以下的压电体薄膜,可以使用碳原子含有率为1.5/x(原子%)以下的Sc靶。此外,Sc靶材中的碳原子含有率是相对于Sc靶材中的Sc100原子%的碳原子含有率。
(实施例2)
在本例子中,通过对合金靶材的相对面倾斜地照射离子束来进行溅射的这一离子照射溅射工序,制造由钪铝氮化物制成的压电体薄膜。
具体地说,首先,与实施例1同样地将由钪铝合金制成的合金靶材10与基板2相对地配置(参照图4)。
作为基板2,可以使用与实施例1同样的硅基板。作为合金靶材10,也可以如实施例1那样使用碳含有率为例如5原子%以下的钪铝合金靶材。不过,也可以使用碳含有率超过5原子%的合金靶材。
如图4所示,将板状的合金靶材10的面之中的与基板2相对的面设定为相对面105时,使用离子枪3对合金靶材10的相对面105倾斜地照射含有氮离子的离子束31。离子束31的照射是在氩气气氛下进行。本例子中,按照使离子束31的照射方向与合金靶材的相对面105所成的角度θ为45°的方式照射离子束31。由此,从合金靶材10向基板2上同时溅射铝101和钪102,得到由钪铝氮化物制成的压电体薄膜。
如本例子那样,在倾斜地照射离子束31时,原子量小的碳原子与原子量大的钪原子和铝原子相比,以与离子束31的入射方向相同的角度并且向相反方向发射的比例增多。在图4中,表示了向与入射方向相反的方向发射的碳原子109。如该图所示,合金靶材10中所含的碳原子109的大部分以与离子束31的入射方向相同的角度并且向相反方向发射,可以使碳原子向基板2上发射的量变得非常少。因此,通过进行本例子的离子照射溅射工序,也能够制造2.5原子%以下的碳原子含有率低的压电体薄膜。
另外,在上述的离子照射溅射工序的例子中是在Ar气氛下照射含有氮离子的离子束31来制造压电体薄膜,但是离子束31也未必需要含有氮离子。即,也可以在含有氮气的气氛下,通过照射氩等离子束(Ar离子束)来制造由钪铝氮化物制成的压电体薄膜。在这种情况下,通过倾斜地照射离子束,也能够制造2.5原子%以下的碳原子含有率低的压电体薄膜。

Claims (10)

1.一种压电体薄膜,其是通过溅射得到的并且由钪铝氮化物制成的压电体薄膜,其中,碳原子含有率为0.1原子%以上且2.5原子%以下。
2.根据权利要求1所述的压电体薄膜,其中,所述碳原子含有率为1.5原子%以下。
3.根据权利要求1所述的压电体薄膜,其中,所述碳原子含有率为0.75原子%以下。
4.一种压电体薄膜的制造方法,其是制造权利要求1~3中任一项所述的压电体薄膜的方法,其中,实施下述一元溅射工序:在至少含有氮气的气氛下,从由钪铝合金制成的合金靶材(10)向基板(2)上同时溅射钪(101)和铝(102),由此制造所述压电体薄膜,
所述合金靶材(10)由碳原子含有率为0.2原子%以上且5原子%以下的钪铝合金制成。
5.根据权利要求4所述的压电体薄膜的制造方法,其中,所述合金靶材(10)由碳原子含有率为3原子%以下的钪铝合金制成。
6.根据权利要求4所述的压电体薄膜的制造方法,其中,所述合金靶材(10)由碳原子含有率为1.5原子%以下的钪铝合金制成。
7.一种压电体薄膜的制造方法,其是制造权利要求1~3中任一项所述的压电体薄膜的方法,其中,实施下述二元溅射工序:在至少含有氮气的气氛下,从由钪制成的Sc靶材和由铝制成的Al靶材向基板上同时溅射铝和钪,由此制造碳原子含有率为0.1原子%以上且2.5原子%以下的所述压电体薄膜,
所述压电体薄膜由通式ScxAl1-xN(0<x<1)所表示的钪铝氮化物制成,所述Sc靶材由碳原子含有率为5/x原子%以下的钪制成。
8.根据权利要求7所述的压电体薄膜的制造方法,其中,所述Sc靶材由碳原子含有率为3/x原子%以下的钪制成。
9.根据权利要求7所述的压电体薄膜的制造方法,其中,所述Sc靶材由碳原子含有率为1.5/x原子%以下的钪制成。
10.一种压电体薄膜的制造方法,其是制造权利要求1~3中任一项所述的压电体薄膜的方法,其中,实施下述离子照射溅射工序:将由钪铝合金制成的合金靶材(10)与基板(2)相对地配置,对与基板(2)相对的所述合金靶材(10)的面(105)倾斜地照射离子束(31),从所述合金靶材(10)向基板(2)上同时溅射钪(101)和铝(102),由此制造所述压电体薄膜,
在所述离子照射溅射工序中,照射至少含有氮离子的所述离子束,或者在至少含有氮气的气氛下照射所述离子束。
CN201480026406.5A 2013-05-31 2014-05-22 压电体薄膜及其制造方法 Active CN105229810B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013115477A JP5966199B2 (ja) 2013-05-31 2013-05-31 圧電体薄膜及びその製造方法
JP2013-115477 2013-05-31
PCT/JP2014/002697 WO2014192265A1 (ja) 2013-05-31 2014-05-22 圧電体薄膜及びその製造方法

Publications (2)

Publication Number Publication Date
CN105229810A CN105229810A (zh) 2016-01-06
CN105229810B true CN105229810B (zh) 2018-08-17

Family

ID=51988317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480026406.5A Active CN105229810B (zh) 2013-05-31 2014-05-22 压电体薄膜及其制造方法

Country Status (6)

Country Link
US (1) US9735342B2 (zh)
EP (1) EP3007242B1 (zh)
JP (1) JP5966199B2 (zh)
KR (1) KR101830490B1 (zh)
CN (1) CN105229810B (zh)
WO (1) WO2014192265A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136475A1 (ja) * 2015-02-27 2016-09-01 株式会社村田製作所 窒化インジウム圧電薄膜及びその製造方法、並びに圧電素子
US11832521B2 (en) 2017-10-16 2023-11-28 Akoustis, Inc. Methods of forming group III-nitride single crystal piezoelectric thin films using ordered deposition and stress neutral template layers
US11411168B2 (en) * 2017-10-16 2022-08-09 Akoustis, Inc. Methods of forming group III piezoelectric thin films via sputtering
US11411169B2 (en) 2017-10-16 2022-08-09 Akoustis, Inc. Methods of forming group III piezoelectric thin films via removal of portions of first sputtered material
US11581866B2 (en) 2016-03-11 2023-02-14 Akoustis, Inc. RF acoustic wave resonators integrated with high electron mobility transistors including a shared piezoelectric/buffer layer and methods of forming the same
SG11201810964UA (en) * 2016-06-07 2019-01-30 Jx Nippon Mining & Metals Corp Sputtering target and production method therefor
US11895920B2 (en) 2016-08-15 2024-02-06 Akoustis, Inc. Methods of forming group III piezoelectric thin films via removal of portions of first sputtered material
GB2555835B (en) * 2016-11-11 2018-11-28 Novosound Ltd Ultrasound transducer
US11856858B2 (en) 2017-10-16 2023-12-26 Akoustis, Inc. Methods of forming doped crystalline piezoelectric thin films via MOCVD and related doped crystalline piezoelectric thin films
JP7151096B2 (ja) * 2018-02-21 2022-10-12 株式会社デンソー 圧電膜、その製造方法、圧電膜積層体、その製造方法
KR20220130120A (ko) * 2020-01-21 2022-09-26 어쿠스티스, 인크. 공유 압전/버퍼 층을 포함하는 고 전자 이동도 트랜지스터들과 통합된 rf 음향파 공진기들 및 그 형성 방법들
KR20220137718A (ko) 2020-02-06 2022-10-12 어플라이드 머티어리얼스, 인코포레이티드 박막 증착 동안에 막 특성들을 조정하기 위한 방법 및 장치
US11618968B2 (en) 2020-02-07 2023-04-04 Akoustis, Inc. Apparatus including horizontal flow reactor with a central injector column having separate conduits for low-vapor pressure metalorganic precursors and other precursors for formation of piezoelectric layers on wafers
CN115917032A (zh) * 2020-09-01 2023-04-04 株式会社电装 Mems传感器及其制造方法
JP2022128755A (ja) * 2021-02-24 2022-09-05 国立研究開発法人産業技術総合研究所 窒化物材料およびそれからなる圧電体並びにその圧電体を用いたmemsデバイス、トランジスタ、インバーター、トランスデューサー、sawデバイスおよび強誘電体メモリ
CN113061857B (zh) * 2021-03-12 2023-01-13 浙江艾微普科技有限公司 一种离子辅助、倾斜溅射、反应溅射沉积薄膜的方法及设备
CN113293355B (zh) * 2021-06-11 2023-05-05 武汉大学 一种智能螺栓用AlCrN/AlScN纳米复合压电涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454910B1 (en) * 2001-09-21 2002-09-24 Kaufman & Robinson, Inc. Ion-assisted magnetron deposition
CN101325240A (zh) * 2007-05-31 2008-12-17 独立行政法人产业技术综合研究所 压电体薄膜、压电体及其制造方法、以及压电体谐振子
US20120000766A1 (en) * 2010-07-01 2012-01-05 Denso Corporation Method for manufacturing scandium aluminum nitride film
CN102482769A (zh) * 2009-10-08 2012-05-30 株式会社藤仓 离子束辅助溅射装置及离子束辅助溅射方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812144B2 (ja) * 1998-07-22 2011-11-09 住友電気工業株式会社 窒化アルミニウム焼結体及びその製造方法
JP5276769B2 (ja) 2004-10-01 2013-08-28 東京電波株式会社 六方晶系ウルツ鉱型単結晶、その製造方法、および六方晶系ウルツ鉱型単結晶基板
US7758979B2 (en) * 2007-05-31 2010-07-20 National Institute Of Advanced Industrial Science And Technology Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator, actuator element, and physical sensor using piezoelectric thin film
JP4997448B2 (ja) 2007-12-21 2012-08-08 独立行政法人産業技術総合研究所 窒化物半導体の製造方法および窒化物半導体デバイス
JP2011046580A (ja) 2009-08-28 2011-03-10 Rohm Co Ltd ZnO系基板及びZnO系半導体素子
JP5510403B2 (ja) * 2011-07-04 2014-06-04 株式会社デンソー 結晶軸傾斜膜の製造方法
JP5843198B2 (ja) * 2012-01-23 2016-01-13 国立研究開発法人産業技術総合研究所 圧電素子およびその製造方法、ならびに圧電センサ
CN104321965B (zh) * 2012-05-22 2017-04-12 株式会社村田制作所 体波谐振器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454910B1 (en) * 2001-09-21 2002-09-24 Kaufman & Robinson, Inc. Ion-assisted magnetron deposition
CN101325240A (zh) * 2007-05-31 2008-12-17 独立行政法人产业技术综合研究所 压电体薄膜、压电体及其制造方法、以及压电体谐振子
CN102482769A (zh) * 2009-10-08 2012-05-30 株式会社藤仓 离子束辅助溅射装置及离子束辅助溅射方法
US20120000766A1 (en) * 2010-07-01 2012-01-05 Denso Corporation Method for manufacturing scandium aluminum nitride film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Microstructure and Dielectric Properties of Piezoelectric Magnetron Sputtered w-ScxAl1-xN thin films;Agn&#279; &#381;ukauskait&#279;等;《Journal of Applied Physics》;20120509;第111卷(第9期);II. EXPERIMENTAL DETAILS部分 *
Preparation of scandium aluminum nitride thin films by using scandium aluminum alloy sputtering target and design of experiments;Morito AKIYAMA等;《Journal of the Ceramic Society of Japan》;20101231;第118卷(第12期);Experimental部分 *

Also Published As

Publication number Publication date
CN105229810A (zh) 2016-01-06
EP3007242A4 (en) 2017-02-01
US20160064645A1 (en) 2016-03-03
EP3007242A1 (en) 2016-04-13
EP3007242B1 (en) 2019-09-04
KR20160003777A (ko) 2016-01-11
JP5966199B2 (ja) 2016-08-10
JP2014236051A (ja) 2014-12-15
WO2014192265A1 (ja) 2014-12-04
KR101830490B1 (ko) 2018-02-20
US9735342B2 (en) 2017-08-15

Similar Documents

Publication Publication Date Title
CN105229810B (zh) 压电体薄膜及其制造方法
Greczynski et al. Role of Tin+ and Aln+ ion irradiation (n= 1, 2) during Ti1-xAlxN alloy film growth in a hybrid HIPIMS/magnetron mode
Ferreira et al. Effect of peak target power on the properties of Cr thin films sputtered by HiPIMS in deep oscillation magnetron sputtering (DOMS) mode
Jiang et al. Structure, mechanical and corrosion properties of TiN films deposited on stainless steel substrates with different inclination angles by DCMS and HPPMS
Jouan et al. HiPIMS ion energy distribution measurements in reactive mode
JP2020050963A (ja) 窒化ガリウム系膜ならびにその製造方法
Kotlyarchuk et al. Preparation of undoped and indium doped ZnO thin films by pulsed laser deposition method
Signore et al. Structural and morphological evolution of aluminum nitride thin films: Influence of additional energy to the sputtering process
Kamenetskih et al. Characterization of TiAlSiON coatings deposited by plasma enhanced magnetron sputtering: XRD, XPS, and DFT studies
JP5793723B2 (ja) 薄膜蛍光体及びその成膜方法
Largeanu et al. Pulsed laser deposition of Ni thin films on metallic substrate
Habibi et al. Investigation on the structural properties and corrosion inhibition of W coatings on stainless steel AISI 304 using PF device
Shan et al. Aging and annealing effects of ZnO thin films on GaAs substrates deposited by pulsed laser deposition
Ntwaeaborwa et al. Photoluminescence properties of SrAl2O4: Eu2+, Dy3+ thin phosphor films grown by pulsed laser deposition
Li et al. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field
RU2333300C2 (ru) СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК РАСТВОРОВ (SiC)1-x(AlN)x
RU2668246C2 (ru) Способ получения алмазоподобных тонких пленок
JP5339683B2 (ja) 蛍光体膜の多元真空蒸着法を用いた製造方法
Nyenge et al. Auger electron spectroscopy study and depth profile analyses of the CaS: Eu 2+ pulsed laser deposited thin luminescent films
Basillais et al. Improvement of the PLD process assisted by RF plasma for AlN growth
Ferreira Process-properties relations in deep oscillation magnetron sputtering
Shen et al. Synthesis of aluminum nitride films by plasma immersion ion implantation–deposition using hybrid gas–metal cathodic arc gun
Norazlina et al. Structural and optical properties of chromium doped aluminum nitride thin films prepared by stacking of Cr layer on AlN thin film
Donley et al. Synthesis and characterization of MoS2 thin films grown by pulsed laser evaporation
Matsutani et al. Formation of aluminum nitride film for high power soft X-ray source using ion-beam assisted deposition method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant