WO2014192265A1 - 圧電体薄膜及びその製造方法 - Google Patents
圧電体薄膜及びその製造方法 Download PDFInfo
- Publication number
- WO2014192265A1 WO2014192265A1 PCT/JP2014/002697 JP2014002697W WO2014192265A1 WO 2014192265 A1 WO2014192265 A1 WO 2014192265A1 JP 2014002697 W JP2014002697 W JP 2014002697W WO 2014192265 A1 WO2014192265 A1 WO 2014192265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- piezoelectric thin
- scandium
- target material
- carbon atom
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 120
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 239000013077 target material Substances 0.000 claims abstract description 86
- 238000004544 sputter deposition Methods 0.000 claims abstract description 70
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 61
- -1 scandium aluminum Chemical compound 0.000 claims abstract description 61
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 57
- 239000000956 alloy Substances 0.000 claims abstract description 57
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 35
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 33
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims abstract description 32
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 26
- 239000012298 atmosphere Substances 0.000 claims abstract description 20
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 19
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 28
- 150000002500 ions Chemical class 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 230000009977 dual effect Effects 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 abstract description 4
- 150000001721 carbon Chemical group 0.000 description 43
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 13
- 125000004429 atom Chemical group 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- 238000004876 x-ray fluorescence Methods 0.000 description 2
- 241001409887 Chamaea fasciata Species 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
- C23C14/0047—Activation or excitation of reactive gases outside the coating chamber
- C23C14/0052—Bombardment of substrates by reactive ion beams
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3464—Sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/46—Sputtering by ion beam produced by an external ion source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/04—Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/07—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
- H10N30/074—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
- H10N30/076—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
Definitions
- the present disclosure relates to a piezoelectric thin film made of scandium aluminum nitride and a method for manufacturing the same.
- a piezoelectric thin film made of scandium aluminum nitride (Sc x Al 1-x N; 0 ⁇ x ⁇ 1) can exhibit a higher piezoelectric constant than, for example, an aluminum nitride thin film. Therefore, application to a surface acoustic wave (SAW) element, a light emitting layer for a light emitting diode (LED) having a wide emission wavelength, a micro electro mechanical element (MEMS), and the like is expected.
- SAW surface acoustic wave
- LED light emitting layer for a light emitting diode
- MEMS micro electro mechanical element
- a piezoelectric thin film made of scandium aluminum nitride is manufactured by sputtering scandium and aluminum on a substrate in a nitrogen atmosphere (see Patent Document 1).
- piezoelectric thin films made of scandium aluminum nitride obtained by sputtering have variations in piezoelectric characteristics. That is, even if a piezoelectric thin film made of scandium aluminum nitride having the same ratio of scandium to aluminum is produced, the piezoelectric characteristics such as the piezoelectric constant greatly vary. Therefore, there is a possibility that a piezoelectric thin film that exhibits excellent piezoelectric characteristics cannot always be obtained.
- the present disclosure has been made in view of such a background, and provides a piezoelectric thin film made of scandium aluminum nitride capable of exhibiting excellent piezoelectric characteristics, and a manufacturing method thereof.
- the present inventors have found that the cause of the variation in piezoelectric performance is the carbon atoms in the thick electric thin film made of scandium aluminum nitride. Furthermore, it has been found that the piezoelectric performance of the piezoelectric thin film can be improved by controlling the content.
- one aspect of the present disclosure is a piezoelectric thin film obtained by sputtering and made of scandium aluminum nitride, A piezoelectric thin film having a carbon atom content of 2.5 at% or less.
- the method of manufacturing the piezoelectric thin film In an atmosphere containing at least nitrogen gas, from an alloy target material made of a scandium aluminum alloy, by performing simultaneous sputtering on the substrate with scandium and aluminum, a single sputtering process for producing the piezoelectric thin film is performed,
- the said alloy target material is a manufacturing method of the piezoelectric thin film which consists of a scandium aluminum alloy whose content rate of a carbon atom is 5 at% or less.
- the piezoelectric thin film is made of scandium aluminum nitride represented by the general formula Sc x Al 1-x N (0 ⁇ x ⁇ 1), and the Sc target material has a carbon atom content of 5 / x ( (at%)
- an alloy target material made of scandium aluminum alloy and the substrate are arranged so as to face each other, and the opposite surface of the alloy target material is irradiated with an ion beam obliquely, and scandium and aluminum from the alloy target material are placed on the substrate.
- an ion irradiation sputtering process for producing the piezoelectric thin film is performed, In the ion irradiation sputtering step, a method of manufacturing a piezoelectric thin film in which the ion beam including at least nitrogen ions is irradiated or the ion beam is irradiated in an atmosphere including at least nitrogen gas.
- the piezoelectric thin film is made of scandium aluminum nitride obtained by sputtering. At the time of sputtering, a small amount of carbon atoms may be mixed into the piezoelectric thin film from the target material that is the raw material. This mixing of carbon atoms can be a factor of deteriorating piezoelectric characteristics such as the piezoelectric d 33 constant of the piezoelectric thin film. Since the piezoelectric thin film is made of scandium aluminum nitride having a low carbon atom content as described above, it can exhibit excellent piezoelectric characteristics.
- the piezoelectric thin film according to the present disclosure can exhibit excellent piezoelectric characteristics that are inferior to a piezoelectric thin film made of pure scandium aluminum nitride that does not contain carbon atoms.
- the piezoelectric thin film can be manufactured by a single sputtering process. That is, it can be produced by simultaneously sputtering aluminum and scandium on a substrate from an alloy target material made of a scandium aluminum alloy in an atmosphere containing at least nitrogen gas. At this time, by using an alloy target material having a carbon atom content of 5 at% or less, a piezoelectric thin film having a carbon atom content of 2.5 at% or less can be manufactured as described above.
- the piezoelectric thin film can be manufactured by a binary sputtering process. That is, it can be produced by simultaneously sputtering aluminum and scandium on a substrate from an Sc target material made of scandium and an Al target material made of aluminum in an atmosphere containing at least nitrogen gas.
- the thin film made of scandium aluminum nitride represented by the general formula Sc x Al 1-x N (0 ⁇ x ⁇ 1) is manufactured as the piezoelectric thin film
- the carbon atom content is 5 / A Sc target material of x (at%) or less is used.
- a piezoelectric thin film having a carbon atom content of 2.5 at% or less can be manufactured.
- the piezoelectric thin film can be manufactured by an irradiation sputtering process. That is, an alloy target material made of a scandium aluminum alloy and a substrate are arranged so as to face each other, and an ion beam is irradiated obliquely to the facing surface of the alloy target material. And it can manufacture by simultaneously sputtering aluminum and a scandium on a board
- the emission angle distribution of atoms (atoms to be sputtered) ejected from the target material by ion beam irradiation varies depending on the atomic weight. Atoms with a small atomic weight are emitted in the opposite direction in the same direction as the incident direction of the ion beam, compared with atoms with a large atomic weight.
- the opposite surface of the alloy target material is irradiated with an ion beam obliquely. Then, most of the carbon atoms contained in the alloy target material are emitted in the same direction as the incident direction of the ion beam and in the opposite direction because the atomic weight is smaller than that of Sc or Al. As a result, the amount of carbon atoms emitted to the substrate can be greatly reduced. Therefore, as described above, a piezoelectric thin film having a carbon atom content of 2.5 at% or less can be manufactured.
- an ion beam containing at least nitrogen ions is irradiated, or an ion beam is irradiated in an atmosphere containing at least nitrogen gas. Therefore, a piezoelectric thin film made of scandium aluminum nitride can be manufactured by sputtering.
- a piezoelectric thin film having a carbon atom content of 2.5 at% or less can be manufactured by performing a single sputtering process, a binary sputtering process, or an irradiation sputtering process.
- the piezoelectric thin film exhibits a high piezoelectric d 33 constant and can reliably exhibit excellent piezoelectric characteristics.
- FIG. 3 is an explanatory diagram showing a cross-sectional structure of a piezoelectric thin film formed on a substrate in Example 1.
- FIG. 3 is an explanatory diagram showing the relationship between the content (at%) of carbon atoms contained in the piezoelectric thin film and the piezoelectric d 33 constant (pC / N) of the piezoelectric thin film in Example 1.
- Explanatory drawing which shows the outline of the manufacturing method of a piezoelectric material thin film in Example 2.
- the piezoelectric thin film is made of scandium aluminum nitride.
- Scandium aluminum nitride can be represented by the general formula Sc x Al 1-x N (0 ⁇ x ⁇ 1).
- x satisfies 0.05 ⁇ x ⁇ 0.5.
- the piezoelectric response of the piezoelectric thin film can be further improved. More preferably, 0.15 ⁇ x ⁇ 0.45.
- the piezoelectric thin film can be formed on a substrate.
- a substrate for example, a substrate made of silicon, sapphire, silicon carbide, gallium nitride, lithium niobate, tantalum niobate, quartz, glass, metal, stainless steel, inconel, a polymer film, or the like can be used.
- the polymer film include a polyimide film.
- the piezoelectric thin film can be manufactured by performing the single sputtering process, the dual sputtering process, or the irradiation sputtering process.
- An alloy target material is used in the single sputtering process and the irradiation sputtering process.
- the ratio of scandium and aluminum in the alloy target material can be appropriately determined according to the ratio of scandium and aluminum in the scandium aluminum nitride having the target composition.
- the ratio of scandium and aluminum in the target piezoelectric thin film can be adjusted by adjusting the power density during sputtering.
- the power density of various target materials can be set in the range of 4.3 to 14 W / cm 2 , for example. A range of 6.5 to 11 W / cm 2 is preferable.
- the power density of the target material is a value obtained by dividing the sputtering power by the area of the target material.
- Alloy target material and Sc target material can be manufactured by high frequency induction heating or arc melting.
- a crucible made of carbon or a crucible containing carbon is used. Carbon atoms are mixed into the target material from the crucible, and carbon atoms are mixed into the target piezoelectric thin film.
- the carbon atom content of the target piezoelectric thin film can be reduced by lowering the carbon atom content in the alloy target material and the Sc target material, respectively. it can.
- the ion beam is irradiated obliquely with respect to the facing surface of the alloy target material. That is, the incident angle of the ion beam on the facing surface is set to an acute angle. The smaller the incident angle, the lower the carbon atom content in the piezoelectric thin film. On the other hand, when the incident angle is reduced, the generation rate of the piezoelectric film by sputtering tends to decrease. From the viewpoint of sufficiently reducing the carbon atom content without greatly reducing the production rate, the ion beam incident angle is preferably 15 to 80 °, more preferably 25 to 70 °.
- the content of carbon atoms in the alloy target material is small.
- the carbon atom content in the alloy target in the irradiation sputtering step can be, for example, 10 at% or less, and more preferably 5 at% or less. Thereby, the content rate of the carbon atom in a piezoelectric thin film can be reduced more reliably.
- Sputtering can be performed in an atmosphere containing nitrogen gas. Specifically, it can be performed, for example, in a mixed gas atmosphere of nitrogen gas and inert gas such as argon gas.
- the nitrogen gas concentration in the mixed gas can be 25 to 50% by volume. From the viewpoint of improving the piezoelectric response of the piezoelectric thin film, the nitrogen gas concentration is preferably 30 to 45% by volume.
- sputtering can be performed under a pressure of 0.1 to 0.8 Pa. Preferably, it is carried out under a pressure of 0.1 to 0.4 Pa.
- the substrate temperature in sputtering can be set within a range of 18 to 600 ° C., for example. Preferably, the temperature is 200 to 400 ° C.
- an ion beam containing at least nitrogen ions is irradiated, or an ion beam is irradiated in an atmosphere containing at least nitrogen gas.
- the irradiation sputtering step can be performed in an atmosphere containing Ar gas, nitrogen gas, or a mixed gas thereof.
- an ion beam such as argon can be irradiated.
- the ion beam of argon or the like may contain nitrogen ions.
- Example 1 examples and comparative examples of the piezoelectric thin film will be described.
- the piezoelectric thin film 1 of this example is formed on a substrate 2 made of silicon, made of scandium aluminum nitride, and contains a trace amount of carbon.
- the piezoelectric thin film 1 In manufacturing the piezoelectric thin film 1, first, a substrate made of commercially available silicon and a plate-like alloy target material made of a commercially available scandium aluminum alloy (Sc 0.45 Al 0.55 alloy) were prepared.
- the alloy target material is produced by high frequency induction heating using a carbon crucible, and the elemental composition ratio of scandium to aluminum is 0.45: 0.55 (Sc: Al).
- the Sc content rate (at%) in the alloy target material and the Sc content rate (at%) in the piezoelectric thin film described later are determined by the wavelength dispersive X-ray fluorescence analyzer (manufactured by JEOL Ltd. (“JXA-8500F”) of No. 1) and the calculation result.
- a piezoelectric thin film was produced by sputtering Sc and Al contained in the alloy target on the substrate under a nitrogen atmosphere using a sputtering apparatus (a high-frequency magnetron sputtering apparatus manufactured by ULVAC).
- the substrate 2 and the alloy target material 10 are disposed in the sputtering chamber so as to face each other. Then, scandium 101 and aluminum 102 are deposited on the substrate 2 from the alloy target material 10 under the conditions of sputtering pressure 0.16 Pa, nitrogen concentration 43 volume%, target power density 10 W / cm 2 , substrate temperature 300 ° C., sputtering time 200 minutes. Was sputtered. Note that the sputtering chamber was decompressed to 5 ⁇ 10 ⁇ 5 Pa or less, and 99.999 vol% argon gas and 99.999 vol% nitrogen gas were introduced into the chamber. The alloy target material 10 was sputtered for 3 minutes in an Ar gas atmosphere before vapor deposition.
- an RF voltage was applied to the alloy target material 10 to form RF plasma 11 on the surface of the alloy target material 10.
- positive ions nitrogen ions and argon ions
- scandium atoms 101 and aluminum atoms 102 are ejected from the alloy target material 10 and sputtered onto the facing surface 21 of the substrate 2 disposed so as to face the alloy target material 10.
- a piezoelectric thin film 1 made of scandium aluminum nitride was produced on the substrate 2 (see FIG. 1).
- the example in which the RF voltage is applied has been described, but the piezoelectric thin film 1 can be manufactured in the same manner even when the DC voltage is applied.
- a plurality of piezoelectric thin films (samples 1 to 9) were manufactured by using a plurality of scandium aluminum alloy target materials having different carbon atom (C) contents as the alloy target material.
- the piezoelectric thin film of each sample was prepared in the same manner except that the alloy target material having a different C content (at%) was used.
- the C content (at%) of the alloy target material used for the preparation of each sample and the C content (at%) in the obtained piezoelectric thin film are shown in Table 1 described later.
- the C content (at%) was measured by secondary ion mass spectrometry (SIMS).
- the C content in the alloy target material is the C atom content (at%) with respect to a total amount of 100 at% of the number of Sc atoms and the number of Al atoms in the alloy target.
- the C content in the piezoelectric thin film is the C atom content (at%) relative to the total amount of 100 at% of the Sc atom number, Al atom number, and N atom number of the piezoelectric thin film.
- the piezoelectric d 33 constant (pC / N) of the piezoelectric thin film of each sample was measured.
- the piezoelectric d 33 constant was measured using a piezometer (“PM200” manufactured by Piezo Test) under the conditions of a weight of 0.25 N and a frequency of 110 Hz. The results are shown in Table 1.
- FIG. 3 shows the relationship between the C content (at%) in the piezoelectric thin film and the piezoelectric d 33 constant of the piezoelectric thin film.
- the piezoelectric d 33 constant of the piezoelectric thin film is accelerated.
- the carbon atom content in the piezoelectric thin film is preferably 1.5 at% or less, and more preferably 0.75 at% or less.
- a scandium aluminum alloy target having a carbon atom content of 5 at% or less may be used (Table 1 and FIG. 3). Furthermore, in order to obtain a piezoelectric thin film having a carbon atom content of 1.5 at% or less, a scandium aluminum alloy target having a carbon atom content of 3 at% or less may be used. Furthermore, in order to obtain a piezoelectric thin film having a carbon atom content of 0.75 at% or less, a scandium aluminum alloy target having a carbon atom content of 1.5 at% or less may be used.
- Example 1 the piezoelectric thin film was produced by performing the unitary sputtering process using the alloy target material which consists of a scandium aluminum alloy.
- the piezoelectric thin film can also be manufactured by performing a binary sputtering process using an Sc target material made of scandium and an Al target material made of aluminum.
- the piezoelectric thin film can be manufactured in the same manner as in Example 1 except that aluminum and scandium are simultaneously sputtered on the substrate from the Sc target material and the Al target material.
- the carbon atom content in the piezoelectric thin film made of scandium aluminum nitride is preferably 2.5 at% or less from the viewpoint of enhancing the piezoelectric characteristics.
- the carbon atom content is 5 / x
- the carbon atom content is 5 / x
- the carbon atom content is 5 / x
- the content rate of the carbon atom in Sc target material is a content rate of the carbon atom with respect to Sc100at% in Sc target material.
- Example 2 a piezoelectric thin film made of scandium aluminum nitride is manufactured by performing an ion irradiation sputtering process in which ion beam irradiation is performed obliquely with respect to the opposing surface of the alloy target material.
- Example 2 the alloy target material 10 made of a scandium aluminum alloy and the substrate 2 were arranged to face each other (see FIG. 4).
- the same silicon substrate as that in Example 1 can be used.
- the alloy target material 10 a scandium aluminum alloy target material having a carbon content of, for example, 5 at% or less as in Example 1 can also be used. However, it is also possible to use an alloy target material having a carbon content exceeding 5 at%.
- the ion gun 3 is used to face the facing surface 105 of the alloy target material 10.
- An ion beam 31 containing nitrogen ions was irradiated obliquely.
- the ion beam 31 was irradiated in an argon gas atmosphere.
- the ion beam 31 was irradiated so that the angle ⁇ formed by the irradiation direction of the ion beam 31 and the facing surface 105 of the alloy target material was 45 °.
- aluminum 101 and scandium 102 were simultaneously sputtered on the substrate 2 from the alloy target material 10 to obtain a piezoelectric thin film made of scandium aluminum nitride.
- a carbon atom having a small atomic weight is emitted in the opposite direction in the same direction as the incident direction of the ion beam 31 compared to a scandium atom or an aluminum atom having a large atomic weight.
- FIG. 4 carbon atoms 109 emitted in the direction opposite to the incident direction are illustrated.
- most of the carbon atoms 109 contained in the alloy target material 10 are emitted in the same direction as the incident direction of the ion beam 31 and in the opposite direction, and the amount of carbon atoms emitted to the substrate 2 is reduced. Can be very little. Therefore, by performing the ion irradiation sputtering process of this example, it is possible to manufacture a piezoelectric thin film having a low carbon atom content of 2.5 at% or less.
- the piezoelectric thin film is manufactured by irradiating the ion beam 31 containing nitrogen ion gas in an Ar gas atmosphere. It is not necessary to include. That is, a piezoelectric thin film made of scandium aluminum nitride can be produced by irradiating an ion beam (Ar ion beam) of argon or the like in an atmosphere containing nitrogen gas. Also in this case, it is possible to manufacture a piezoelectric thin film having a low carbon atom content of 2.5 at% or less by irradiating the ion beam obliquely.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
炭素原子の含有率が2.5at%以下である圧電体薄膜。
少なくとも窒素ガスを含む雰囲気下で、スカンジウムアルミニウム合金からなる合金ターゲット材から、スカンジウムとアルミニウムとを基板上に同時にスパッタリングすることにより、上記圧電体薄膜を製造する一元スパッタリング工程を実施し、
上記合金ターゲット材は、炭素原子の含有率が5at%以下のスカンジウムアルミニウム合金からなる圧電体薄膜の製造方法。
少なくとも窒素ガスを含む雰囲気下で、スカンジウムからなるScターゲット材とアルミニウムからなるAlターゲット材から、スカンジウムとアルミニウムとを基板上に同時にスパッタリングすることにより、上記圧電体薄膜を製造する二元スパッタリング工程を実施し、
上記圧電体薄膜は、一般式ScxAl1-xN(0<x<1)で表されるスカンジウムアルミニウム窒化物からなり、上記第Scターゲット材は、炭素原子の含有率が5/x(at%)以下のスカンジウムからなる圧電体薄膜の製造方法。
スカンジウムアルミニウム合金からなる合金ターゲット材と基板とを対向するように配置し、上記合金ターゲット材の対向面に対して斜めからイオンビームを照射し、上記合金ターゲット材からスカンジウムとアルミニウムとを基板上に同時にスパッタリングすることにより、上記圧電体薄膜を製造するイオン照射スパッタリング工程を実施し、
該イオン照射スパッタリング工程においては、少なくとも窒素イオンを含む上記イオンビームを照射するか、あるいは少なくとも窒素ガスを含む雰囲気下で上記イオンビームを照射する圧電体薄膜の製造方法。
次に、圧電体薄膜の実施例及び比較例について説明する。
実施例1においては、スカンジウムアルミニウム合金からなる合金ターゲット材を用いた一元スパッタリング工程を行うことにより、圧電体薄膜を作製した。しかしながら、スカンジウムからなるScターゲット材と、アルミニウムからなるAlターゲット材を用いた二元スパッタリング工程を行うことにより圧電体薄膜を製造することもできる。この場合、Scターゲット材及びAlターゲット材からアルミニウムとスカンジウムとを基板上に同時にスパッタリングする点を除いて、実施例1と同様に圧電体薄膜を製造することができる。
本例は、合金ターゲット材の対向面に対して斜めからイオンビーム照射してスパッタリングを行うというイオン照射スパッタリング工程を行うことにより、スカンジウムアルミニウム窒化物からなる圧電体薄膜を製造する。
Claims (10)
- スパッタリングにより得られ、かつスカンジウムアルミニウム窒化物からなる圧電体薄膜であって、
炭素原子の含有率が2.5at%以下である圧電体薄膜。 - 上記炭素原子の含有率が1.5at%以下である請求項1に記載の圧電体薄膜。
- 上記炭素原子の含有率が0.75at%以下である請求項1に記載の圧電体薄膜。
- 請求項1~3のいずれか1項に記載の圧電体薄膜を製造する方法であって、
少なくとも窒素ガスを含む雰囲気下で、スカンジウムアルミニウム合金からなる合金ターゲット材(10)から、スカンジウム(101)とアルミニウム(102)とを基板(2)上に同時にスパッタリングすることにより、上記圧電体薄膜を製造する一元スパッタリング工程を実施し、
上記合金ターゲット材(10)は、炭素原子の含有率が5at%以下のスカンジウムアルミニウム合金からなる圧電体薄膜の製造方法。 - 上記合金ターゲット材(10)は、炭素原子の含有率が3at%以下のスカンジウムアルミニウム合金からなる請求項4に記載の圧電体薄膜の製造方法。
- 上記合金ターゲット材(10)は、炭素原子の含有率が1.5at%以下のスカンジウムアルミニウム合金からなる請求項4に記載の圧電体薄膜の製造方法。
- 請求項1~3のいずれか1項に記載の圧電体薄膜を製造する方法であって、
少なくとも窒素ガスを含む雰囲気下で、スカンジウムからなるScターゲット材とアルミニウムからなるAlターゲット材から、アルミニウムとスカンジウムとを基板上に同時にスパッタリングすることにより、上記圧電体薄膜を製造する二元スパッタリング工程を実施し、
上記圧電体薄膜は、一般式ScxAl1-xN(0<x<1)で表されるスカンジウムアルミニウム窒化物からなり、上記Scターゲット材は、炭素原子の含有率が5/xat%以下のスカンジウムからなる圧電体薄膜の製造方法。 - 上記Scターゲット材は、炭素原子の含有率が3/x at%以下のスカンジウムからなる請求項7に記載の圧電体薄膜の製造方法。
- 上記Scターゲット材は、炭素原子の含有率が1.5/x at%以下のスカンジウムからなる請求項7に記載の圧電体薄膜の製造方法。
- 請求項1~3のいずれか1項に記載の圧電体薄膜を製造する方法であって、
スカンジウムアルミニウム合金からなる合金ターゲット材(10)と基板(2)とを対向するように配置し、上記合金ターゲット材(10)の対向面(105)に対して斜めからイオンビーム(31)を照射し、上記合金ターゲット材(10)からスカンジウム(101)とアルミニウム(102)とを基板(2)上に同時にスパッタリングすることにより、上記圧電体薄膜を製造するイオン照射スパッタリング工程を実施し、
該イオン照射スパッタリング工程においては、少なくとも窒素イオンを含む上記イオンビームを照射するか、あるいは少なくとも窒素ガスを含む雰囲気下で上記イオンビームを照射する圧電体薄膜の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14804218.7A EP3007242B1 (en) | 2013-05-31 | 2014-05-22 | Piezoelectric thin film and method for producing same |
KR1020157033570A KR101830490B1 (ko) | 2013-05-31 | 2014-05-22 | 압전체 박막 및 그 제조 방법 |
US14/888,278 US9735342B2 (en) | 2013-05-31 | 2014-05-22 | Piezoelectric thin film and method for producing the same |
CN201480026406.5A CN105229810B (zh) | 2013-05-31 | 2014-05-22 | 压电体薄膜及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-115477 | 2013-05-31 | ||
JP2013115477A JP5966199B2 (ja) | 2013-05-31 | 2013-05-31 | 圧電体薄膜及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014192265A1 true WO2014192265A1 (ja) | 2014-12-04 |
Family
ID=51988317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/002697 WO2014192265A1 (ja) | 2013-05-31 | 2014-05-22 | 圧電体薄膜及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9735342B2 (ja) |
EP (1) | EP3007242B1 (ja) |
JP (1) | JP5966199B2 (ja) |
KR (1) | KR101830490B1 (ja) |
CN (1) | CN105229810B (ja) |
WO (1) | WO2014192265A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016136475A1 (ja) * | 2015-02-27 | 2016-09-01 | 株式会社村田製作所 | 窒化インジウム圧電薄膜及びその製造方法、並びに圧電素子 |
JP2019145677A (ja) * | 2018-02-21 | 2019-08-29 | 株式会社デンソー | 圧電膜、その製造方法、圧電膜積層体、その製造方法 |
JPWO2022050130A1 (ja) * | 2020-09-01 | 2022-03-10 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11581866B2 (en) | 2016-03-11 | 2023-02-14 | Akoustis, Inc. | RF acoustic wave resonators integrated with high electron mobility transistors including a shared piezoelectric/buffer layer and methods of forming the same |
US11411169B2 (en) | 2017-10-16 | 2022-08-09 | Akoustis, Inc. | Methods of forming group III piezoelectric thin films via removal of portions of first sputtered material |
US11411168B2 (en) * | 2017-10-16 | 2022-08-09 | Akoustis, Inc. | Methods of forming group III piezoelectric thin films via sputtering |
US11832521B2 (en) | 2017-10-16 | 2023-11-28 | Akoustis, Inc. | Methods of forming group III-nitride single crystal piezoelectric thin films using ordered deposition and stress neutral template layers |
WO2017213185A1 (ja) | 2016-06-07 | 2017-12-14 | Jx金属株式会社 | スパッタリングターゲット及び、その製造方法 |
US11895920B2 (en) | 2016-08-15 | 2024-02-06 | Akoustis, Inc. | Methods of forming group III piezoelectric thin films via removal of portions of first sputtered material |
GB2555835B (en) * | 2016-11-11 | 2018-11-28 | Novosound Ltd | Ultrasound transducer |
US11856858B2 (en) | 2017-10-16 | 2023-12-26 | Akoustis, Inc. | Methods of forming doped crystalline piezoelectric thin films via MOCVD and related doped crystalline piezoelectric thin films |
WO2021150496A1 (en) * | 2020-01-21 | 2021-07-29 | Akoustis, Inc. | Rf acoustic wave resonators integrated with high electron mobility transistors including a shared piezoelectric/buffer layer and methods of forming the same |
CN114938653A (zh) | 2020-02-06 | 2022-08-23 | 应用材料公司 | 用于在薄膜沉积期间调整膜性质的方法与设备 |
US11618968B2 (en) | 2020-02-07 | 2023-04-04 | Akoustis, Inc. | Apparatus including horizontal flow reactor with a central injector column having separate conduits for low-vapor pressure metalorganic precursors and other precursors for formation of piezoelectric layers on wafers |
US12102010B2 (en) | 2020-03-05 | 2024-09-24 | Akoustis, Inc. | Methods of forming films including scandium at low temperatures using chemical vapor deposition to provide piezoelectric resonator devices and/or high electron mobility transistor devices |
EP4273945A1 (en) * | 2021-02-24 | 2023-11-08 | National Institute Of Advanced Industrial Science and Technology | Nitride mateiral, piezoelectric body formed of same, and mems device, transistor, inverter, transducer, saw device and ferroelectric memory, each of which uses said piezoelectric body |
CN113061857B (zh) * | 2021-03-12 | 2023-01-13 | 浙江艾微普科技有限公司 | 一种离子辅助、倾斜溅射、反应溅射沉积薄膜的方法及设备 |
CN113293355B (zh) * | 2021-06-11 | 2023-05-05 | 武汉大学 | 一种智能螺栓用AlCrN/AlScN纳米复合压电涂层及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009010926A (ja) | 2007-05-31 | 2009-01-15 | National Institute Of Advanced Industrial & Technology | 圧電体薄膜、圧電体およびそれらの製造方法、ならびに当該圧電体薄膜を用いた圧電体共振子、アクチュエータ素子および物理センサー |
JP2013014806A (ja) * | 2011-07-04 | 2013-01-24 | Denso Corp | 結晶軸傾斜膜の製造方法 |
JP2013148562A (ja) * | 2012-01-23 | 2013-08-01 | National Institute Of Advanced Industrial & Technology | 圧電素子およびその製造方法、ならびに圧電センサ |
WO2013175985A1 (ja) * | 2012-05-22 | 2013-11-28 | 株式会社村田製作所 | バルク波共振子 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4812144B2 (ja) * | 1998-07-22 | 2011-11-09 | 住友電気工業株式会社 | 窒化アルミニウム焼結体及びその製造方法 |
US6454910B1 (en) * | 2001-09-21 | 2002-09-24 | Kaufman & Robinson, Inc. | Ion-assisted magnetron deposition |
JP5276769B2 (ja) | 2004-10-01 | 2013-08-28 | 東京電波株式会社 | 六方晶系ウルツ鉱型単結晶、その製造方法、および六方晶系ウルツ鉱型単結晶基板 |
US7758979B2 (en) | 2007-05-31 | 2010-07-20 | National Institute Of Advanced Industrial Science And Technology | Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator, actuator element, and physical sensor using piezoelectric thin film |
JP4997448B2 (ja) | 2007-12-21 | 2012-08-08 | 独立行政法人産業技術総合研究所 | 窒化物半導体の製造方法および窒化物半導体デバイス |
JP2011046580A (ja) | 2009-08-28 | 2011-03-10 | Rohm Co Ltd | ZnO系基板及びZnO系半導体素子 |
JP5715958B2 (ja) * | 2009-10-08 | 2015-05-13 | 株式会社フジクラ | イオンビームアシストスパッタ装置、酸化物超電導導体の製造装置、イオンビームアシストスパッタ方法及び酸化物超電導導体の製造方法 |
JP5888689B2 (ja) * | 2010-07-01 | 2016-03-22 | 国立研究開発法人産業技術総合研究所 | スカンジウムアルミニウム窒化物膜の製造方法 |
-
2013
- 2013-05-31 JP JP2013115477A patent/JP5966199B2/ja active Active
-
2014
- 2014-05-22 CN CN201480026406.5A patent/CN105229810B/zh active Active
- 2014-05-22 EP EP14804218.7A patent/EP3007242B1/en active Active
- 2014-05-22 KR KR1020157033570A patent/KR101830490B1/ko active IP Right Grant
- 2014-05-22 WO PCT/JP2014/002697 patent/WO2014192265A1/ja active Application Filing
- 2014-05-22 US US14/888,278 patent/US9735342B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009010926A (ja) | 2007-05-31 | 2009-01-15 | National Institute Of Advanced Industrial & Technology | 圧電体薄膜、圧電体およびそれらの製造方法、ならびに当該圧電体薄膜を用いた圧電体共振子、アクチュエータ素子および物理センサー |
JP2013014806A (ja) * | 2011-07-04 | 2013-01-24 | Denso Corp | 結晶軸傾斜膜の製造方法 |
JP2013148562A (ja) * | 2012-01-23 | 2013-08-01 | National Institute Of Advanced Industrial & Technology | 圧電素子およびその製造方法、ならびに圧電センサ |
WO2013175985A1 (ja) * | 2012-05-22 | 2013-11-28 | 株式会社村田製作所 | バルク波共振子 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3007242A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016136475A1 (ja) * | 2015-02-27 | 2016-09-01 | 株式会社村田製作所 | 窒化インジウム圧電薄膜及びその製造方法、並びに圧電素子 |
JP2019145677A (ja) * | 2018-02-21 | 2019-08-29 | 株式会社デンソー | 圧電膜、その製造方法、圧電膜積層体、その製造方法 |
WO2019163494A1 (ja) * | 2018-02-21 | 2019-08-29 | 株式会社デンソー | 圧電膜、その製造方法、圧電膜積層体、その製造方法 |
CN111742421A (zh) * | 2018-02-21 | 2020-10-02 | 株式会社电装 | 压电膜、其制造方法、压电膜层叠体、其制造方法 |
KR20200118881A (ko) * | 2018-02-21 | 2020-10-16 | 가부시키가이샤 덴소 | 압전막, 그 제조 방법, 압전막 적층체, 그 제조 방법 |
JP7151096B2 (ja) | 2018-02-21 | 2022-10-12 | 株式会社デンソー | 圧電膜、その製造方法、圧電膜積層体、その製造方法 |
KR102592033B1 (ko) * | 2018-02-21 | 2023-10-23 | 가부시키가이샤 덴소 | 압전막, 그 제조 방법, 압전막 적층체, 그 제조 방법 |
CN111742421B (zh) * | 2018-02-21 | 2024-04-05 | 株式会社电装 | 压电膜、其制造方法、压电膜层叠体、其制造方法 |
JPWO2022050130A1 (ja) * | 2020-09-01 | 2022-03-10 | ||
JP7420267B2 (ja) | 2020-09-01 | 2024-01-23 | 株式会社デンソー | Memsセンサおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20160003777A (ko) | 2016-01-11 |
EP3007242B1 (en) | 2019-09-04 |
KR101830490B1 (ko) | 2018-02-20 |
JP5966199B2 (ja) | 2016-08-10 |
US9735342B2 (en) | 2017-08-15 |
CN105229810B (zh) | 2018-08-17 |
CN105229810A (zh) | 2016-01-06 |
JP2014236051A (ja) | 2014-12-15 |
US20160064645A1 (en) | 2016-03-03 |
EP3007242A1 (en) | 2016-04-13 |
EP3007242A4 (en) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014192265A1 (ja) | 圧電体薄膜及びその製造方法 | |
JP5888689B2 (ja) | スカンジウムアルミニウム窒化物膜の製造方法 | |
Ferreira et al. | Effect of peak target power on the properties of Cr thin films sputtered by HiPIMS in deep oscillation magnetron sputtering (DOMS) mode | |
Chen et al. | Plasma interactions determine the composition in pulsed laser deposited thin films | |
TWI648417B (zh) | 二氧化矽之沉積 | |
JP5029711B2 (ja) | 圧電薄膜素子及び圧電薄膜デバイス | |
Ahadi et al. | Stable production of TiOx nanoparticles with narrow size distribution by reactive pulsed dc magnetron sputtering | |
JP2020050963A (ja) | 窒化ガリウム系膜ならびにその製造方法 | |
Kotlyarchuk et al. | Preparation of undoped and indium doped ZnO thin films by pulsed laser deposition method | |
Signore et al. | Structural and morphological evolution of aluminum nitride thin films: Influence of additional energy to the sputtering process | |
Saitoh | Classification of diamond-like carbon films | |
Viloan et al. | Tuning the stress in TiN films by regulating the doubly charged ion fraction in a reactive HiPIMS discharge | |
CN101586227A (zh) | 采用离子镀在生长衬底上制备氮化铝材料的方法 | |
TW202140824A (zh) | 二維材料之製造方法 | |
Huber et al. | Optical characterization of TiN produced by metal-plasma immersion ion implantation | |
Li et al. | Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field | |
RU2668246C2 (ru) | Способ получения алмазоподобных тонких пленок | |
WO2017020534A1 (zh) | 一种银铝合金晶振片镀膜工艺 | |
JP2018052784A (ja) | 導電性dlc膜の製造方法 | |
CN105200389B (zh) | 一种提高氧化物薄膜激光损伤阈值的热处理设备与方法 | |
JP2004292839A (ja) | 酸化亜鉛膜の製造方法 | |
CN114807869B (zh) | 在基材上形成含铋氧化镓系半导体膜的方法、含铋氧化镓系半导体膜及半导体元件 | |
JP2009249689A (ja) | リチウム複合酸化物薄膜の製造方法、及び、電極体の製造方法 | |
CN1796593A (zh) | 一种制备金属铪薄膜材料的方法 | |
Mishin et al. | Manufacturability of highly doped aluminum nitride films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480026406.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14804218 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14888278 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014804218 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157033570 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |