CN105161524A - 一种抗单粒子辐射的场效应晶体管及其制备方法 - Google Patents

一种抗单粒子辐射的场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN105161524A
CN105161524A CN201510429977.XA CN201510429977A CN105161524A CN 105161524 A CN105161524 A CN 105161524A CN 201510429977 A CN201510429977 A CN 201510429977A CN 105161524 A CN105161524 A CN 105161524A
Authority
CN
China
Prior art keywords
region
redundancy
gate medium
supervisor
redundant electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510429977.XA
Other languages
English (en)
Inventor
黄如
武唯康
安霞
刘静静
阙陶
张兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201510429977.XA priority Critical patent/CN105161524A/zh
Publication of CN105161524A publication Critical patent/CN105161524A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66484Unipolar field-effect transistors with an insulated gate, i.e. MISFET with multiple gate, at least one gate being an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/783Field effect transistors with field effect produced by an insulated gate comprising a gate to body connection, i.e. bulk dynamic threshold voltage MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种抗单粒子辐射的场效应晶体管及其制备方法。本发明的场效应晶体管包括:衬底、浅槽隔离区、掺杂区、源区、漏区、冗余电极区、主管栅介质、冗余栅介质、主管栅极和冗余栅极;本发明隶属于版图级设计加固方法,一定程度上可以从瞬态脉冲产生的源头抑制MOSFET对单粒子辐照的敏感性;本发明基于辐射效应的电荷分享原理,在敏感pn结周围形成冗余电极区/衬底pn结,使其在无辐射时不影响MOSFET的工作性能,有辐射时可以分担收集辐射电离效应产生的电荷,从而减少被保护的敏感pn结的收集电荷;并且,与使用高密度体接触/阱接触的设计加固方法相比,本发明需要的版图总面积较小,具有更高的集成度。

Description

一种抗单粒子辐射的场效应晶体管及其制备方法
技术领域
本发明涉及半导体集成电路辐射效应领域,尤其涉及一种抗单粒子辐射的场效应晶体管及其制备方法。
背景技术
金属-氧化物-半导体场效应晶体管MOSFET广泛应用于集成电路之中,但MOSFET在空间或地面环境下容易受到单粒子辐射效应的影响。当一定能量的重离子、质子、中子、电子等粒子入射MOSFET时,由于粒子的离化效应,半导体材料内将产生大量电子空穴对。当半导体材料内存在电势分布时,电子空穴对将在电场的作用下运动,分别被阳极和阴极吸收,形成瞬态电流或电压脉冲。瞬态脉冲将在电路内传播,一般称作单粒子瞬态脉冲(SET)。若瞬态脉冲传播至锁存器或存储单元,错误信息则有可能被存储,造成存储单元信息的错误翻转,一般称作单粒子翻转SEU。
在现有单粒子效应加固技术中,通常从三方面入手:瞬态脉冲的产生、瞬态脉冲的传播和锁存。而第一类加固手段可以分为两类:工艺加固RHBP和设计加固RHBD。其中,工艺加固包括三阱工艺(triple-well)、绝缘体上硅SOI等手段,这类方法通常都是通过阻断电荷收集通路,从而减小电离电荷收集的范围和数目,最终达到减小瞬态脉冲的目的。设计加固手段通常包括阱接触密度的调整、保护环(guardband)等。提高阱接触的密度可以有效去除敏感区内电离电荷,从而一定程度上抑制瞬态脉冲,但这类方法通常以增大版图面积为代价。另外,还可以通过增大MOSFET的栅长和栅宽来降低器件和电路对单粒子辐照的敏感性,但由于器件的栅长和栅宽同时也是影响常规性能的重要参数,且增大栅长、栅宽与提高集成度相违背,因而这种方法的使用受到了限制。
从瞬态脉冲的传播入手,可以通过增加冗余结构来降低电路对单粒子辐照的敏感性,例如加入过滤结构等。从瞬态脉冲的锁存入手,可以通过对锁存单元进行加固来实现,如保护门(guardgate)、DICELatch等。
现有技术中MOSFET结构如图1所示,包括:衬底01;在衬底上的浅槽隔离区(STI)02,在衬底上且被STI包围的源区03和漏区04;位于源区和漏区中间的栅介质05。
发明内容
为了克服现有抗单粒子辐射加固方法中存在的问题,本发明提出一种带有冗余电极的MOSFET,可以减小单粒子辐照引起的瞬态脉冲。
本发明的一个目的在于提供一种抗单粒子辐射的场效应晶体管。
本发明的抗单粒子辐射的场效应晶体管包括:衬底、浅槽隔离区、掺杂区、源区、漏区、冗余电极区、主管栅介质、冗余栅介质、主管栅极和冗余栅极;其中,掺杂区形成在衬底上;浅槽隔离区包围掺杂区并嵌在衬底内;在掺杂区内依次为源区、漏区和冗余电极区,源区、漏区和冗余电极区彼此之间具有距离;在掺杂区上且位于源区和漏区之间形成主管栅介质;在掺杂区之上且位于漏区和冗余电极区之间形成冗余栅介质;在主管栅介质和冗余栅介质上分别形成主管栅极和冗余栅极。
衬底采用体硅。
冗余电极区的掺杂类型与衬底的杂质类型相反。源区和漏区的掺杂类型相同,冗余电极区的掺杂类型与源区和漏区的掺杂类型相同。对于n型MOSFET,冗余电极区掺杂为磷;对于p型MOSFET,冗余电极区掺杂为硼。
冗余电极区可以为冗余阳极也可以为冗余阴极,是由MOSFET的n型或p型决定的;对于n型MOSFET,冗余电极区为冗余阳极,冗余电极区接高电压,冗余栅极接低电压;对于p型MOSFET,冗余电极区为冗余阴极,冗余电极区接低电压,冗余栅极接高电压。
冗余栅介质的长度可以与主管栅介质的长度相同或不同。
冗余电极区的宽度可以与源区和漏区的宽度相同或不同;冗余电极区的长度可以与源区和漏区的长度相同或不同。
主管栅介质和冗余栅介质的材料采用氧化硅SiO2、氮氧硅SiON或其他高介电常数材料。
本发明的另一个目的在于提供一种抗单粒子辐射的场效应晶体管的制备方法。
本发明抗单粒子辐射的场效应晶体管的制备方法,包括以下步骤:
1)在衬底上形成掩模层;
2)利用光刻技术刻蚀掩膜层,并刻蚀衬底形成沟槽,淀积形成浅槽隔离区;
3)采用化学机械抛光对表面进行平整化处理;
4)对被浅槽隔离区包围衬底的表层进行掺杂形成掺杂区,热生长一层栅介质材料,并淀积栅电极材料;
5)采用具有主管栅介质和冗余栅介质图案的光刻板,进行光刻,在掺杂区上形成主管栅介质和冗余栅介质,并同时形成在主管栅介质和冗余栅介质上的主管栅极和冗余栅极;
6)对浅槽隔离区包围的掺杂区进行离子注入,离子注入的类型与掺杂区杂质的类型相反,在主管栅介质的两边分别形成源区和漏区,在冗余栅介质两边分别形成漏区和冗余电极区。
其中,在步骤6)中,离子注入的类型相同。
下面以冗余电极区为冗余阳极的n型MOSFET为例说明本发明的工作原理。在辐射环境下,一定能量的单粒子入射传统n型MOSFET器件,在电场的作用下,MOSFET的电极将收集单粒子电离的电子空穴,从而形成瞬时电流、电压脉冲。假设器件栅极、源极和体电极都接零电位,漏极接高电位,器件将通过反偏的漏/衬底pn结中的电场对单粒子电离的大量电子空穴对进行输运,电子流向漏极,空穴流向源极或体电极,电荷收集的范围包括漏/衬底pn结附近的区域以及衬底内部。对于本发明提出的具有冗余阳极的n沟道MOSFET来说,冗余阳极为n型掺杂区,其与p型衬底之间也形成pn结。工作时,冗余栅极接地或者负电压,冗余阳极接正电压。当无单粒子入射时,由漏区/冗余栅极/冗余阳极组成的冗余MOSFET处于关态,仅存在从冗余阳极到漏区微小的关态泄漏电流,称为冗余泄漏电流。然而,冗余泄漏电流并不影响由源/栅/漏组成的主MOSFET的工作状态。这是由于当由源/栅/漏组成的主MOSFET处于关断状态时,存在从漏区到源区的关态泄漏电流(称为主管泄漏电流),电流流向与冗余泄漏电流方向相反。当主管泄漏电流和冗余泄漏电流在漏极汇聚时,由于方向相反,等效于减小了主管泄漏电流。当由源/栅/漏组成的主MOSFET处于开启状态时,通常主MOSFET的导通电流比冗余泄漏电流大至少三个数量级以上,因此主MOSFET的导通电流受冗余泄漏电流的影响可以忽略不计。当冗余栅极的长度越大时,可以保证冗余MOSFET引入的电流越小。当单粒子入射时,由于电荷分享,电离电荷将通过反偏的漏/衬底pn结和反偏的冗余阳极区/衬底pn结进行收集。通过设置合适的冗余栅极的长度,冗余阳极/衬底pn结可以有效分担收集电离电荷,从而减少主管漏极的电荷收集量,从瞬态脉冲产生的源头上抑制了MOSFET对单粒子辐照的敏感性。
本发明的优点:
本发明隶属于版图级设计加固方法,一定程度上可以从瞬态脉冲产生的源头抑制MOSFET对单粒子辐照的敏感性。本发明基于辐射效应的电荷分享原理,在敏感pn结周围形成冗余电极区/衬底pn结,使其在无辐射时不影响MOSFET的工作性能,有辐射时可以分担收集辐射电离效应产生的电荷,从而减少被保护的敏感pn结的收集电荷;并且,与使用高密度体接触/阱接触的设计加固方法相比,本发明需要的版图总面积较小,具有更高的集成度。
附图说明
图1为现有技术中MOSFET结构示意图;
图2为本发明的抗单粒子辐射的场效应晶体管的示意图,其中,(a)为俯视图,(b)为剖面图;
图3至图7为本发明的抗单粒子辐射的场效应晶体管的制备方法的一个实施例的流程图。
具体实施方式
下面结合附图,通过实施例对本发明做进一步说明。
如图2所示,本实施例的抗单粒子辐射的场效应晶体管包括:衬底1、浅槽隔离区2、掺杂区10、源区3、漏区4、冗余电极区7、主管栅介质5、冗余栅介质6、主管栅极8和冗余栅极9;其中,掺杂区10形成在衬底1上;浅槽隔离区2包围掺杂区10并嵌在衬底1内;在掺杂区2内依次为相互隔离的源区3、漏区4和冗余电极区7;在掺杂区10上且位于源区3和漏区4之间形成主管栅介质5;在掺杂区10至上且位于漏区4和冗余电极区7之间形成冗余栅介质6;在主管栅介质5和冗余栅介质6上分别形成主管栅极8和冗余栅极6。
在本实施例中,n型MOSFET;衬底1采用体硅;主管栅介质5和冗余栅介质6采用二氧化硅;主管栅极和冗余栅极采用多晶硅。
本实施例的抗单粒子辐射的场效应晶体管的制备方法,包括以下步骤:
1)在衬底1上热生长二氧化硅11与化学气相淀积氮化硅12形成掩模层,如图3所示;
2)旋涂光刻胶13,利用光刻技术刻蚀掩膜层,并刻蚀衬底1形成沟槽,淀积形成浅槽隔离区2,如图4所示;
3)采用化学机械抛光对表面进行平坦化处理,去除了二氧化硅11和化学气相淀积氮化硅12;
4)对被浅槽隔离区包围衬底1的表层进行硼掺杂形成掺杂区10,热生长一层二氧化硅06,并淀积多晶硅08,如图5所示;
5)采用具有主管栅介质和冗余栅介质图案的光刻板,旋涂光刻胶09,进行光刻,在掺杂区10上形成主管栅介质5和冗余栅介质6,并同时形成在主管栅介质和冗余栅介质上的主管栅极8和冗余栅极9,如图6所示;
6)对浅槽隔离区包围的掺杂区进行磷离子注入,在主管栅介质的两边分别形成源区3和漏区4,在冗余栅介质两边分别形成漏区4和冗余电极区7,如图7所示;
7)去除光刻胶09,形成场效应晶体管,如图2所示。
最后需要注意的是,公布实施方式的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。

Claims (10)

1.一种抗单粒子辐射的场效应晶体管MOSFET,其特征在于,所述场效应晶体管包括:衬底、浅槽隔离区、掺杂区、源区、漏区、冗余电极区、主管栅介质、冗余栅介质、主管栅极和冗余栅极;其中,所述掺杂区形成在衬底上;所述浅槽隔离区包围掺杂区并嵌在衬底内;在掺杂区内依次为源区、漏区和冗余电极区,源区、漏区和冗余电极区彼此之间具有距离;在掺杂区上且位于源区和漏区之间形成主管栅介质;在掺杂区之上且位于漏区和冗余电极区之间形成冗余栅介质;在主管栅介质和冗余栅介质上分别形成主管栅极和冗余栅极。
2.如权利要求1所述的场效应晶体管,其特征在于,所述衬底采用体硅。
3.如权利要求1所述的场效应晶体管,其特征在于,所述冗余电极区的掺杂类型与衬底的杂质类型相反。
4.如权利要求1所述的场效应晶体管,其特征在于,所述源区和漏区的掺杂类型相同,所述冗余电极区的掺杂类型与源区和漏区的掺杂类型相同。
5.如权利要求1所述的场效应晶体管,其特征在于,所述对于n型MOSFET,所述冗余电极区掺杂为磷;对于p型MOSFET,所述冗余电极区掺杂为硼。
6.如权利要求1所述的场效应晶体管,其特征在于,所述冗余电极区为冗余阳极,或者为冗余阴极,由MOSFET的n型或p型决定;对于n型MOSFET,所述冗余电极区为冗余阳极,冗余电极区接高电压,冗余栅极接低电压;对于p型MOSFET,所述冗余电极区为冗余阴极,冗余电极区接低电压,冗余栅极接高电压。
7.如权利要求1所述的场效应晶体管,其特征在于,所述冗余栅介质的长度与主管栅介质的长度相同或不同。
8.如权利要求1所述的场效应晶体管,其特征在于,所述冗余电极区的宽度与源区和漏区的宽度相同或不同;冗余电极区的长度与源区和漏区的长度相同或不同。
9.如权利要求1所述的场效应晶体管,其特征在于,所述主管栅介质和冗余栅介质的材料采用高介电常数材料。
10.一种抗单粒子辐射的场效应晶体管的制备方法,其特征在于,所述制备方法包括以下步骤:
1)在衬底上形成掩模层;
2)利用光刻技术刻蚀掩膜层,并刻蚀衬底形成沟槽,淀积形成浅槽隔离区;
3)采用化学机械抛光对表面进行平整化处理;
4)对被浅槽隔离区包围衬底的表层进行掺杂形成掺杂区,热生长一层栅介质材料,并淀积栅电极材料;
5)采用具有主管栅介质和冗余栅介质图案的光刻板,进行光刻,在掺杂区上形成主管栅介质和冗余栅介质,并同时形成在主管栅介质和冗余栅介质上的主管栅极和冗余栅极;
6)对浅槽隔离区包围的掺杂区进行离子注入,离子注入的类型与掺杂区杂质的类型相反,在主管栅介质的两边分别形成源区和漏区,在冗余栅介质两边分别形成漏区和冗余电极区。
CN201510429977.XA 2015-07-21 2015-07-21 一种抗单粒子辐射的场效应晶体管及其制备方法 Pending CN105161524A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510429977.XA CN105161524A (zh) 2015-07-21 2015-07-21 一种抗单粒子辐射的场效应晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510429977.XA CN105161524A (zh) 2015-07-21 2015-07-21 一种抗单粒子辐射的场效应晶体管及其制备方法

Publications (1)

Publication Number Publication Date
CN105161524A true CN105161524A (zh) 2015-12-16

Family

ID=54802338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510429977.XA Pending CN105161524A (zh) 2015-07-21 2015-07-21 一种抗单粒子辐射的场效应晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN105161524A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876383A (zh) * 2017-01-03 2017-06-20 中国人民解放军国防科学技术大学 一种针对轰击nmos晶体管无面积开销的单粒子瞬态加固方法
CN107040256A (zh) * 2017-05-09 2017-08-11 长沙中部芯空微电子研究所有限公司 一种同或门电路及抗核辐射芯片
CN108352403A (zh) * 2016-09-17 2018-07-31 电子科技大学 一种提高抗单粒子烧毁能力的槽栅mos器件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100301403A1 (en) * 2009-05-29 2010-12-02 Won Gi Min Semiconductor device with multiple gates and doped regions and method of forming
CN102194794A (zh) * 2010-03-05 2011-09-21 中芯国际集成电路制造(上海)有限公司 等离子体损伤检测结构、其检测方法及其形成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100301403A1 (en) * 2009-05-29 2010-12-02 Won Gi Min Semiconductor device with multiple gates and doped regions and method of forming
CN102194794A (zh) * 2010-03-05 2011-09-21 中芯国际集成电路制造(上海)有限公司 等离子体损伤检测结构、其检测方法及其形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANJUN CHEN ET.AL: "Novel Layout Technique for Single-Event Transient Mitigation Using Dummy Transistor", 《IEEE TRANSACTION ON DEVICE AND MATERIALS RELIABILITY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352403A (zh) * 2016-09-17 2018-07-31 电子科技大学 一种提高抗单粒子烧毁能力的槽栅mos器件
CN108352403B (zh) * 2016-09-17 2020-11-13 电子科技大学 一种提高抗单粒子烧毁能力的槽栅mos器件
CN106876383A (zh) * 2017-01-03 2017-06-20 中国人民解放军国防科学技术大学 一种针对轰击nmos晶体管无面积开销的单粒子瞬态加固方法
CN106876383B (zh) * 2017-01-03 2019-08-09 中国人民解放军国防科学技术大学 一种针对轰击nmos晶体管无面积开销的单粒子瞬态加固方法
CN107040256A (zh) * 2017-05-09 2017-08-11 长沙中部芯空微电子研究所有限公司 一种同或门电路及抗核辐射芯片

Similar Documents

Publication Publication Date Title
TWI499033B (zh) 充電保護裝置
CN102792444B (zh) 半导体装置及半导体装置的制造方法
CN102969312B (zh) 一种双向衬底触发的高压esd保护器件
CN104752417A (zh) 可控硅静电保护器件及其形成方法
US9508852B2 (en) Radiation-hardened-by-design (RHBD) multi-gate device
KR20120052077A (ko) 반도체 소자 및 그 제조 방법
US20180247970A1 (en) Semiconductor device and method of manufacturing thereof
CN102610644B (zh) 抑制辐射引起的背栅泄漏电流的soi器件及其制备方法
CN105161524A (zh) 一种抗单粒子辐射的场效应晶体管及其制备方法
CN102969316A (zh) 抗单粒子辐射mosfet器件及制备方法
US20110291191A1 (en) MOS Structure with Suppressed SOI Floating Body Effect and Manufacturing Method thereof
CN103311301A (zh) 一种抑制辐射引起背栅泄漏电流的soi器件及其制备方法
US20120319204A1 (en) Triggerable Bidirectional Semiconductor Device
CN210805732U (zh) 存储装置、半导体器件
CN113270423B (zh) 一种抗辐射soi器件及制造方法
CN202394982U (zh) 一种基于部分耗尽型soi工艺的抗辐射mos器件结构
JP3348782B2 (ja) 半導体装置の製造方法
CN103066079B (zh) 半导体器件间隔离结构及其形成方法
CN111370402B (zh) 一种应用于烧结炉温控系统的静电保护器件
CN115497945A (zh) 一种基于双抗辐照机制的sram及其制备方法
CN110707043B (zh) 一种带硅化物的场加固抗总剂量辐射cmos器件及工艺
CN103594519A (zh) 一种隧穿场效应浮栅晶体管及其制造方法
WO2013071650A1 (zh) 一种减小辐射产生电荷收集的cmos器件及其制备方法
CN102709296B (zh) 通过负电荷泵在背栅接负电压的soi/mos器件结构及制造方法
CN102637730B (zh) 基于埋层n型阱的异质结1t-dram结构及其形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151216

WD01 Invention patent application deemed withdrawn after publication