CN105140478B - 一种MoO3‑H0.4MoO3核壳结构纳米带的制备方法 - Google Patents

一种MoO3‑H0.4MoO3核壳结构纳米带的制备方法 Download PDF

Info

Publication number
CN105140478B
CN105140478B CN201510461777.2A CN201510461777A CN105140478B CN 105140478 B CN105140478 B CN 105140478B CN 201510461777 A CN201510461777 A CN 201510461777A CN 105140478 B CN105140478 B CN 105140478B
Authority
CN
China
Prior art keywords
moo
shell structure
milliliters
core
nanoribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510461777.2A
Other languages
English (en)
Other versions
CN105140478A (zh
Inventor
王海
孙壮志
李字华
苏健
邱陈伟
王林江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou yifanghua Intellectual Property Operation Co., Ltd
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201510461777.2A priority Critical patent/CN105140478B/zh
Publication of CN105140478A publication Critical patent/CN105140478A/zh
Application granted granted Critical
Publication of CN105140478B publication Critical patent/CN105140478B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种MoO3‑H0.4MoO3核壳结构纳米带的制备方法。将分析纯钼酸铵倒入烧杯中,加入去离子水,使其溶解;将上述所得溶液中,加入硝酸,在室温下充分搅拌10‑30分钟;放入100毫升高压反应釜中,封闭好后,放入恒温干燥箱中,水热反应结束后,自然冷却至室温后取出反应釜;离心过滤,用无水乙醇洗涤3‑6次,在70℃恒温干烘箱中干燥24小时,得到白色粉体一维三氧化钼纳米带;将上述所得白色粉体用碳纤维纸包裹好,放入盛有硫粉的100毫升带支架的水热反应釜中,在恒温干烘箱中熏蒸完毕,即得到蓝色的宽度为100‑500纳米、厚度为10‑30纳米、长度为4‑8微米的MoO3‑H0.4MoO3核壳结构纳米带粉体。本发明操作简便、成本低、耗能低,能大规模合成。

Description

一种MoO3-H0.4MoO3核壳结构纳米带的制备方法
技术领域
本发明属于材料化学领域,具体涉及一种MoO3-H0.4MoO3核壳结构纳米带的制备方法。
背景技术
锂离子电池因广泛使用在可携带电子器件,电动汽车及某些特殊领域而受到众多工业界和学术界的青睐。MoO3纳米带因其高的理论容量(1111毫安时/克)以及有利于锂离子存储和传输的层状结构等优点,被认为是一类非常有希望取代目前商业化石墨负极材料的电极材料。
尽管MoO3纳米带作为锂离子电池负极材料已经取得了一些非常有意义的成果,但由于MoO3本身差的导电性限制了该材料在快速充放电时的循环稳定性。为了解决这个问题,传统上,一般采用涂覆法,水热法或原子沉积法将MoO3纳米带电极材料与石墨或者其它金属、石墨烯等制备成核-壳结构,壳层一般为导电层,从而有效解决了MoO3纳米带倍率性能的问题。然而,该策略一方面存在工艺复杂,不易控制的问题;另一方面,由于工艺所导致的壳层结构出现不致密而且厚度不均匀,且易脱落等缺陷。这些问题的存在迫切需要寻找一种新的解决方案。
H0.4MoO3是一种H掺杂MoO3的半金属性半导体导电氧化物,一般纯的H0.4MoO3晶相一般采用水合肼在酸性环境下高温高压水热获得。如果能将MoO3与H0.4MoO3形成核-壳结构将有助于解决MoO3导电性差的问题。通过对目前大量文献和专利调研,目前还没有发现一种以MoO3为母版,直接合成MoO3-H0.4MoO3核壳结构的纳米带的方法。
发明内容
本发明的目的在于针对MoO3导电性差的问题,提供一种MoO3-H0.4MoO3核壳结构纳米带的制备方法,其合成工艺简单,成本低。
本发明解决上述技术问题所采用的技术方案是:一种MoO3-H0.4MoO3核壳结构纳米带,其宽度为100-500纳米,厚度为10-30纳米,长度为4-8微米。采用下述方法制得,包括以下步骤:
具体步骤为:
(1)将0.5-1克分析纯钼酸铵倒入烧杯中,加入15-30毫升去离子水,使其溶解。
(2)在步骤(1)所得溶液中,加入2-6毫升分析纯硝酸,在室温下充分搅拌10-30分钟。
(3)将步骤(2)所得溶液放入100毫升高压反应釜中,封闭好后,放入160-180℃恒温干燥箱中水热反应14-24小时,水热反应结束后,自然冷却至室温后取出反应釜。
(4)将步骤(3)所得产物离心过滤,用无水乙醇洗涤3-6次,在70℃恒温干烘箱中干燥24小时,得到白色粉体一维三氧化钼纳米带。
(5)将步骤(4)所得白色粉体一维三氧化钼纳米带用碳纤维纸包裹好,放入盛有4-10克硫粉的带支架的100毫升水热反应釜中,在180-220℃恒温干烘箱中熏蒸10-24小时,即得到蓝色MoO3-H0.4MoO3核壳结构纳米带粉体。
本发明操作简便、成本低、耗能低,可以大规模合成;本发明所提供的采用高温高压以硫为催化剂熏蒸的方法,首次解决了MoO3-H0.4MoO3核壳结构的纳米带的合成难题,该方法也将为合成其它半导体异质节提供一种新的合成路径。
附图说明
图1为本发明实施例1的MoO3-H0.4MoO3核壳结构纳米带和三氧化钼纳米带对比的X-射线衍射图。
图2为本发明实施例1的MoO3-H0.4MoO3核壳结构纳米带和三氧化钼纳米带对比的场发射电镜扫描图,(a): MoO3纳米带,(b):MoO3-H0.4MoO3核壳结构纳米带。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1:
一种MoO3-H0.4MoO3核壳结构纳米带的制备方法,它包括如下步骤:
(1)将0.5克分析纯钼酸铵倒入烧杯中,加入去15毫升离子水,使其溶解。
(2)在步骤(1)所得溶液中,加入2毫升分析纯硝酸,在室温下充分搅拌10-30分钟。
(3)将步骤(2)所得溶液放入100毫升高压反应釜中,封闭好后,放入160℃恒温干燥箱中,水热反应14小时结束后,自然冷却至室温后取出反应釜。
(4)将步骤(3)所得产物离心过滤,用无水乙醇洗涤4次,在70℃恒温干烘箱中干燥24小时,得到白色粉体一维三氧化钼纳米带。
(5)将0.5克步骤(4)所得白色粉体一维三氧化钼纳米带用碳纤维纸包裹好,放入盛有4克硫粉的100毫升带支架的水热反应釜中,在180℃恒温干烘箱中熏蒸15小时,自然冷却得到MoO3-H0.4MoO3核壳结构纳米带。
实施例2:
一种MoO3-H0.4MoO3核壳结构纳米带的制备方法,它包括如下步骤:
(1)将分析纯1克钼酸铵倒入烧杯中,加入去25毫升离子水,使其溶解。
(2)在步骤(1)所得溶液中,加入6毫升分析纯硝酸,在室温下充分搅拌10分钟。
(3)将步骤(2)所得溶液放入100毫升高压反应釜中,封闭好后,放入180℃恒温干燥箱中,水热反应20小时结束后,自然冷却至室温后取出反应釜。
(4)将步骤(3)所得产物离心过滤,用无水乙醇洗涤6次,在70℃恒温干烘箱中干燥24小时,得到白色粉体一维三氧化钼纳米带。
(5)将1克步骤(4)所得白色粉体一维三氧化钼纳米带用碳纤维纸包裹好,放入盛有10克硫粉的100毫升带支架的水热反应釜中,在200℃恒温干烘箱中熏蒸20小时,自然冷却得到MoO3-H0.4MoO3核壳结构纳米带。

Claims (1)

1.一种MoO3-H0.4MoO3核壳结构纳米带的制备方法,其特征在于具体步骤为:
(1)将0.5-1克分析纯钼酸铵倒入烧杯中,加入15-30毫升去离子水,使其溶解;
(2)在步骤(1)所得溶液中,加入2-6毫升分析纯硝酸,在室温下充分搅拌10-30分钟;
(3)将步骤(2)所得溶液放入100毫升高压反应釜中,封闭好后,放入160-180℃恒温干燥箱中水热反应14-24小时,水热反应结束后,自然冷却至室温后取出反应釜;
(4)将步骤(3)所得产物离心过滤,用无水乙醇洗涤3-6次,在70℃恒温干烘箱中干燥24小时,得到白色粉体一维三氧化钼纳米带;
(5)将步骤(4)所得白色粉体一维三氧化钼纳米带用碳纤维纸包裹好,放入盛有4-10克硫粉的带支架的100毫升水热反应釜中,在180-220℃恒温干烘箱中熏蒸10-24小时,即得到蓝色的宽度为100-500纳米、厚度为10-30纳米、长度为4-8微米的MoO3-H0.4MoO3核壳结构纳米带。
CN201510461777.2A 2015-07-31 2015-07-31 一种MoO3‑H0.4MoO3核壳结构纳米带的制备方法 Active CN105140478B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510461777.2A CN105140478B (zh) 2015-07-31 2015-07-31 一种MoO3‑H0.4MoO3核壳结构纳米带的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510461777.2A CN105140478B (zh) 2015-07-31 2015-07-31 一种MoO3‑H0.4MoO3核壳结构纳米带的制备方法

Publications (2)

Publication Number Publication Date
CN105140478A CN105140478A (zh) 2015-12-09
CN105140478B true CN105140478B (zh) 2017-07-28

Family

ID=54725753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510461777.2A Active CN105140478B (zh) 2015-07-31 2015-07-31 一种MoO3‑H0.4MoO3核壳结构纳米带的制备方法

Country Status (1)

Country Link
CN (1) CN105140478B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923040B (zh) * 2018-06-25 2021-04-09 桂林理工大学 阴阳离子共掺杂钼氧羟基化合物纳米片的制备方法及应用
CN109888253A (zh) * 2019-03-29 2019-06-14 华南理工大学 一种二氧化钛包覆三氧化钼材料及其制备方法与应用
CN112830518A (zh) * 2021-03-05 2021-05-25 哈尔滨师范大学 一种三氧化钼纳米带自组装薄膜及其制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3416438A1 (de) * 1984-05-04 1985-11-07 Joachim 6604 Brebach Bamberg Eine elektronisch leitende wasserstoffelektrode im wesentlichen bestehend aus einem kaltkeramischen verbundstoff und einer wasserstoffbronze
CN101663366A (zh) * 2007-04-23 2010-03-03 惠普发展公司,有限责任合伙企业 插层化合物
CN104466148A (zh) * 2014-12-17 2015-03-25 桂林理工大学 一种H0.6MoO3三维纳米超薄片的制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3416438A1 (de) * 1984-05-04 1985-11-07 Joachim 6604 Brebach Bamberg Eine elektronisch leitende wasserstoffelektrode im wesentlichen bestehend aus einem kaltkeramischen verbundstoff und einer wasserstoffbronze
CN101663366A (zh) * 2007-04-23 2010-03-03 惠普发展公司,有限责任合伙企业 插层化合物
CN104466148A (zh) * 2014-12-17 2015-03-25 桂林理工大学 一种H0.6MoO3三维纳米超薄片的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fe2(MoO4)3 nanoparticle-anchored MoO3 nanowires: strong coupling via the reverse diffusion of heteroatoms and largely enhanced lithium storage properties;Yeping Song等;《RSC Advances》;20150129;第5卷;第16386-16393页 *
HxMoO3@C nanobelts: Green synthesis and superior lithium storage properties;Yeping Song等;《International Journal of Hydrogen Energy》;20150207;第40卷;第3613-3623页 *
Insertion and Removal of Protons in Single-Crystal Orthorhombic Molybdenum Trioxide under H2S/H2 and O2/N2;H. C. Zeng等;《Chemistry of Materials》;20020803;第14卷;第1788-1796页 *

Also Published As

Publication number Publication date
CN105140478A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
CN104659358B (zh) 一种钴酸镍纳米中空多面体的制备方法
CN104174422B (zh) 高氮掺杂石墨烯与类富勒烯硒化钼空心球纳米复合材料及其制备方法
CN109817935B (zh) 一种复合铁碳二亚胺电池负极材料及其制备方法
CN105336940B (zh) 一种钛酸钠纳米线/石墨烯复合负极材料及其制备方法
CN109192949A (zh) 由ZIF-67多面体衍生化得到绒壳空心多面体Co9S8@MoS2的方法
CN105280897B (zh) 一种锂离子电池负极材料C/ZnO/Cu复合材料的制备方法
CN109742378B (zh) 一种CoTe纳米线-石墨烯复合材料及其制备方法
CN105140478B (zh) 一种MoO3‑H0.4MoO3核壳结构纳米带的制备方法
CN107792878B (zh) 一种分等级结构二氧化钛(b)的制备方法及其在锂离子电池中的应用
Yang et al. MoO 3 nanoplates: a high-capacity and long-life anode material for sodium-ion batteries
CN109461592A (zh) 3d分级结构柔性碳布负载mof-ldh混合阵列超级电容器电极材料的制备方法
CN107739053A (zh) 一种三相体系钼氧化物MoO3/Mo4O11/MoO2纳米电极材料及其制备方法
Guo et al. High lithium insertion voltage single‐crystal H2Ti12O25 nanorods as a high‐capacity and high‐rate lithium‐ion battery anode material
CN114242983A (zh) 一种v3s4@c复合材料及其制备方法与应用
CN109256282A (zh) 一种导电型石墨烯片浆料的制备方法
CN112234177A (zh) 一种碳掺杂锐钛矿/金红石二氧化钛电极材料的制备方法
JP2016531069A (ja) リン酸鉄リチウムの製造方法
CN105590756B (zh) 一种微纳尺度石墨烯/钛酸锂复合负极材料的制备方法
CN102936048A (zh) 一种树叶状nh4v3o8 微晶的制备方法
Liu et al. Synthesis, structure and electrochemical properties of one-dimensional nanometer materials LiV3O8
CN113363079B (zh) 一种中空Cu7Se4-CuxCo1-xSe2纳米球复合材料及其制备方法和应用
CN103708552A (zh) 一种花球状锂离子电池正极材料的制备方法
CN103490065A (zh) 一种卡片状nh4v3o8 微晶的制备方法
Ma et al. Yolk–shell structured metal oxide@ carbon nanoring anode boosting performance of lithium-ion batteries
CN108847482A (zh) 石墨烯/碱式碳酸钴纳米线三维复合材料的制备方法及在锂离子电池阳极上的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201230

Address after: 215600 room a1309, 109 Shazhou West Road, yangshe Town, Zhangjiagang City, Suzhou City, Jiangsu Province

Patentee after: Suzhou yifanghua Intellectual Property Operation Co., Ltd

Address before: 541004 the Guangxi Zhuang Autonomous Region Guilin Construction Road No. 12

Patentee before: GUILIN University OF TECHNOLOGY