CN105088153A - 半导体硅锗薄膜的制备方法 - Google Patents

半导体硅锗薄膜的制备方法 Download PDF

Info

Publication number
CN105088153A
CN105088153A CN201510504862.2A CN201510504862A CN105088153A CN 105088153 A CN105088153 A CN 105088153A CN 201510504862 A CN201510504862 A CN 201510504862A CN 105088153 A CN105088153 A CN 105088153A
Authority
CN
China
Prior art keywords
film
silicon
germanium
sputtering
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510504862.2A
Other languages
English (en)
Other versions
CN105088153B (zh
Inventor
侯晓伟
郭俊杰
倪大成
王飞
郑华雄
郑良广
李菊萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo CRRC Times Transducer Technology Co Ltd
Original Assignee
Ningbo CSR Times Transducer Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo CSR Times Transducer Technology Co Ltd filed Critical Ningbo CSR Times Transducer Technology Co Ltd
Priority to CN201510504862.2A priority Critical patent/CN105088153B/zh
Publication of CN105088153A publication Critical patent/CN105088153A/zh
Priority to US15/752,590 priority patent/US10392691B2/en
Priority to PCT/CN2016/000439 priority patent/WO2017028467A1/zh
Application granted granted Critical
Publication of CN105088153B publication Critical patent/CN105088153B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

一种半导体硅锗薄膜的制备方法,其特征在于包括如下步骤:对单晶硅基片进行清洗,清洗后置于衬底台上;分别进行溅射硅的单一薄膜和锗的单一薄膜;采用共溅法,在又一单晶硅基片沉积不同成分的硅锗合金薄膜,测得所沉积薄膜的厚度,得到具有不同成分比的硅锗合金薄膜。与现有技术相比,本发明的优点在于:采用偏置靶材离子束沉积,结合了离子束沉积技术和磁控溅射沉积技术的优点,能够有效克服磁控溅射沉积技术和离子束沉积技术两者的缺点。

Description

半导体硅锗薄膜的制备方法
技术领域
本发明涉及一种半导体薄膜,尤其涉及一种半导体硅锗薄膜,该半导体薄膜可应用于光电微机械电子系统领域中。
背景技术
硅和锗是电子传输器件中常用的两种半导体材料。由硅和锗两种材料构成的硅锗合金薄膜作为先进的硅系统材料,受到越来越广泛的应用。硅锗合金薄膜材料主要用来提高半导体器件中的电子和空穴迁移率,例如金属氧化物场效应管(Metal,OxideSemiconductorFieldEffectTransistor,MOSFET),调制掺杂场效应管(ModulationDopedFieldEffectTransistor,MODFET)和掺杂沟道场效应管(DopedChannelFieldEffectTransistor,DCFET)等。另外,硅锗薄膜异质结构也被用于量子效应器件中,例如共振隧道二极管(ResonantTunnelingDiode,RTD),它非常有希望成为下一代高速硅系统器件。
把硅锗半导体薄膜材料应用于光电微电子机械系统(MicroElectroMechanicalSystems,MEMS)领域有着巨大的需求,但是关于这方面的报道却很少。通过控制硅锗合金薄膜的成分可以控制它的某些性能,比如电学性能、机械性能以及光学性能等,这些性能对于光电MEMS来讲是非常重要的方面。为了更好的发挥MEMS光学方面的性能,制备高质量的硅锗薄膜以及了解它们的机械性能是非常有必要的。
现有的硅锗合金薄膜广泛采用电沉积、化学气相沉积、磁控溅射沉积技术和离子束沉积(IonBeamDeposition,IBD)技术来进行制备,
电沉积的文献可以参考专利号为ZL201010301123.0的中国发明专利《硅锗合金薄膜材料的制备方法》(授权公告号为CN101880901B)。
化学气相沉积的文献可以参考申请号为201410581435.X的中国发明专利申请公开《掺氧非晶硅锗薄膜、异质结晶体硅太阳能电池及制备方法》(申请公布号CN104393121A)。
磁控溅射沉积技术和离子束沉积都存在一定的局限性,主要体现在磁控溅射沉积技术会刻蚀跑道以及靶材表面容易产生中毒现象。而离子束沉积技术通过倾斜方式发射离子束,会降低靶材的使用寿命;逸出的离子束会对腔室材料形成溅射,污染所需要的硅锗薄膜;速率较低,对较厚的硅锗薄膜材料沉积困难。
光电MEMS要求相应的半导体薄膜材料具有优良的物理特性,而材料成分的不同深刻的影响着薄膜的各项性能。如何精确的控制薄膜的成分以及获得优异的物理性能是沉积半导体薄膜的关键技术。
文献1“Fabricationofsilicon/germaniumsuperlatticebyionbeamsputtering,Vacuum,Vol.66,DEC2011,p457-462.”公开了一种利用离子束沉积方法在硅基底上生长半导体硅锗薄膜的方法,沉积了300nm厚度的硅锗双分层薄膜,从给出的原子力显微镜三维图形中看出,它的粗糙度为1.08nm。
文献2“StructuralandelectricalstudiesofultrathinlayerswithSi0.7Ge0.3nanocrystalsconfinedinaSiGe/SiO2superlattice,JournalofAppliedPhysics,Vol.111,OCT2012,p.104323-1--104323-4.”公开了一种利用射频磁控溅射沉积技术制备硅锗薄膜的方法,该方法利用共溅的方式,制备了较薄的硅锗薄膜,获得了较好的结构和电学特性,但是这一方式难以对薄膜的成分进行精确控制,同时靶材的利用率也不高,降低了靶材的寿命,不利于大规模推广应用。
磁控溅射沉积技术由于采用了环状磁场,会迫使二次电子跳栏式的沿着环状磁场转圈。相应的,环状磁场控制的区域是等离子体密度最高的部位,这样会在靶材上面溅射出一条环状的沟槽,造成刻蚀跑道的情况,沟槽一旦穿过靶材,就会使得整块靶材报废,因此会导致靶材的利用率不高,而磁控溅射沉积技术所采用的等离子体由于不稳定,会造成靶材表面的不均匀刻蚀,产生中毒现象,中毒区域溅射不可避免导致成膜掺杂,这样会降低所制备的薄膜的纯度。
离子束沉积技术通过倾斜方式发射离子束,造成整块靶材刻蚀不均匀,这样会降低靶材的使用寿命;离子束由于发生逸出现象,逸出的离子束会对真空腔室材料产生溅射作用,产生杂质离子,污染所制备的硅锗薄膜;由于离子束轰击到的靶材面积太小,造成沉积速率较低,对较厚的硅锗薄膜材料沉积困难。
发明内容
本发明所要解决的技术问题是针对上述的技术现状而提供一种利用偏置靶材离子束沉积实现半导体硅锗薄膜的制备方法。
本发明所要解决的又一个技术问题是靶材的使用寿命长的半导体硅锗薄膜的制备方法。
本发明所要解决的又一个技术问题是提高薄膜的纯度的半导体硅锗薄膜的制备方法。
本发明解决上述技术问题所采用的技术方案为:一种半导体硅锗薄膜的制备方法,其特征在于包括如下步骤:
①用丙酮对单晶硅基片进行超声清洗5~10min,然后用甲醇超声清洗5~10min,再次用异丙醇超声清洗5~10min,最后用去离子水反复冲洗,干燥后将单晶硅基片置于衬底台上;
②将沉积系统的真空室抽真空至8×10-8~9×10-8Torr,使腔室温度保持在室温20~30℃,并维持真空室压强维持在8×10-8~9×10-8Torr;
③在单晶硅基片上溅射硅的单一薄膜,溅射压强为4×10-4~5×10-4Torr,负极偏置电压为600~700V,溅射气体为氩气,气体流量为30sccm~50sccm,溅射时间30~50min,测得所沉积薄膜的厚度,计算得到当前参数下硅薄膜的沉积速率;
④另取一单晶硅基片,溅射锗的单一薄膜,溅射压强为4×10-4~5×10-4Torr,负极偏置电压为600~700V,溅射气体为氩气,气体流量为30sccm~50sccm,溅射时间30~50min,测得所沉积薄膜的厚度,计算得到当前参数下锗薄膜的沉积速率;
⑤采用共溅的方法,在又一单晶硅基片沉积不同成分的硅锗合金薄膜,溅射压强为4×10-4~5×10-4Torr,负极偏置电压为600~700V,溅射气体为氩气,气体流量为30sccm~50sccm,溅射时间为30~50min,测得所沉积薄膜的厚度,得到具有不同成分比的硅锗合金薄膜;
上述步骤③、步骤④和步骤⑤中的溅射压强、负极偏置电压、气体流量及溅射时间均保持一致。
作为优选,所述硅锗合金薄膜中硅锗质量配比为3:4~2:5。
作为优选,所述硅锗合金薄膜的厚度为64nm~280nm。
与现有技术相比,本发明的优点在于:采用偏置靶材离子束沉积,结合了离子束沉积技术和磁控溅射沉积技术的优点,能够有效克服磁控溅射沉积技术和离子束沉积技术两者的缺点,非常适合硅锗等半导体薄膜的制备。具体如下:
偏置靶材离子束沉积采用将靶材通上负偏置电压的方法来控制等离子体,不会造成刻蚀跑道和刻蚀不均匀的情况,能够有效提高靶材的使用寿命。
偏置靶材离子束沉积采用低能量的等离子体源,性能非常稳定,不会造成靶材表面的不均匀刻蚀,避免了中毒现象的发生,有效提高了所制备的薄膜的纯度。
偏置靶材离子束沉积由于发射的等离子体能量非常低,逸出的离子束不会对真空腔室产生溅射作用,提高了所制备薄膜的纯度。
偏置靶材离子束沉积在靶材附近安装了等离子护套,它能够加快正离子进入护套的速度,从而保证离子束轰击的面积大于靶材的面积,并且可以通过调节电压来调节沉积速率,能够获得较高的沉积速率,可以沉积较厚的薄膜材料。
偏置靶材离子束沉积通过选择合适的电压值,借助于电压对溅射弹射能量的影响,能够对薄膜交界面的原子混合以及薄膜的整体粗糙度进行有效的调节。
通过控制偏置电压和沉积时间,在硅片上制备具有不同成分的硅锗合金薄膜,所制备出的硅锗合金薄膜的粗糙度由现有技术的1.08nm减小到0.46nm。
附图说明
图1为实施例1中获得的硅锗合金薄膜在原子力显微镜测试下的表面二维显微照片。
图2为实施例1中获得的硅锗合金薄膜在原子力显微镜测试下的表面三维形貌图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1,
(1)首先用丙酮对单晶硅基片进行超声清洗10min,其次用甲醇超声清洗10min,再次用异丙醇超声清洗10min,最后用去离子水反复冲洗,干燥后将硅基片置于衬底台上。
(2)将沉积系统的真空室抽真空至9×10-8Torr,使腔室温度保持至室温25℃,并维持真空室压强维持在9×10-8Torr。
(3)在硅基片上溅射硅的单一薄膜,溅射压强调整为5×10-4Torr,负极偏置电压为600V,溅射气体为氩气,气体流量为40sccm,溅射时间30min,测得所沉积薄膜的厚度24nm,计算得到当前参数下硅薄膜的沉积速率0.8nm/min。
(4)另取新硅基片,溅射锗的单一薄膜,溅射压强调整为5×10-4Torr,负极偏置电压为600V,溅射气体为氩气,气体流量为40sccm,溅射时间30min,测得所沉积薄膜的厚度60nm,计算得到当前参数下锗薄膜的沉积速率2nm/min。
(5)采用共溅的方法,在新硅基片沉积不同成分的硅锗合金薄膜,溅射压强调整为5×10-4Torr,负极偏置电压为600V,溅射气体为氩气,气体流量为40sccm,溅射时间为30min测得所沉积薄膜的厚度为84nm,最终得到硅锗合金薄膜的质量比为2:5。
结合图1和图2,采用原子力显微镜对本实施例制备的硅锗合金薄膜进行测量,从附图中可以看到均方根粗糙度为0.46nm。
实施例2:
(1)首先用丙酮对单晶硅基片进行超声清洗8min,其次用甲醇超声清洗8min,再次用异丙醇超声清洗8min,最后用去离子水反复冲洗,干燥后将硅基片置于衬底台上。
(2)将沉积系统的真空室抽真空至8×10-8Torr,使腔室温度保持至室温25℃,并维持真空室压强维持在8×10-8Torr。
(3)在硅基片上溅射硅的单一薄膜,溅射压强调整为4×10-4Torr,负极偏置电压为700V,溅射气体为氩气,气体流量为40sccm,溅射时间40min,测得所沉积薄膜的厚度64nm,计算得到当前参数下硅薄膜的沉积速率1.6nm/min。
(4)另取新硅基片,溅射锗的单一薄膜,溅射压强调整为4×10-4Torr,负极偏置电压为700V,溅射气体为氩气,气体流量为40sccm,溅射时间40min,测得所沉积薄膜的厚度128nm,计算得到当前参数下锗薄膜的沉积速率3.2nm/min。
(5)采用共溅的方法,在新硅基片沉积不同成分的硅锗合金薄膜,溅射压强调整为4×10-4Torr,负极偏置电压为700V,溅射气体为氩气,气体流量为40sccm,溅射时间为40min测得所沉积薄膜的厚度为192nm,最终得到的硅锗合金薄膜的质量比为2:3。
实施例3:
(1)首先用丙酮对单晶硅基片进行超声清5min,其次用甲醇超声清洗5min,再次用异丙醇超声清洗5min,最后用去离子水反复冲洗,干燥后将硅基片置于衬底台上。
(2)将沉积系统的真空室抽真空至8×10-8Torr,使腔室温度保持至室温25℃,并维持真空室压强维持在8×10-8Torr。
(3)在硅基片上溅射硅的单一薄膜,溅射压强调整为4×10-4Torr,负极偏置电压为700V,溅射气体为氩气,气体流量为40sccm,溅射时间50min,测得所沉积薄膜的厚度120nm,计算得到当前参数下硅薄膜的沉积速率2.4nm/min。
(4)另取新硅基片,溅射锗的单一薄膜,溅射压强调整为4×10-4Torr,负极偏置电压为700V,溅射气体为氩气,气体流量为40sccm,溅射时间50min,测得所沉积薄膜的厚度160nm,计算得到当前参数下锗薄膜的沉积速率3.2nm/min。
(5)采用共溅的方法,在新硅基片沉积不同成分的硅锗合金薄膜,溅射压强调整为4×10-4Torr,负极偏置电压为700V,溅射气体为氩气,气体流量为40sccm,溅射时间为50min测得所沉积薄膜的厚度为280nm,最终得到的硅锗合金薄膜的质量比为3:4。
通过以上实施例可以得出:
(1)磁控溅射沉积技术采用环状磁场来控制等离子体,会造成刻蚀跑道的情况,造成靶材利用率偏低,而离子束沉积技术通过倾斜方式发射离子束,造成整块靶材刻蚀不均匀,也会造成靶材利用率偏低,因此磁控溅射沉积技术和离子束沉积技术均会降低靶材的使用寿命。相比而言,偏置靶材离子束沉积技术采用将靶材通上负偏置电压的方法来控制等离子体,不会造成刻蚀跑道和刻蚀不均匀的情况,能够有效提高靶材的使用寿命。
(2)磁控溅射沉积技术所采用的等离子体由于不稳定,会造成靶材表面的不均匀刻蚀,产生中毒现象,中毒区域溅射不可避免导致成膜掺杂,这样会降低所制备的薄膜的纯度,而偏置靶材离子束沉积技术采用低能量的等离子体源,性能非常稳定,不会造成靶材表面的不均匀刻蚀,避免了中毒现象的发生,有效提高了所制备的薄膜的纯度。
(3)离子束沉积技术由于会发生逸出现象,逸出的离子束会对真空腔室材料产生溅射作用,产生杂质离子,污染所制备的薄膜,而偏置靶材离子束沉积技术由于发射的等离子体能量非常低,逸出的离子束不会对真空腔室产生溅射作用,提高了所制备薄膜的纯度。
(4)离子束沉积技术由于离子束轰击到的靶材面积太小,会造成沉积速率较低,对较厚的薄膜材料沉积困难,而偏置靶材离子束沉积技术在靶材附近安装了等离子护套,它能够加快正离子进入护套的速度,从而保证离子束轰击的面积大于靶材的面积,并且可以通过调节电压来调节沉积速率,能够获得较高的沉积速率,可以沉积较厚的薄膜材料。
(5)偏置靶材离子束沉积技术通过选择合适的电压值,借助于电压对溅射弹射能量的影响,能够对薄膜交界面的原子混合以及薄膜的整体粗糙度进行有效的调节。
由上可知,偏置靶材离子束沉积技术能够有效克服磁控溅射沉积技术和离子束沉积技术在制备硅锗合金等半导体薄膜方面的不足,通过控制偏置电压和沉积时间,在硅片上制备具有不同成分的硅锗合金薄膜,所制备出的硅锗合金薄膜的粗糙度由现有技术的1.08nm减小到0.46nm,这对光电MEMS的发展具有非常重要的意义。

Claims (3)

1.一种半导体硅锗薄膜的制备方法,其特征在于包括如下步骤:
①用丙酮对单晶硅基片进行超声清洗5~10min,然后用甲醇超声清洗5~10min,再次用异丙醇超声清洗5~10min,最后用去离子水反复冲洗,干燥后将单晶硅基片置于衬底台上;
②将沉积系统的真空室抽真空至8×10-8~9×10-8Torr,使腔室温度保持在室温20~30℃,并维持真空室压强维持在8×10-8~9×10-8Torr;
③在单晶硅基片上溅射硅的单一薄膜,溅射压强为4×10-4~5×10-4Torr,负极偏置电压为600~700V,溅射气体为氩气,气体流量为30sccm~50sccm,溅射时间30~50min,测得所沉积薄膜的厚度,计算得到当前参数下硅薄膜的沉积速率;
④另取一单晶硅基片,溅射锗的单一薄膜,溅射压强为4×10-4~5×10-4Torr,负极偏置电压为600~700V,溅射气体为氩气,气体流量为30sccm~50sccm,溅射时间30~50min,测得所沉积薄膜的厚度,计算得到当前参数下锗薄膜的沉积速率;
⑤采用共溅的方法,在又一单晶硅基片沉积不同成分的硅锗合金薄膜,溅射压强为4×10-4~5×10-4Torr,负极偏置电压为600~700V,溅射气体为氩气,气体流量为30sccm~50sccm,溅射时间为30~50min,测得所沉积薄膜的厚度,得到具有不同成分比的硅锗合金薄膜;
上述步骤③、步骤④和步骤⑤中的溅射压强、负极偏置电压、气体流量及溅射时间均保持一致。
2.根据权利要求1所述的半导体硅锗薄膜的制备方法,其特征在于所述硅锗合金薄膜中硅锗质量配比为3:4~2:5。
3.根据权利要求1所述的半导体硅锗薄膜的制备方法,其特征在于所述硅锗合金薄膜的厚度为64nm~280nm。
CN201510504862.2A 2015-08-17 2015-08-17 半导体硅锗薄膜的制备方法 Active CN105088153B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510504862.2A CN105088153B (zh) 2015-08-17 2015-08-17 半导体硅锗薄膜的制备方法
US15/752,590 US10392691B2 (en) 2015-08-17 2016-08-10 Semiconductor silicon-germanium thin film preparation method
PCT/CN2016/000439 WO2017028467A1 (zh) 2015-08-17 2016-08-10 半导体硅锗薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510504862.2A CN105088153B (zh) 2015-08-17 2015-08-17 半导体硅锗薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN105088153A true CN105088153A (zh) 2015-11-25
CN105088153B CN105088153B (zh) 2017-09-26

Family

ID=54569468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510504862.2A Active CN105088153B (zh) 2015-08-17 2015-08-17 半导体硅锗薄膜的制备方法

Country Status (3)

Country Link
US (1) US10392691B2 (zh)
CN (1) CN105088153B (zh)
WO (1) WO2017028467A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028467A1 (zh) * 2015-08-17 2017-02-23 宁波中车时代传感技术有限公司 半导体硅锗薄膜的制备方法
CN110804727A (zh) * 2019-11-19 2020-02-18 四川大学 应变薄膜异质结、制备方法及应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3966848B1 (en) * 2019-05-08 2022-11-23 Consiglio Nazionale Delle Ricerche Molecular doping
CN113539792B (zh) * 2021-07-09 2024-03-01 中国科学院上海微系统与信息技术研究所 全环绕栅极晶体管的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060249372A1 (en) * 2005-04-11 2006-11-09 Intematix Corporation Biased target ion bean deposition (BTIBD) for the production of combinatorial materials libraries
CN101100739A (zh) * 2007-08-02 2008-01-09 哈尔滨工业大学 一种采用磁控溅射制备薄膜的方法
CN102629661A (zh) * 2011-02-01 2012-08-08 旺宏电子股份有限公司 形成掺杂相变材料的复合靶溅射
CN103695855A (zh) * 2013-12-17 2014-04-02 西安文理学院 一种具有各向异性的硅量子点薄膜的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975387A (en) 1989-12-15 1990-12-04 The United States Of America As Represented By The Secretary Of The Navy Formation of epitaxial si-ge heterostructures by solid phase epitaxy
KR100343949B1 (ko) * 2000-01-26 2002-07-24 한국과학기술연구원 상온에서 작동하는 자외선 수광, 발광소자용 ZnO박막의 제조 방법 및 그를 위한 장치
US7737051B2 (en) 2004-03-10 2010-06-15 Tokyo Electron Limited Silicon germanium surface layer for high-k dielectric integration
GB2419894B (en) * 2004-10-22 2009-08-26 Plasma Quest Ltd Sputtering system
US7642114B2 (en) 2006-07-19 2010-01-05 Semiconductor Energy Laboratory Co., Ltd. Micro electro mechanical device and manufacturing method thereof
CN101880901B (zh) 2010-02-03 2012-05-30 哈尔滨工业大学 硅锗合金薄膜材料的制备方法
EP2766515B1 (en) * 2011-10-10 2018-08-08 3M Innovative Properties Company Catalyst electrodes, and methods of making and using the same
CN103972065A (zh) 2014-05-05 2014-08-06 清华大学 SiGe层的形成方法
CN104393121B (zh) 2014-10-27 2016-11-16 中国科学院上海微系统与信息技术研究所 掺氧非晶硅锗薄膜、异质结晶体硅太阳能电池及制备方法
CN104538542A (zh) 2014-12-26 2015-04-22 上海大学 利用物理气相沉积方法制备多层膜热电材料的工艺
CN105088153B (zh) 2015-08-17 2017-09-26 宁波中车时代传感技术有限公司 半导体硅锗薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060249372A1 (en) * 2005-04-11 2006-11-09 Intematix Corporation Biased target ion bean deposition (BTIBD) for the production of combinatorial materials libraries
CN101100739A (zh) * 2007-08-02 2008-01-09 哈尔滨工业大学 一种采用磁控溅射制备薄膜的方法
CN102629661A (zh) * 2011-02-01 2012-08-08 旺宏电子股份有限公司 形成掺杂相变材料的复合靶溅射
CN103695855A (zh) * 2013-12-17 2014-04-02 西安文理学院 一种具有各向异性的硅量子点薄膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
N.R.KRISHNAN ET AL.: "Control of Chemical Composition of Rare-earth Substituted Iron Garnets using Biased Target Deposition", 《CONFERENCE ON OPTOELECTRONIC AND MICROELECTRONIC MATERIALS AND DEVICES》 *
RUIJING GE ET AL.: "Nanoindentation of Si1-xGex thin films prepared by biased target ion beam deposition", 《CONFERENCE ON OPTOELECTRONIC AND MICROELECTRONIC MATERIALS AND DEVICES》 *
T.L.HYLTON ET AL.: "Thin Film Processing by Biased Target Ion Beam Deposition", 《IEEE TRANSACTIONS ON MAGNETICS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028467A1 (zh) * 2015-08-17 2017-02-23 宁波中车时代传感技术有限公司 半导体硅锗薄膜的制备方法
US10392691B2 (en) 2015-08-17 2019-08-27 Ningbo CRRC Times Transducer Technology Co., Ltd. Semiconductor silicon-germanium thin film preparation method
CN110804727A (zh) * 2019-11-19 2020-02-18 四川大学 应变薄膜异质结、制备方法及应用

Also Published As

Publication number Publication date
WO2017028467A1 (zh) 2017-02-23
CN105088153B (zh) 2017-09-26
US10392691B2 (en) 2019-08-27
US20180245204A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
CN105088153A (zh) 半导体硅锗薄膜的制备方法
CN105810615A (zh) 通过晶振实现对刻蚀样品原位刻蚀监控的方法及系统
CN104465401A (zh) 一种薄膜晶体管低温多晶硅薄膜制备方法
CN103346069B (zh) 一种低硼掺杂下高电导率氢化非晶硅薄膜的制备方法
CN106338347A (zh) 一种高温声表面波传感器的叉指电极材料及其制备方法
CN103996717A (zh) 薄膜晶体管及其制作方法、显示基板和显示装置
CN101235537B (zh) 制备ZnMgO合金薄膜的方法
US20110146791A1 (en) Epitaxial growth of silicon for layer transfer
CN109103301B (zh) 一种多晶硅表面微纳复合结构的制备方法
CN105132875B (zh) 一种扩散法制备高浓度梯度azo单晶导电薄膜的方法
CN109698257B (zh) 一种纳米CdS/Si异质结的制备方法
Huang et al. Effects of chemical stoichiometry on the structural properties of Si-rich oxide thin films
US20050155675A1 (en) Amorphous ferrosilicide film exhibiting semiconductor characteristics and method of for producing the same
CN112919822A (zh) 基于刻蚀辅助机制的石墨烯玻璃制备方法
Ping et al. PECVD grown SiO2 film process optimization
CN103839775A (zh) 选区GeSn层及其形成方法
CN104357800B (zh) 一种纳米硅薄膜阴极及其制作方法
Tashlykov et al. Analysis of composition, morphology and wettability of Mo thin layers deposited on glass
CN113058665B (zh) 一种基于二维材料的微流通道的制备方法和微流控制器件
Sestak et al. Effects of as-deposited CdTe microstructure on solar cell performance
CN101985732A (zh) 一种制备非晶碳化硅薄膜的方法
CN102420167A (zh) 一种绝缘体上锗衬底的减薄方法
Shang et al. Preparation of high-oriented molybdenum thin films using DC reactive magnetronsputtering
Hana et al. Enhancement of the crystalline quality of reactively sputtered yttria-stabilized zirconia by oxidation of the metallic target surface
CN109943818B (zh) 一种原位制备超粗糙薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 315021 Zhejiang province Ningbo City Yongjiang Industrial Park No. 138 vibration Yonglu

Applicant after: NINGBO CRRC TIMES SENSING TECHNOLOGY CO., LTD.

Address before: 315021 Zhejiang province Ningbo City Yongjiang Industrial Park No. 138 vibration Yonglu

Applicant before: Ningbo CSR Times Transducer Technique Co., Ltd.

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant