CN109698257B - 一种纳米CdS/Si异质结的制备方法 - Google Patents

一种纳米CdS/Si异质结的制备方法 Download PDF

Info

Publication number
CN109698257B
CN109698257B CN201910023858.2A CN201910023858A CN109698257B CN 109698257 B CN109698257 B CN 109698257B CN 201910023858 A CN201910023858 A CN 201910023858A CN 109698257 B CN109698257 B CN 109698257B
Authority
CN
China
Prior art keywords
nano
heterojunction
cds
keeping
magnetron sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910023858.2A
Other languages
English (en)
Other versions
CN109698257A (zh
Inventor
李勇
姬鹏飞
宋月丽
周丰群
田明丽
袁书卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pingdingshan University
Original Assignee
Pingdingshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pingdingshan University filed Critical Pingdingshan University
Priority to CN201910023858.2A priority Critical patent/CN109698257B/zh
Publication of CN109698257A publication Critical patent/CN109698257A/zh
Application granted granted Critical
Publication of CN109698257B publication Critical patent/CN109698257B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明属于异质结制备技术领域,特别是涉及一种纳米CdS/Si异质结的制备方法,该方法利用磁控溅射技术和溶剂热法,首先以单晶硅片为衬底,利用磁控溅射技术在Si片上沉积金属Cd,制备出纳米结构Cd/Si,然后利用溶剂热法腐蚀金属Cd制备纳米CdS/Si异质结。本发明简单、高效,易于调控,且重复率达到100%。

Description

一种纳米CdS/Si异质结的制备方法
技术领域
本发明属于异质结制备技术领域,特别是涉及一种纳米CdS/Si异质结的制备方法。
背景技术
异质结是半导体器件的重要组成部分。随着纳米科技的发展,利用纳米结构的半导体制备异质结成为一项重要的研究课题。CdS是一种重要的II-VI族半导体化合物,常被用作异质结的n型材料。其中,纳米结构CdS是研究的一个热点。各个研究组都致力于将纳米结构CdS与Si相结合,构建CdS/Si异质结。目前通常是先利用化学方法制备纳米结构CdS,然后旋涂移植到Si片上,从而制备纳米结构CdS/Si异质结。或者,利用物理/化学气相沉积法,将CdS纳米结构沉积于Si片上构建CdS/Si异质结;此种方法在沉积之前,必须在Si片上蒸镀适量的金属催化剂(如金、镍等)。这些方法都会在CdS和Si之间引入中间层或者其他的原子,这样不利于异质结界面处载流子的传输,从而影响器件的性能。
发明内容
针对现有技术中存在的缺陷,本发明提供了一种纳米CdS/Si异质结的制备方法,该方法利用磁控溅射技术和溶剂热法,以单晶硅片为衬底,制备纳米CdS/Si异质结,该方法简单、高效,易于调控,且重复率达到100%。
为了实现上述目的,本发明采用以下的技术方案:
本发明提供了一种纳米CdS/Si异质结的制备方法,包含以下步骤:
步骤1,以单晶硅片为衬底,利用磁控溅射技术在Si片上沉积金属Cd,制备出纳米结构Cd/Si;
步骤2,利用溶剂热法腐蚀金属Cd制备纳米CdS/Si异质结。
进一步地,所述步骤1的具体过程为:
步骤101,将清洗干净的单晶硅片放入磁控溅射室的样品支架上,对磁控溅射室抽真空到10-6Pa,然后向磁控溅射室充入氩气,保持溅射室真空度为10-1Pa-100Pa;
步骤102,调整Cd靶材和单晶硅片的距离为5.0cm,将样品支架加热到100℃,保持5min,使样品支架上的单晶硅片受热均匀;
步骤103,设置溅射功率40W,打开Cd靶材的挡板,开始溅射,溅射时间180s,制备纳米结构Cd/Si;
步骤104,保持磁控溅射室内压强不变,自然冷却至室温,纳米结构Cd/Si制备完成。
进一步地,所述步骤2的具体过程为:
步骤201,配置乙二胺和硫脲的混合溶液,硫脲的浓度为0.001-0.01mol/L;
步骤202,将乙二胺和硫脲的混合溶液移到水热釜中,保持填充度为50%-90%;将纳米结构Cd/Si放入该混合溶液中,将水热釜放入恒温箱中,保持箱内温度80-230℃,设置腐蚀时间60-420min;
步骤203,将水热釜从恒温箱中取出,自然冷却至室温,得到纳米CdS/Si异质结。
进一步地,所述步骤202中的腐蚀时间设置为240min。
进一步地,所述步骤202中的腐蚀时间设置为360min。
与现有技术相比,本发明具有以下优点:
1、本发明的一种纳米CdS/Si异质结的制备方法,利用磁控溅射技术和溶剂热法,此方法首先以单晶硅片为衬底,利用磁控溅射技术在Si片上沉积金属Cd,制备出纳米结构Cd/Si,然后利用溶剂热法腐蚀金属Cd制备纳米CdS/Si异质结。本发明采用的生长技术工艺简单易行,重复率达到100%。
2、在CdS和Si所构建的异质结界面不会引入中间层和外来的原子,有利于异质结界面处载流子的传输,提高其整流效应。
3、通过控制金属纳米Cd的结构,以及水热腐蚀的时间,可以调控CdS薄膜的结构。
4、通过调控制备条件,可以使Si表面的CdS纳米结构取向(002)生长。这使得纳米CdS/Si异质结的表面反射大大降低,有利于纳米CdS/Si异质结在光伏器件方面的应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例纳米CdS/Si异质结的制备方法的流程示意图;
图2是本发明实施例纳米结构Cd/Si的SEM图谱;
图3是本发明实施例纳米结构Cd/Si的XRD图谱;
图4是本发明实施例二纳米CdS/Si异质结的HR-TEM图谱;
图5是本发明实施例二纳米CdS/Si异质结的XRD图谱;
图6是本发明实施例二纳米CdS/Si异质结的整流特性图谱;
图7是本发明实施例三纳米CdS/Si异质结的HR-TEM图谱;
图8是本发明实施例三纳米CdS/Si异质结的XRD图谱。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的核心是提供一种纳米CdS/Si异质结的制备方法,该方法简单、高效、易于调控。
为了使本领域的技术人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
实施例一
如图1所示,一种纳米CdS/Si异质结的制备方法,该方法首先以单晶硅片为衬底,利用磁控溅射技术在Si片上沉积金属Cd,制备出纳米结构Cd/Si;然后利用溶剂热法腐蚀金属Cd制备纳米CdS/Si异质结;具体包含以下步骤:
步骤S101,将清洗干净的单晶硅片放入磁控溅射室的样品支架上,对磁控溅射室抽真空到10-6Pa,然后向磁控溅射室充入氩气,保持溅射室真空度为10-1Pa-100Pa;
步骤S102,调整Cd靶材和单晶硅片的距离为5.0cm,将样品支架加热到100℃,保持5min,使样品支架上的单晶硅片受热均匀;
步骤S103,设置溅射功率40W,打开Cd靶材的挡板,开始溅射,溅射时间180s,制备纳米结构Cd/Si;
步骤S104,保持磁控溅射室内压强不变,自然冷却至室温,纳米结构Cd/Si制备完成,其形貌特征如图2所示,成份如图3所示;
步骤S105,配置乙二胺和硫脲的混合溶液,硫脲的浓度为0.001-0.01mol/L;
步骤S106,将乙二胺和硫脲的混合溶液移到水热釜中,保持填充度为50%-90%;将纳米结构Cd/Si放入该混合溶液中,将水热釜放入恒温箱中,保持箱内温度80-230℃,设置腐蚀时间60-420min;
步骤S107,将水热釜从恒温箱中取出,自然冷却至室温,得到纳米CdS/Si异质结。
实施例二
一种纳米CdS/Si异质结的制备方法,包含以下步骤:
步骤S201,将单晶硅片放入磁控溅射室的样品支架上,对磁控溅射室抽真空到10- 6Pa,然后,充入氩气到溅射室压强5.0Pa;
步骤S202,调整Cd靶材和单晶硅片的距离为5.0cm,把Si片加热至100℃,保持5min,用40W溅射功率溅射180s,制备纳米结构Cd/Si;然后使其自然冷却至室温,其形貌特征如图2所示,成份如图3所示;
步骤S203,配置乙二胺和硫脲的混合溶液,硫脲的浓度为0.005mol/L,将溶液移至水热釜中,填充度为70%;
步骤S204,将纳米结构Cd/Si放入该混合溶液中,将水热釜放入恒温箱中,保持箱内温度160℃,持续加热240min,然后,取出水热釜,自然冷却至室温,CdS/Si的微观结构和成分如图4和图5所示,测试其整流特性如图6所示。
实施例三
一种纳米CdS/Si异质结的制备方法,包含以下步骤:
步骤S301,将单晶硅片放入磁控溅射室的样品支架上,对磁控溅射室抽真空到10- 6Pa,然后,充入氩气到溅射室压强5.0Pa;
步骤S302,调整Cd靶材和单晶硅片的距离为5.0cm,把Si片加热至100℃,保持5min,用40W溅射功率溅射180s,制备纳米结构Cd/Si;然后使其自然冷却至室温,其形貌特征如图2所示,成份如图3所示;
步骤S303,配置乙二胺和硫脲的混合溶液,硫脲的浓度为0.005mol/L,将溶液移至水热釜中,填充度为70%;
步骤S304,将纳米结构Cd/Si放入该混合溶液中,将水热釜放入恒温箱中,保持箱内温度160℃,持续加热360min,然后,取出水热釜,自然冷却至室温,CdS/Si的微观结构和成分如图7和图8所示。
对比实施例二和实施例三,改变了对纳米结构Cd/Si的腐蚀时间,发现腐蚀时间过长,CdS的趋向性变差,并且CdS的薄膜厚度变薄。在测试纳米CdS/Si异质结的整流特性时,240min制备的样品具有很好的整流特性,而360min制备的样品测试不到整流特性,是因为360min制备的CdS薄膜太薄或者薄膜出现了大量的针孔,影响了异质结的性能。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (3)

1.一种纳米CdS/Si异质结的制备方法,其特征在于,包含以下步骤:
步骤1,以单晶硅片为衬底,利用磁控溅射技术在Si片上沉积金属Cd,制备出纳米结构Cd/Si;具体过程为:
步骤101,将清洗干净的单晶硅片放入磁控溅射室的样品支架上,对磁控溅射室抽真空到10-6Pa,然后向磁控溅射室充入氩气,保持溅射室真空度为10-1Pa-100Pa;
步骤102,调整Cd靶材和单晶硅片的距离为5.0cm,将样品支架加热到100℃,保持5min,使样品支架上的单晶硅片受热均匀;
步骤103,设置溅射功率40W,打开Cd靶材的挡板,开始溅射,溅射时间180s,制备纳米结构Cd/Si;
步骤104,保持磁控溅射室内压强不变,自然冷却至室温,纳米结构Cd/Si制备完成;
步骤2,利用溶剂热法腐蚀金属Cd制备纳米CdS/Si异质结;具体过程为:
步骤201,配置乙二胺和硫脲的混合溶液,硫脲的浓度为0.001-0.01mol/L;
步骤202,将乙二胺和硫脲的混合溶液移到水热釜中,保持填充度为50%-90%;将纳米结构Cd/Si放入该混合溶液中,将水热釜放入恒温箱中,保持箱内温度80-230℃,设置腐蚀时间60-420min;
步骤203,将水热釜从恒温箱中取出,自然冷却至室温,得到纳米CdS/Si异质结。
2.根据权利要求1所述的纳米CdS/Si异质结的制备方法,其特征在于,所述步骤202中的腐蚀时间设置为240min。
3.根据权利要求1所述的纳米CdS/Si异质结的制备方法,其特征在于,所述步骤202中的腐蚀时间设置为360min。
CN201910023858.2A 2019-01-10 2019-01-10 一种纳米CdS/Si异质结的制备方法 Active CN109698257B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910023858.2A CN109698257B (zh) 2019-01-10 2019-01-10 一种纳米CdS/Si异质结的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910023858.2A CN109698257B (zh) 2019-01-10 2019-01-10 一种纳米CdS/Si异质结的制备方法

Publications (2)

Publication Number Publication Date
CN109698257A CN109698257A (zh) 2019-04-30
CN109698257B true CN109698257B (zh) 2021-05-28

Family

ID=66232623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910023858.2A Active CN109698257B (zh) 2019-01-10 2019-01-10 一种纳米CdS/Si异质结的制备方法

Country Status (1)

Country Link
CN (1) CN109698257B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114000108B (zh) * 2021-10-30 2023-10-17 平顶山学院 在ZnSe/Si异质结界面嵌入CdSe调控层的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128494A (en) * 1974-09-03 1976-03-10 Matsushita Electric Ind Co Ltd Kokidenryokusoshino seizoho
CN101037596A (zh) * 2007-04-04 2007-09-19 郑州大学 具有白光发射的硫化镉/硅异质结构的制备方法
CN103943733A (zh) * 2014-03-24 2014-07-23 上海交通大学 一种基于垂直纳米线的led超平行光源的制备方法
CN105271103A (zh) * 2015-10-20 2016-01-27 国家纳米科学中心 一种纳米结构阵列及其制备方法和用途
CN108400207A (zh) * 2018-02-28 2018-08-14 浙江大学 一种硫化镉纳米带硅基异质结发光二极管及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128494A (en) * 1974-09-03 1976-03-10 Matsushita Electric Ind Co Ltd Kokidenryokusoshino seizoho
CN101037596A (zh) * 2007-04-04 2007-09-19 郑州大学 具有白光发射的硫化镉/硅异质结构的制备方法
CN103943733A (zh) * 2014-03-24 2014-07-23 上海交通大学 一种基于垂直纳米线的led超平行光源的制备方法
CN105271103A (zh) * 2015-10-20 2016-01-27 国家纳米科学中心 一种纳米结构阵列及其制备方法和用途
CN108400207A (zh) * 2018-02-28 2018-08-14 浙江大学 一种硫化镉纳米带硅基异质结发光二极管及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CdS nanowires array on Cd foil: synthesis and optical properties;Yong Li 等;《Materials Letters》;20141016(第139期);第126页第1-2部分 *

Also Published As

Publication number Publication date
CN109698257A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
TWI413269B (zh) 用以將先質層轉變為光伏打吸收器之方法及設備
CN102856174B (zh) 氮化硅的膜制备方法、具有氮化硅膜的太阳能电池片及其制备方法
CN103390674A (zh) Czts柔性太阳电池及其制备方法
CN112289932B (zh) 钙钛矿薄膜及其制备方法和应用
JP4288641B2 (ja) 化合物半導体成膜装置
CN103924204A (zh) 一种在钛合金基片表面制备c轴取向氮化铝薄膜的方法
CN103700576A (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN100487926C (zh) 高速沉积微晶硅太阳电池p/i界面的处理方法
CN103354252B (zh) Czts太阳电池的pn结及czts太阳电池器件的制备方法
CN109698257B (zh) 一种纳米CdS/Si异质结的制备方法
JP4055064B2 (ja) 薄膜太陽電池の製造方法
JP2004047917A (ja) 薄膜太陽電池およびその製造方法
CN105047750A (zh) 一种提高薄膜太阳能电池转换效率的方法
CN110819958A (zh) 一种改变硒化锑薄膜电学性质的方法及硒化锑太阳电池
JPH07258881A (ja) CuInSe2 膜の製造方法
CN106449812B (zh) 溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法
CN105132875B (zh) 一种扩散法制备高浓度梯度azo单晶导电薄膜的方法
JP2004031551A (ja) 化合物半導体薄膜の製造方法
KR101237466B1 (ko) 셀렌화에 의한 광흡수층 제조장치
CN106560928A (zh) 一种电荷俘获型存储元件及其制备工艺
US20200312659A1 (en) Method for the preparation of gallium oxide/copper gallium oxide heterojunction
EP4340047A1 (en) Method for manufacturing cigs light absorption layer for solar cell through chemical vapor deposition
CN103361600B (zh) 太阳能电池光吸收层制备方法
CN109695024B (zh) 一种界面Cd嵌入CdS/Si异质结的制备方法
CN108123001A (zh) 铜铟镓硒太阳能电池吸收层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant