CN105070758B - 一种半导体功率器件结构的制备方法及结构 - Google Patents

一种半导体功率器件结构的制备方法及结构 Download PDF

Info

Publication number
CN105070758B
CN105070758B CN201510510844.5A CN201510510844A CN105070758B CN 105070758 B CN105070758 B CN 105070758B CN 201510510844 A CN201510510844 A CN 201510510844A CN 105070758 B CN105070758 B CN 105070758B
Authority
CN
China
Prior art keywords
metal
field plate
layer
trench
drift region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510510844.5A
Other languages
English (en)
Other versions
CN105070758A (zh
Inventor
夏超
张琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Branch China Electronic Product Reliability And Environmental Testing Research Institute mll
Original Assignee
East Branch China Electronic Product Reliability And Environmental Testing Research Institute mll
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Branch China Electronic Product Reliability And Environmental Testing Research Institute mll filed Critical East Branch China Electronic Product Reliability And Environmental Testing Research Institute mll
Priority to CN201510510844.5A priority Critical patent/CN105070758B/zh
Publication of CN105070758A publication Critical patent/CN105070758A/zh
Application granted granted Critical
Publication of CN105070758B publication Critical patent/CN105070758B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Abstract

本发明实施例公开了一种半导体功率器件结构的制备方法以及结构,在传统的横向功率器件Trench LDMOS结构的Trench层中引入多层深度不同的纵向金属场板,同时在漂移区中引入一层重掺杂n型层。在提高器件击穿电压方面,多层长度不等的金属场板可以在漂移区中引入多个新的电场峰值,同时将表面高电场引入体内,避免器件在表面提前击穿;全耗尽后的重掺杂n型层提高了Trench层表面电荷密度,提高了Trench层和漂移区电场,提高器件击穿电压。在降低器件导通电阻方面,深氧Trench层减小了横向漂移区长度。

Description

一种半导体功率器件结构的制备方法及结构
技术领域
本发明实施例涉及半导体的技术领域,尤其涉及一种半导体功率器件结构的制备方法及结构。
背景技术
功率集成电路有时也称高压集成电路,是现代电子学的重要分支,可为各种功率变换和能源处理装置提供高速、高集成度、低功耗和抗辐照的新型电路,广泛应用于电力控制系统、汽车电子、显示器件驱动、通信和照明等日常消费领域以及国防、航天等诸多重要领域。其应用范围的迅速扩大,对其核心部分的高压器件也提出了更高的要求。
对功率器件MOSFET而言,在保证击穿电压的前提下,必须尽可能地降低器件的导通电阻来提高器件性能。但击穿电压和导通电阻之间存在一种近似平方关系,形成所谓的“硅限”。为了打破“硅限”,提高器件性能,提出了多种新型器件结构,典型的结构有:超结结构和IGBT结构。超结是基于三维RESURF技术,其漂移区由重掺杂的P、N柱相间构成。该技术的理论基础是电荷补偿原理,当漏极电压达到一定值时,漂移区的N型区和P型区彼此相互耗尽,最终达到完全耗尽,有效的提高了漂移区电场,提高器件的击穿电压,另外,由于漂移区N型区和P型区彼此耗尽,有效的增加了漂移区掺杂浓度,降低器件的导通电阻。然而,超结结构工艺复杂,器件性能对电荷失衡非常敏感,尤其是对于击穿电压在600V以上的应用,其多次外延注入的工艺也使得生产成本居高不下。IGBT结构是基于电导调制原理,其器件结构是将传统结构中漏极的N型换成P型,其他结构不变,因此,器件的击穿电压几乎可以保持不变。在器件导通时,由于漏极改成了P型,因此会向漂移区注入大量的空穴,调制漂移区载流子浓度,增加导通电流,降低器件的导通电阻。然而,由于器件导通时,漂移区存在着大量的空穴,在器件关断时,少子的复合和抽取需要一定的时间,即所谓的少子储存效应,会形成所谓的“拖尾电流”,使得器件的关断时间较长,影响器件的高频性能。
发明内容
本发明实施例的目的在于提出一种半导体功率器件结构的制备方法及结构,旨在解决如何能够简单方便的制备出半导体功率器件。
为达此目的,本发明实施例采用以下技术方案:
一种半导体功率器件结构的制备方法,所述方法包括:
在厚膜衬底上进行刻蚀,形成Trench层窗口,并对所述厚膜衬底进行斜角注入及底部注入,形成N型重掺杂区;
注入后进行快速退火,并进行表面氧化,在所述Trench层窗口表面形成一层薄SiO2层;
进行SiO2沉积,形成深氧Trench层,进行P-well注入,进行N+注入,进行P+注入并进行快速退火;
多晶硅窗口刻蚀、重掺杂多晶硅沉积、金属场板窗口刻蚀以及金属沉积、金属刻蚀,形成源极、漏极、栅极。
优选地,所述厚膜衬底包括:
Si基、SOI基或者SiC基衬底。
优选地,所述在对所述厚膜衬底进行斜角注入及底部注入的剂量为漂移区浓度的8~10倍。
优选地,所述快速退火和表面氧化同时进行,在窗口表面形成一层薄SiO2层以及激活注入离子,温度为800~900℃,时间为20~50min。
优选地,所述金属场板窗口刻蚀的窗口宽度在0.4~0.8μm。
一种半导体功率器件结构,所述半导体功率器件结构包括:
源极、源金属、栅金属、漏极、漏极金属、源极体区、多晶硅、金属场板、N型重掺杂区、氧Trench层、N型漂移区、埋氧层、P型衬底;
所述P型衬底在所述半导体功率器件结构的底层,所述埋氧层在所述P型衬底之上,所述N型漂移区在所述埋氧层之上,所述N型重掺杂区在所述N型漂移区之上,所述氧Trench层在所述N型重掺杂区之上,所述金属场板为多层长度不等的纵向场板,在所述N型漂移区靠近所述氧Trench层的表面注入一层重掺杂n型层。
优选地,所述多层长度不等的纵向场板为三层长度不等的纵向场板。
本发明实施例在传统的横向功率器件Trench LDMOS结构的Trench层中引入多层深度不同的纵向金属场板,同时在漂移区中引入一层重掺杂n型层,在提高器件击穿电压方面,多层长度不等的金属场板可以在漂移区中引入多个新的电场峰值,同时将表面高电场引入体内,避免器件在表面提前击穿;全耗尽后的重掺杂n型层提高了Trench层表面电荷密度,提高了Trench层和漂移区电场,提高器件击穿电压;在降低器件导通电阻方面,深氧Trench层减小了横向漂移区长度,多层场板在器件导通时会在Trench层表面形成低阻电流通道以及重掺杂的n型区的引入都可以有效的降低器件的导通电阻,提高器件性能,该器件结构对于Si基、SOI基、SiC基衬底均适用,纵向金属场板一方面可以辅助耗尽漂移区,提高漂移区的有效浓度,另一方面在器件导通时在重掺杂n型区中形成了一个低阻的电流通道,有效的降低了器件的导通电阻。
附图说明
图1是本发明实施例半导体功率器件结构的制备方法的流程示意图;
图2是本发明实施例半导体功率器件结构的示意图;
图3是本发明实施例半导体功率器件结构的另一种示意图;
图4是本发明实施例半导体功率器件电场的示意图。
10 标识源金属、11 标识栅金属、12 标识漏极金属、13 标识漏极、14 标识氧Trench层、15 标识N型重掺杂区、16 标识N型漂移区、17 标识埋氧区、18 标识P型衬底、19标识金属场板、20 标识多晶硅、21标识源极体区、22 标识源极。
具体实施方式
下面结合附图和实施例对本发明实施例作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明实施例,而非对本发明实施例的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明实施例相关的部分而非全部结构。
实施例一
参考图1,图1是本发明实施例半导体功率器件结构的制备方法的流程示意图。
在实施例一中,所述半导体功率器件结构的制备方法包括:
步骤101,在厚膜衬底上进行刻蚀,形成Trench层窗口,并对所述厚膜衬底进行斜角注入及底部注入,形成N型重掺杂区;
步骤102,注入后进行快速退火,并进行表面氧化,在所述Trench层窗口表面形成一层薄SiO2层;
步骤103,进行SiO2沉积,形成深氧Trench层,进行P-well注入,进行N+注入,进行P+注入并进行快速退火;
步骤104,多晶硅窗口刻蚀、重掺杂多晶硅沉积、金属场板窗口刻蚀以及金属沉积、金属刻蚀,形成源极、漏极、栅极。
具体的,器件制备流程(以SOI基衬底为例):
(1)在厚膜SOI衬底上进行刻蚀,形成Trench层窗口;
(2)进行斜角注入及底部注入,形成N型重掺杂区,注入剂量约为漂移区浓度的8~10倍;
(3)快速退火和表面氧化同时进行,在窗口表面形成一层薄SiO2层以及激活注入离子,温度为800~900℃,时间为20~50min;
(4)进行SiO2沉积,形成深氧Trench层;
(5)进行P-well注入;
(6)进行N+注入;
(7)进行P+注入并进行快速退火;
(8)多晶硅窗口刻蚀;
(9)重掺杂多晶硅沉积;
(10)金属场板窗口刻蚀,窗口宽度在0.4~0.8μm;
(11)金属沉积;
(12)金属刻蚀,形成源极、漏极、栅极。
具体的,传统Trench LDMOS器件是在漂移区中部插入一层深的氧Trench层,可以有效的减小漂移区长度,降低器件导通电阻,但是器件处于关态时,电场大部分都聚集于器件表面,体内电场较小,器件容易在表面提前击穿,限制了击穿电压的进一步提高,本发明提出了一种新的器件结构,如图2以SOI基衬底为例,其在传统Trench LDMOS器件的基础上引入了多层长度不等的纵向场板,同时在漂移区靠近Trench层的表面注入一层重掺杂n型层。在器件处于反向耐压时,其中每一层场板都会在漂移区中引入一个或多个新的电场峰值,如图3,漂移区重掺杂的n型层全耗尽后留下了大量的正电荷,结合场板引入的负电荷,有效的提高了Trench层的电场,从而进一步提高了漂移区的平均电场,提高器件击穿电压。在器件导通时,栅压的存在会使得靠近Trench层的表面形成电子积累,从而形成一个低阻的电流通道,另外,Trench层的辅助耗尽作用可以有效的提高漂移区掺杂浓度,降低器件导通电阻。在器件设计中,通过优化漂移区浓度、各纵向场板的深度和距离,可以在提高击穿电压的同时,降低器件的导通电阻,提高器件性能。该器件结构对于Si基、SOI基、SiC基衬底均适用。
本发明实施例在传统的横向功率器件Trench LDMOS结构的Trench层中引入多层深度不同的纵向金属场板,同时在漂移区中引入一层重掺杂n型层,在提高器件击穿电压方面,多层长度不等的金属场板可以在漂移区中引入多个新的电场峰值,同时将表面高电场引入体内,避免器件在表面提前击穿;全耗尽后的重掺杂n型层提高了Trench层表面电荷密度,提高了Trench层和漂移区电场,提高器件击穿电压;在降低器件导通电阻方面,深氧Trench层减小了横向漂移区长度,多层场板在器件导通时会在Trench层表面形成低阻电流通道以及重掺杂的n型区的引入都可以有效的降低器件的导通电阻,提高器件性能,该器件结构对于Si基、SOI基、SiC基衬底均适用,纵向金属场板一方面可以辅助耗尽漂移区,提高漂移区的有效浓度,另一方面在器件导通时在重掺杂n型区中形成了一个低阻的电流通道,有效的降低了器件的导通电阻。
实施例二
参考图2,图2是本发明实施例半导体功率器件结构的示意图。
在实施例二中,所述半导体功率器件结构包括:
源极、源金属、栅金属、漏极、漏极金属、源极体区、多晶硅、金属场板、N型重掺杂区、氧Trench层、N型漂移区、埋氧层、P型衬底;
所述P型衬底在所述半导体功率器件结构的底层,所述埋氧层在所述P型衬底之上,所述N型漂移区在所述埋氧层之上,所述N型重掺杂区在所述N型漂移区之上,所述氧Trench层在所述N型重掺杂区之上,所述金属场板为多层长度不等的纵向场板,在所述N型漂移区靠近所述氧Trench层的表面注入一层重掺杂n型层。
优选地,所述多层长度不等的纵向场板为三层长度不等的纵向场板。
具体的,传统Trench LDMOS器件是在漂移区中部插入一层深的氧Trench层,可以有效的减小漂移区长度,降低器件导通电阻,但是器件处于关态时,电场大部分都聚集于器件表面,体内电场较小,器件容易在表面提前击穿,限制了击穿电压的进一步提高,本发明提出了一种新的器件结构,如图2以SOI基衬底为例,其在传统Trench LDMOS器件的基础上引入了多层长度不等的纵向场板,同时在漂移区靠近Trench层的表面注入一层重掺杂n型层。在器件处于反向耐压时,其中每一层场板都会在漂移区中引入一个或多个新的电场峰值,如图3,漂移区重掺杂的n型层全耗尽后留下了大量的正电荷,结合场板引入的负电荷,有效的提高了Trench层的电场,从而进一步提高了漂移区的平均电场,提高器件击穿电压。在器件导通时,栅压的存在会使得靠近Trench层的表面形成电子积累,从而形成一个低阻的电流通道,另外,Trench层的辅助耗尽作用可以有效的提高漂移区掺杂浓度,降低器件导通电阻。在器件设计中,通过优化漂移区浓度、各纵向场板的深度和距离,可以在提高击穿电压的同时,降低器件的导通电阻,提高器件性能。该器件结构对于Si基、SOI基、SiC基衬底均适用。
本发明实施例在传统的横向功率器件Trench LDMOS结构的Trench层中引入多层深度不同的纵向金属场板,同时在漂移区中引入一层重掺杂n型层,在提高器件击穿电压方面,多层长度不等的金属场板可以在漂移区中引入多个新的电场峰值,同时将表面高电场引入体内,避免器件在表面提前击穿;全耗尽后的重掺杂n型层提高了Trench层表面电荷密度,提高了Trench层和漂移区电场,提高器件击穿电压;在降低器件导通电阻方面,深氧Trench层减小了横向漂移区长度,多层场板在器件导通时会在Trench层表面形成低阻电流通道以及重掺杂的n型区的引入都可以有效的降低器件的导通电阻,提高器件性能,该器件结构对于Si基、SOI基、SiC基衬底均适用,纵向金属场板一方面可以辅助耗尽漂移区,提高漂移区的有效浓度,另一方面在器件导通时在重掺杂n型区中形成了一个低阻的电流通道,有效的降低了器件的导通电阻。
实施例三
参考图3,图3是本发明实施例半导体功率器件结构的另一种示意图。
图4是本发明实施例半导体功率器件电场的示意图。
具体的,横向功率器件LDMOS结构的击穿电压由横向耐压和纵向耐压共同决定,而在一定的范围内,器件的横向耐压和漂移区长度成正比,和漂移区掺杂浓度成反比,而器件的导通电阻则正好相反,因此,横向功率器件的击穿电压和导通电阻之间相互制约,存在一个矛盾关系。
以上结合具体实施例描述了本发明实施例的技术原理。这些描述只是为了解释本发明实施例的原理,而不能以任何方式解释为对本发明实施例保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明实施例的其它具体实施方式,这些方式都将落入本发明实施例的保护范围之内。

Claims (4)

1.一种半导体功率器件结构的制备方法,其特征在于,所述方法包括:
在厚膜衬底上进行刻蚀,形成Trench层窗口,并对所述厚膜衬底进行斜角注入及底部注入,形成N型重掺杂区;
注入后进行快速退火,并进行表面氧化,在所述Trench层窗口表面形成一层薄SiO2层;
进行SiO2沉积,形成深氧Trench层,进行P-well注入,进行N+注入,进行P+注入并进行快速退火;
多晶硅窗口刻蚀、重掺杂多晶硅沉积、金属场板窗口刻蚀以及金属沉积、金属刻蚀,形成源极、漏极、栅极;
其中,所述金属场板窗口刻蚀包括,在所述深氧Trench层形成三个深度不等的凹槽;
其中,所述金属场板窗口刻蚀的宽度在0.4~0.8μm;
其中,金属沉积后还形成三层长度不等的纵向金属场板;
其中,所述栅极包括多晶硅、栅金属和金属场板;
其中,所述栅金属与所述多晶硅电连接,以及所述栅金属与所述金属场板电连接;所述栅金属位于所述深氧Trench层远离所述厚膜衬底的一侧,以及所述栅金属在所述厚膜衬底上的垂直投影,在所述深氧Trench层在所述厚膜衬底上的垂直投影内。
2.根据权利要求1所述的方法,其特征在于,所述厚膜衬底包括:
Si基、SOI基或者SiC基衬底。
3.根据权利要求1所述的方法,其特征在于,所述对所述厚膜衬底进行斜角注入及底部注入的剂量为漂移区浓度的8~10倍。
4.根据权利要求1所述的方法,其特征在于,所述快速退火和表面氧化同时进行,在窗口表面形成一层薄SiO2层以及激活注入离子,温度为800~900℃,时间为20~50min。
CN201510510844.5A 2015-08-19 2015-08-19 一种半导体功率器件结构的制备方法及结构 Active CN105070758B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510510844.5A CN105070758B (zh) 2015-08-19 2015-08-19 一种半导体功率器件结构的制备方法及结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510510844.5A CN105070758B (zh) 2015-08-19 2015-08-19 一种半导体功率器件结构的制备方法及结构

Publications (2)

Publication Number Publication Date
CN105070758A CN105070758A (zh) 2015-11-18
CN105070758B true CN105070758B (zh) 2018-07-24

Family

ID=54500084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510510844.5A Active CN105070758B (zh) 2015-08-19 2015-08-19 一种半导体功率器件结构的制备方法及结构

Country Status (1)

Country Link
CN (1) CN105070758B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299744B (zh) * 2021-06-10 2022-04-15 珠海市浩辰半导体有限公司 一种终端结构、半导体器件及制作方法
CN113299745B (zh) * 2021-06-10 2022-04-15 珠海市浩辰半导体有限公司 一种终端结构、半导体器件及制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715238A (zh) * 2013-12-30 2014-04-09 电子科技大学 一种超低比导通电阻的横向高压器件
CN205752182U (zh) * 2015-08-19 2016-11-30 工业和信息化部电子第五研究所华东分所 一种半导体功率器件结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303287A (ja) * 2005-04-22 2006-11-02 Toshiba Corp 電力用半導体装置
JP2010062377A (ja) * 2008-09-04 2010-03-18 Sanyo Electric Co Ltd 半導体装置及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715238A (zh) * 2013-12-30 2014-04-09 电子科技大学 一种超低比导通电阻的横向高压器件
CN205752182U (zh) * 2015-08-19 2016-11-30 工业和信息化部电子第五研究所华东分所 一种半导体功率器件结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高压低导通电阻SOI器件模型与新结构;范杰;《中国博士学位论文全文数据库(电子期刊)》;20140531;第4.2节 延伸栅槽型高压SOI器件的研制,附图4-9至4-13 *

Also Published As

Publication number Publication date
CN105070758A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
CN104201206B (zh) 一种横向soi功率ldmos器件
US8564057B1 (en) Power devices, structures, components, and methods using lateral drift, fixed net charge, and shield
CN102201445B (zh) 一种psoi横向超结功率半导体器件
CN108550619B (zh) 具有降低的反馈电容的igbt
CN105789314A (zh) 一种横向soi功率ldmos
CN103579353B (zh) 一种具有p型辅助埋层的半超结vdmos
CN103579351A (zh) 一种具有超结埋层的横向扩散金属氧化物半导体器件
CN109713041B (zh) 一种适用于超结dmos器件的改良结构
CN109065627A (zh) 一种具有多晶硅岛的ldmos器件
CN109920839B (zh) P+屏蔽层电位可调碳化硅mosfet器件及制备方法
CN103022134B (zh) 一种超低比导通电阻的soi横向高压功率器件
CN107123684A (zh) 一种具有宽带隙材料与硅材料复合垂直双扩散金属氧化物半导体场效应管
CN107093623A (zh) 一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管
CN108346701B (zh) 一种屏蔽栅功率dmos器件
CN107564965B (zh) 一种横向双扩散mos器件
CN104465771B (zh) 具有场电极的晶体管器件
CN103515443B (zh) 一种超结功率器件及其制造方法
CN105070758B (zh) 一种半导体功率器件结构的制备方法及结构
CN205752182U (zh) 一种半导体功率器件结构
CN105304693A (zh) 一种ldmos器件的制造方法
CN201681942U (zh) 一种纵向沟道soi ldmos单元
CN107546274B (zh) 一种具有阶梯型沟槽的ldmos器件
CN107359194B (zh) 一种消除高电场的器件
CN103531621A (zh) 一种带有侧边多晶硅电极沟槽非穿通型绝缘栅双极晶体管
CN205211709U (zh) 一种功率器件的结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant