CN105032356B - 一种基于刻蚀模板法制备的中空铁锰复合物材料及其应用 - Google Patents

一种基于刻蚀模板法制备的中空铁锰复合物材料及其应用 Download PDF

Info

Publication number
CN105032356B
CN105032356B CN201510305385.7A CN201510305385A CN105032356B CN 105032356 B CN105032356 B CN 105032356B CN 201510305385 A CN201510305385 A CN 201510305385A CN 105032356 B CN105032356 B CN 105032356B
Authority
CN
China
Prior art keywords
hollow
ferrimanganic
hydroxyl
ferrimanganic compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510305385.7A
Other languages
English (en)
Other versions
CN105032356A (zh
Inventor
刘会娟
张弓
张红伟
兰华春
刘锐平
曲久辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN201510305385.7A priority Critical patent/CN105032356B/zh
Priority to PCT/CN2015/094351 priority patent/WO2016192311A1/zh
Publication of CN105032356A publication Critical patent/CN105032356A/zh
Application granted granted Critical
Publication of CN105032356B publication Critical patent/CN105032356B/zh
Priority to US15/806,227 priority patent/US10493425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3057Use of a templating or imprinting material ; filling pores of a substrate or matrix followed by the removal of the substrate or matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/106Selenium compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种中空羟基铁锰复合物及其应用,首次利用简单的模板法制备具有立方体结构的铁锰复合物。首先,在制备过程中聚乙烯吡咯烷酮的引入,削弱了高锰酸钾的强氧化能力,该铁锰复合物的三维立方体形态得以保存;其次,这种削弱使得了更具氧化活性的三价锰离子得以大量存在于复合物表面,使得铁锰复合氧化物的先氧化后吸附去除机理在该材料上将会呈现更大程度上的体现。所制备的铁锰复合物比表面积大,吸附速率远高于其他复合吸附材料,且吸附剂的吸附效果稳定;与其他处理方式相比,缩短了反应时间和处理费用。

Description

一种基于刻蚀模板法制备的中空铁锰复合物材料及其应用
技术领域:
本发明属于水体重金属离子去除技术领域,特别涉及一种具有立方体构型的铁锰复合物及其对水体中常见的高毒性重金属的去除。
背景技术:
我国水资源短缺及水体污染已经对居民的生活质量和国民经济的发展产生了极为严重的影响。其中,水体中重金属含量的严重超标不仅对地表水以及地下水的利用带来威胁,同时也会对污水的处理回用过程带来潜在的威胁,进而限制社会经济的快速发展。砷、锑与硒作为受污染水体中常见的重金属物质,在工业生产以及矿石冶炼过程产生的废水中含量较大,不合理的处置及排放不仅会对周边的饮用水源造成污染,也会通过动植物的累积和富集影响生态系统的健康循环。
当前,常用的水体中针对砷、锑与硒去除净化技术有吸附法、离子交换法、混凝沉淀法、人工湿地法以及生物法等等。然而综合考虑工业发展需求,吸附法具有高效、廉价、稳定、适用条件广和操作简单等诸多优势成为对该类重金属去除净化的首选技术。因此,如何制备具有较大吸附容量、较好的热稳定性、较短的水力停留时间以及较宽泛的使用条件的吸附材料成为现阶段吸附技术发展的方向。
自然界中广泛存在的铁锰复合物具有较高的比表面积和表面电负性,是一种有优良吸附性能的吸附剂,在水体重金属吸附净化中展现出了良好的发展前景。目前制备出铁锰复合氧化物对水体中砷、锑、硒的吸附容量分别为120mg g-1(Gaosheng Zhang,JiuhuiQu,Huijuan Liu,Ruiping Liu and Rongcheng Wu,Preparation and evaluation of anovel Fe–Mn binary oxide adsorbent for effective arsenite removal.WaterResearch,2007,9,1921–1928),168mg g-1(Wei Xua,Hongjie Wang,Ruiping Liu,Xu Zhao,Jiuhui Qu,The mechanism of antimony(III)removal and its reactions on thesurfaces of Fe–Mn Binary Oxide.Journal of Colloid and Interface Science,2011,1,320–326),41.02mg g-1(Szlachta,M.and N.Chubar,The application of Fe–Mnhydrous oxides based adsorbent for removing selenium species fromwater.Chemical Engineering Journal,2013.217,159-168.)。
因此,单从对砷、锑和硒等重金属物质的吸附性能来看,传统方法制备的无规则铁锰复合氧化物对以上三中重金属物质的确有较好的吸附去除能力。但是,传统铁锰复合氧化物仍有大量不足和值得改进之处,例如比表面积小,活性位点少等缺点在很大程度上制约铁锰复合吸附材料的吸附性能。因此,为最大程度上提升铁锰复合材料的吸附性能,调控其结构势必成为工作重心。
具有立方体结构的中空羟基铁锰复合物纳米介孔材料不仅将铁锰复合氧化物表面的活性基团充分利用,而且能保证该材料在水环境中具有良好的分散性。另外,中空结构提供更大的比表面积,能够更为有效的将材料活性反应位点与溶液中的目标污染物接触,最大程度上将材料充分利用,提高吸附剂的吸附性能。
发明内容:
为了解决上述技术问题,本发明针对工业排水中重金属浓度并以污染水体中常见的重金属物质砷、锑、硒为目标污染物;基于模板刻蚀法制备一种具有立方体结构的中空羟基铁锰复合物纳米材料,在降低水体的处理成本以及处理难度的同时,保证吸附处理后水体的水质质量。
为实现上述目的,本发明提出一种采用立方体结构模板制备中空羟基铁锰复合物的方法,其具体步骤如下:
(1)模板的制备:在室温条件下,将一定质量高锰酸钾加入到稀盐酸中,在磁力搅拌的作用下使其溶解并混合均匀;随后向其中加入聚乙烯吡咯烷酮,继续在磁力搅拌的作用下将其充分溶解;最后加入一定质量的亚铁氰化钾,常温下反溶解10~60min后将上述混合溶液转移至样品瓶中,于50~90℃恒温反应18~24h便可观察到溶液变成蓝黑色,得到蓝黑色沉积物即为目标铁锰复合物模板。
所述高锰酸钾用量为10~100mg;
所述稀盐酸体积为50ml,浓度为0.1mol/L~1mol/L;
所述聚乙烯吡咯烷酮型号为K30,用量为0.5~4.0g;
所述亚铁氰化钾的用量为0.1~0.2g;
(2)中空铁锰复合物的制备:用少量的无水乙醇将步骤(1)所得蓝黑色铁锰复合物模板均匀分散,后加入一定浓度的氢氧化钠溶液,置于旋转摇床上常温反应6~12h后,除去上部澄清液体,残留在离心管底部的黑色物质即为所要制得的具有立方体结构的中空羟基铁锰复合物;
所述氢氧化钠为40ml浓度为0.1mol/L~0.5mol/L的溶液。
本发明还提供一种由上述方法制备的中空羟基铁锰复合物,以及该铁锰复合物在吸附去除水体重金属中的应用。
有益效果:
1)本发明首次利用简单的模板法制备具有立方体结构的铁锰复合物:首先,在制备过程中聚乙烯吡咯烷酮的引入,削弱了高锰酸钾的强氧化能力,该铁锰复合物的三维立方体形态得以保存;其次,这种削弱使得了更具氧化活性的三价锰离子得以大量存在于复合物表面,使得铁锰复合氧化物的先氧化后吸附去除机理在该材料上将会呈现更大程度上的体现。
2)本发明所制备的铁锰复合物比表面积达472.3m2g-1,吸附速率较快,对锑和硒两种重金属可在1min之内将其浓度降低到浓度限值以下,对砷也可以在10min内将水体中的残余浓度降低到标准浓度限值以下。对重金属锑、硒的吸附速率远高于其他复合吸附材料,且吸附剂的吸附效果稳定;与其他处理方式相比,缩短了反应时间和处理费用。
附图说明:
图1中空铁锰复合物的SEM电镜图片;
图2中空铁锰复合物的透射电镜(TEM)图片;
图3中空羟基铁锰复合物的红外光谱图;
图4为中空羟基铁锰复合物的表面的Mn价态XPS分析结果;
图5为中空羟基铁锰复合物的比表面积测定结果;
图6是中空羟基铁锰复合物的表面电性分析结果;
图7是中空羟基铁锰复合物对砷、锑、硒吸附容量的测定结果其中,实线为Freundlich吸附模型虚线为Langmuir吸附模型;
图8是中空羟基铁锰复合物对砷、锑、硒吸附动力学的考察结果。
具体实施方式:
实施例1:一种中空铁锰复合物的制备方法
1、铁锰复合物模板的制备
在室温条件下,将40mg高锰酸钾加入到50mL 1mol/L的稀盐酸中,在磁力搅拌的作用下使其溶解并混合均匀;随后向其中加入3.8g聚乙烯吡咯烷酮K30,在磁力搅拌的作用下将其充分溶解;最后加入110mg亚铁氰化钾,常温下反溶解30min后,将上述混合溶液转移至于80℃恒温反应24h便可观察到溶液变成蓝黑色。将恒温反应后所得悬浊液转移至离心管中,以7500r min-1的转速离心15min,得到蓝黑色沉积物即为铁锰复合物模板。
2、中空铁锰复合物的制备
用超纯水与无水乙醇对上述所得的蓝黑色沉积物清洗多次,在7500rpm条件下离心15min后倒掉上清液。随后向沉积物中加入10mL的无水乙醇,经超声其均匀分散后使后加入40mL浓度为0.1mol/L的氢氧化钠溶液,置于旋转摇床上常温反应12h后,于7500rpm条件下离心15min,除去上清液,残留在离心管底部的物质即为具有立方体结构的中空羟基铁锰复合物。
图1为实施例1制备所得笼状铁锰复合物的电镜图片,可以清晰的观察到制备所得的铁锰复合物成立方体形态,排列疏松,表面蓬松均一,分散程度较好。
图2为笼状铁锰复合物的透射电镜图片,可以看到该材料在微观层面上呈现出疏松中空结构,这种中空纳米颗粒结构可增大材料的比表面积,有利于吸附污染物。
图3是中空铁锰复合物的红外光谱测定结果,图中可以看出,对比羟基铁的红外图谱可知,中空羟基铁锰复合物也同样出现了羟基的吸收峰(在1390cm-1,1638cm-1处都出现了羟基吸收峰),这些羟基的吸收峰是与铁和锰结合的羟基集团的弯曲震动产生的。另外,在400cm-1~650cm-1之间,出现铁氧及锰氧的吸收峰,由于铁氧和锰氧的吸收峰位置比较接近,所以峰值出现的重合。进一步验证了制备所得的材料为铁锰复合物。
图4为所制得的中空羟基铁锰复合物的XPS检测结果,与传统铁锰氧化物中的四价锰相比,新型的中空铁锰复合物中的锰以三价的锰形式存在。相比较于二氧化锰,这种过渡态三价锰具有更强的氧化活性,从而很大程度上发挥了铁锰复合物先氧化后吸附的去除原理。
图5为吸附材料比表面积和孔隙度的测定结果。比表面积的大小,是影响吸附材料吸附性能的一个非常重要的因素。根据BET的测定结果,本材料的比表面积是472.3m2g-1,传统的铁锰氧化物比表面积约为231m2g-1(Gaosheng Zhang,Jiuhui Qu,Huijuan Liu,Ruiping Liu and Rongcheng Wu,Preparation and evaluation of a novel Fe–Mnbinary oxide adsorbent for effective arsenite removal.Water Research,2007,9,1921–1928),本研究所制备的材料具有更大的比表面积。且本材料的孔径集中分布在0~100nm之间,主要是中孔和大孔组成。
图6为材料表面电性的测定结果,从测定结果中可以看出,中空羟基铁锰复合物的表面的等电位值在pH=4.3附近。相比较而传统的铁锰氧化物的较高的等电位(一般在pH=7.5附近),中空羟基铁锰复合物的等电位为吸附砷酸根和硒酸根提供了良好的基础。
实施例2
1、铁锰复合物模板的制备
在室温条件下,将30mg高锰酸钾溶于加入到50mL浓度为0.2mol/L的稀盐酸中。在磁力搅拌的作用下使其溶解并混合均匀;随后向其中加入3.0g聚乙烯吡咯烷酮K30,在磁力搅拌的作用下将其充分溶解;最后加入130mg亚铁氰化钾,常温下反溶解一段时间40min后将上述混合溶液转移至于60℃恒温反应18h便可观察到溶液变成蓝黑色。将恒温反应后所得悬浊也转移至离心管中,以7500r min-1的转速离心15min,得到蓝黑色沉积物即为铁锰复合物模板。
2、中空铁锰复合物的制备
用超纯水与无水乙醇对上述所得的蓝黑色沉积物清洗多次,在7500rpm条件下离心15min后倒掉上清液。随后向沉积物中加入10mL的无水乙醇,经超声其均匀分散后使后加入40mL浓度为0.2mol/L的氢氧化钠溶液,置于旋转摇床上常温反应12h后,于7500rpm条件下离心15min,除去上清液,残留在离心管底部的物质即为具有立方体结构的中空羟基铁锰复合物。
实施例3
1、铁锰复合物模板的制备
在室温条件下,将50mg高锰酸钾溶于加入到50mL浓度为0.15mol/L的稀盐酸中。在磁力搅拌的作用下使其溶解并混合均匀;随后向其中加入2.5g聚乙烯吡咯烷酮K30,在磁力搅拌的作用下将其充分溶解;最后加入150mg亚铁氰化钾,常温下反溶解20min后将上述混合溶液转移至于70℃恒温反应20h便可观察到溶液变成蓝黑色。将恒温反应后所得悬浊也转移至离心管中,以7500r min-1的转速离心15min,得到蓝黑色沉积物即为铁锰复合物模板。
2、中空铁锰复合物的制备
用超纯水与无水乙醇对上述所得的蓝黑色沉积物清洗多次,在7500rpm条件下离心15min后倒掉上清液。随后向沉积物中加入10mL的无水乙醇,经超声其均匀分散后使后加入40mL浓度为0.3mol/L的氢氧化钠溶液,置于旋转摇床上常温反应12h后,于7500rpm条件下离心15min,除去上清液,残留在离心管底部的物质即为具有立方体结构的中空羟基铁锰复合物。
实施例4:一种中空铁锰复合物为吸附材料对水中重金属的吸附净化方法
以分别含有1mg L-1低浓度砷、锑和硒三种离子的污水模拟实际重金属污染水体,并将实施例1制备所得的羟基铁铁锰复合物加入到受污染水体中,用稀稀盐酸和稀氢氧化钠调节溶液pH值(6.0,7.0)。随着反应的进行,0.5min间隔用注射器吸取一定量混合溶液经0.22μm滤膜过滤后测定澄清溶液中剩余的重金属离子浓度,并反推得到吸附去除的重金属离子量。
图7是实施例1制得的中空羟基铁锰复合材料对浓度分别为1mg L-1的砷、锑和硒的吸附效果。为了测定所制备的羟基铁材料对砷、锑、硒的吸附性能,投量为0.25g L-1条件下,图中显示了溶液中初始浓度以及溶液初始pH值对吸附性能的影响。从不同初始pH值的实验结果可以看出,弱酸性条件有利于砷、锑、硒的吸附。从Freundlich(实线)和Langmuir(虚线)两种吸附模型的拟合结果可以看出,Freundlich模型更符合吸附的实际过程,说明羟基铁对砷、锑、硒三种物质的吸附更接近于多分子层的化学吸附过程。在饱和吸附条件下,采用Langmuir曲线对吸附结果进行拟合,其拟合结果显示,pH=7条件下,对As(III)的最大吸附量可达到450mg g-1;pH=6条件下,对Sb(III)的饱和吸附量可高达1884mg g-1;同样在pH=5条件下,对Se(IV)的吸附容量可达到168mg g-1
从图8中可以看出,该新型铁锰复合物可以在中性条件下,在迅速将砷、锑、硒这三种重金属在水体的存留量降低到《生活饮用水质量标准》(GB5749-2006)中所规定的浓度限值以下。对锑和硒两种重金属可在1min之内将其浓度降低到浓度限值以下,对砷也可以在10min内将水体中的残余浓度降低到标准浓度限值以下。对砷、锑和硒这三种重金属物质的吸附速率较高,在实际应用中可以快速净化受砷、锑和硒污染的水体。
与现有吸附剂的吸附效果进行对比,以本发明的方法制得的中空羟基铁锰复合材料具有更为优越的吸附水中重金属砷、锑、硒的能力。主要原因是:首先,过渡态三价锰的存在未吸附提供了氧化保证;其次,三维立方体结构增加了材料的稳定性和分散性,使材料与目标污染物充分接触;最后,中空材料具有较大的比表面积,增加了与溶液中离子接触的几率,目标污染物反应位点增多,有利于吸附反应进行。中空羟基铁锰复合材料对污染水体中砷、锑、硒均有较快的吸附速率和较大的吸附容量,并且材料本身制备流程简单,无需高温高压等制备条件,且原料价格低廉和水中良好的分散性及机械性能为工业广泛应用提供了良好的条件。

Claims (8)

1.一种采用立方体结构模板制备中空羟基铁锰复合物的方法,其特征在于,具体步骤如下:
(1)模板的制备:
在室温条件下,将一定质量高锰酸钾加入到稀盐酸中,在磁力搅拌的作用下使其溶解并混合均匀;随后向其中加入聚乙烯吡咯烷酮,继续在磁力搅拌的作用下将其充分溶解;最后加入一定质量的亚铁氰化钾,常温下反溶解10~60min后将上述混合溶液转移至样品瓶中,于50~90℃恒温反应18~24h便可观察到溶液变成蓝黑色,得到蓝黑色沉积物即为目标铁锰复合物模板;
(2)中空铁锰复合物的制备:
用少量的无水乙醇将步骤(1)所得蓝黑色铁锰复合物模板均匀分散,后加入一定浓度的稀氢氧化钠溶液,置于旋转摇床上常温反应6-12h后,除去上部澄清液体,残留在离心管底部的黑色物质即为所要制得的具有立方体结构的中空羟基铁锰复合物。
2.如权利要求1所述的一种采用立方体结构模板制备中空羟基铁锰复合物的方法,其特征在于,所述高锰酸钾用量为10~100mg。
3.如权利要求1所述的一种采用立方体结构模板制备中空羟基铁锰复合物的方法,其特征在于,所述稀盐酸体积为50ml,浓度为0.1mol/L~1mol/L。
4.如权利要求1所述的一种采用立方体结构模板制备中空羟基铁锰复合物的方法,其特征在于,所述聚乙烯吡咯烷酮型号为K30,用量为0.5-4.0g。
5.如权利要求1所述的一种采用立方体结构模板制备中空羟基铁锰复合物的方法,其特征在于,所述亚铁氰化钾的用量为0.1~0.2g。
6.如权利要求1所述的一种采用立方体结构模板制备中空羟基铁锰复合物的方法,其特征在于,所述氢氧化钠溶液为40ml,浓度为0.1mol/L~0.5mol/L。
7.一种由权利要求1-6任意一项方法制备的中空羟基铁锰复合物。
8.权利要求7所述中空羟基铁锰复合物在处理重金属污染中的应用。
CN201510305385.7A 2015-06-05 2015-06-05 一种基于刻蚀模板法制备的中空铁锰复合物材料及其应用 Active CN105032356B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510305385.7A CN105032356B (zh) 2015-06-05 2015-06-05 一种基于刻蚀模板法制备的中空铁锰复合物材料及其应用
PCT/CN2015/094351 WO2016192311A1 (zh) 2015-06-05 2015-11-11 一种基于刻蚀模板法制备的中空铁锰复合物材料及其应用
US15/806,227 US10493425B2 (en) 2015-06-05 2017-11-07 Hollow iron-manganese composite material prepared by etching template process and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510305385.7A CN105032356B (zh) 2015-06-05 2015-06-05 一种基于刻蚀模板法制备的中空铁锰复合物材料及其应用

Publications (2)

Publication Number Publication Date
CN105032356A CN105032356A (zh) 2015-11-11
CN105032356B true CN105032356B (zh) 2017-08-11

Family

ID=54439673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510305385.7A Active CN105032356B (zh) 2015-06-05 2015-06-05 一种基于刻蚀模板法制备的中空铁锰复合物材料及其应用

Country Status (3)

Country Link
US (1) US10493425B2 (zh)
CN (1) CN105032356B (zh)
WO (1) WO2016192311A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097261B (zh) * 2017-12-11 2020-04-28 中国科学院生态环境研究中心 一种高效稳定的铁锰复合氧化物催化剂及其制备方法与应用
CN110548878B (zh) * 2018-06-04 2022-04-05 中国科学院广州能源研究所 一种均匀有序的铂立方体或多面体纳米颗粒阵列的制备方法
CN110518212B (zh) * 2019-08-30 2021-05-11 南京赛尔弗新能源科技有限公司 一种锂硫电池用正极片的制备方法
CN110627126A (zh) * 2019-10-24 2019-12-31 福州大学 一种自支撑超薄二维花状锰氧化物纳米片的制备及应用
CN112774621B (zh) * 2020-12-14 2022-06-17 桂林理工大学 一种空心微球及其制备方法和应用
CN112958108B (zh) * 2021-02-23 2023-12-29 华侨大学 一种磁性氧缺位纳米笼状铁锰复合催化剂的制备方法及其应用
CN113877586B (zh) * 2021-10-12 2023-10-31 淮阴师范学院 一种可控形貌的分级结构铈铁双金属复合氧化物的制备方法及其应用
CN115350687B (zh) * 2022-08-16 2023-10-24 青海师范大学 一种凹凸棒复合材料及其制备方法和应用
CN115722202B (zh) * 2022-11-08 2024-03-29 中国科学院上海高等研究院 一种用于去除水中有机膦的钇-锆-对苯二甲酸基复合磁性吸附材料、制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190434A (zh) * 2014-08-22 2014-12-10 哈尔滨工业大学 Fe3O4-MnO2复合催化剂的制备及利用其去除印染废水中有机染料的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544636B2 (en) * 2004-03-04 2009-06-09 The Regents Of The University Of California Treated bottom ash medium and method of arsenic removal from drinking water
GR1007422B (el) * 2010-09-28 2011-10-05 Λουφακης Ανωνυμη Βιομηχανικη Και Εμπορικη Εταιρεια Χημικων Προϊοντων, Μεθοδος συνθεσης φεροξιτη τετρασθενους μαγγανιου για απομακρυνση αρσενικου απο το νερο
CN103947002B (zh) * 2011-06-28 2017-10-13 苏州诺菲纳米科技有限公司 并入了添加剂的透明导体以及相关的制造方法
CN102956359B (zh) * 2012-10-22 2015-08-19 太原理工大学 一种二氧化锰/氧化铁纳米复合材料及其制备方法和应用
CN102909031B (zh) * 2012-11-15 2015-04-22 重庆工商大学 用于空气中甲苯催化消除的催化剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190434A (zh) * 2014-08-22 2014-12-10 哈尔滨工业大学 Fe3O4-MnO2复合催化剂的制备及利用其去除印染废水中有机染料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis of Hollow Iron Nanoframes;Dokyoon Kim等;《J. AM. CHEM. SOC.》;20070417(第129期);正文第1段,图1 *

Also Published As

Publication number Publication date
US20180056268A1 (en) 2018-03-01
US10493425B2 (en) 2019-12-03
CN105032356A (zh) 2015-11-11
WO2016192311A1 (zh) 2016-12-08

Similar Documents

Publication Publication Date Title
CN105032356B (zh) 一种基于刻蚀模板法制备的中空铁锰复合物材料及其应用
Zhang et al. Enhanced phosphate scavenging with effective recovery by magnetic porous biochar supported La (OH) 3: kinetics, isotherms, mechanisms and applications for water and real wastewater
Xiao et al. Adsorption of organic dyes from wastewater by metal-doped porous carbon materials
Du et al. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions
Liu et al. Application of magnetic ferrite nanoparticles for removal of Cu (II) from copper-ammonia wastewater
CN104519994B (zh) 具有吸附和固定砷及重金属功能的过滤材料及其用途和制备方法
Chen et al. Adsorption-induced crystallization of U-rich nanocrystals on nano-Mg (OH) 2 and the aqueous uranyl enrichment
CN109317091A (zh) 一种改性海泡石重金属吸附材料及制备方法
Zhang et al. Enahanced biosorption of Cu (II) by magnetic chitosan microspheres immobilized Aspergillus sydowii (MCMAs) from aqueous solution
CN107983306A (zh) 一种活性炭载纳米氧化铁吸附剂及其制备方法
Tiwari et al. Activated carbon and manganese coated activated carbon precursor to dead biomass in the remediation of arsenic contaminated water
CN105344325A (zh) 一种处理重金属污染水体的纳米铁/介孔硅复合材料的制备方法
Hao et al. Removal of As (III) from water using modified jute fibres as a hybrid adsorbent
CN102357323B (zh) 一种纳米氧化铁改性石英砂滤材及其制备方法
Huang et al. Study on mechanism and influential factors of the adsorption properties and regeneration of activated carbon fiber felt (ACFF) for Cr (VI) under electrochemical environment
CN108043356A (zh) 一种磁性核壳型多孔硅酸钙材料及其制备方法
CN105233570B (zh) 一种金属氧化物铁铜复合改性石英砂滤料及其制备方法和应用
Hao et al. Humic acid-coated hydrated ferric oxides-polymer nanocomposites for heavy metal removal in water
Liang et al. Performance of selenate removal by biochar embedded nano zero-valent iron and the biological toxicity to Escherichia coli
Hu et al. Removal of Zr (IV) from aqueous solution using hydrated manganese oxide derived from the modified Hummers method
Ji et al. Transport behavior of nanoplastics in activated carbon column
Bilgiç et al. APTMS-BCAD modified magnetic iron oxide for magnetic solid-phase extraction of Cu (II) from aqueous solutions
Zeng et al. Enhanced phosphate removal by zero valent iron activated through oxidants from water: batch and breakthrough experiments
Ahmed et al. Research progress in synthesis strategies of magnesium oxide nanoparticles for water treatment applications
Kitkaew et al. Fast and Efficient Removal of Hexavalent Chromium from Water by Iron Oxide Particles.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant