CN104992899A - 多晶硅薄膜的制备方法及多晶硅tft结构 - Google Patents

多晶硅薄膜的制备方法及多晶硅tft结构 Download PDF

Info

Publication number
CN104992899A
CN104992899A CN201510314265.3A CN201510314265A CN104992899A CN 104992899 A CN104992899 A CN 104992899A CN 201510314265 A CN201510314265 A CN 201510314265A CN 104992899 A CN104992899 A CN 104992899A
Authority
CN
China
Prior art keywords
silicon
polysilicon membrane
poly
polysilicon
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510314265.3A
Other languages
English (en)
Inventor
张良芬
连水池
罗长诚
吴元均
徐源竣
郭海成
王文
陈荣盛
周玮
张猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL China Star Optoelectronics Technology Co Ltd
Original Assignee
Shenzhen China Star Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen China Star Optoelectronics Technology Co Ltd filed Critical Shenzhen China Star Optoelectronics Technology Co Ltd
Priority to CN201510314265.3A priority Critical patent/CN104992899A/zh
Priority to US14/892,199 priority patent/US10204787B2/en
Priority to PCT/CN2015/082265 priority patent/WO2016197410A1/zh
Publication of CN104992899A publication Critical patent/CN104992899A/zh
Priority to US16/233,027 priority patent/US20190131132A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Abstract

本发明提供一种多晶硅薄膜的制备方法及多晶硅TFT结构。该多晶硅薄膜的制备方法包括:步骤1、提供一基片(1),在所述基片(1)上形成一层多晶硅薄膜(3),该多晶硅薄膜(3)的厚度符合制造半导体器件所要求的厚度;步骤2、对所述多晶硅薄膜(3)进行硅离子自注入,且硅离子的注入剂量低于使多晶硅非晶化的计量限度。该多晶硅薄膜的制备方法使注入的硅离子形成间隙硅,并移动到多晶硅晶界处,能够减少多晶硅的晶界缺陷密度,改善多晶硅薄膜的质量。本发明提供的一种多晶硅TFT结构,其岛状半导体层由经过低剂量硅离子自注入的多晶硅薄膜制成,能够降低开启状态下的晶界势垒,增大载流子迁移率,增大开态电流,减小阈值电压,改善TFT特性。

Description

多晶硅薄膜的制备方法及多晶硅TFT结构
技术领域
本发明涉及显示技术领域,尤其涉及一种多晶硅薄膜的制备方法及多晶硅TFT结构。
背景技术
在显示技术领域,液晶显示器(Liquid Crystal Display,LCD)与有机发光二极管显示器(Organic Light Emitting Diode,OLED)等平板显示器已经逐步取代CRT显示器。
随着平板显示器的发展,高分辨率,低能耗的面板需求不断被提出。低温多晶硅(Low Temperature Poly-Silicon,LTPS)薄膜晶体管(Thin FilmTransistor,TFT)在高分辨有源液晶显示器(AMLCD)以及有源有机发光二极管显示器(AMOLED)技术中得到了业界的重视,有很大的应用价值和潜力。与非晶硅(a-Si)相比,LTPS TFT具有较高的载流子迁移率,可达几十至几百cm2/VS,器件反应速度快,稳定性好,可以满足高分辨率AMLCD及AMOLED显示器的要求。LTPS TFT除了作为像素开关,还可以用于构建周边驱动电路,实现电路集成。
低温多晶硅是多晶硅(poly-Si)技术的一个分支。多晶硅材料具有较高的电子迁移率源于多晶硅自身的多晶体结构。与高缺陷密度及高度无序的非晶硅相比,多晶硅是由多个有序晶粒构成。
现有技术中,多晶硅薄膜可以直接由化学气相沉积(Chemical VaporDeposition,CVD)得到;也可以将非晶硅经过不同的退火处理使其晶化得到,常用的方法有:固相晶化(Solid Phase Crystallization,SPC)、金属诱导晶化(Metal-Induced Crystallization,MIC)、准分子激光退火晶化(ExcimerLaser Annealing,ELA)等。
目前,限制多晶硅TFT器件特性的主要因素是多晶硅晶粒之间的晶界,晶界处存在着大量的缺陷。上述不同方法制得的多晶硅薄膜的晶粒大小和分布都有所不同,晶界缺陷的数量也有很大区别。
现有的研究文献针对如何改善多晶硅薄膜的质量提出了许多方法。有研究指出,使用硅离子自注入以令多晶硅薄膜非晶化,然后再进行重结晶,可以降低晶核密度从而增大重结晶后的晶粒尺寸。
R.Reif和J.E.Knott(Electronics Letters,Vol.17No.17,1981)证明将高剂量的硅离子注入(如3×1015/cm2)多晶硅薄膜,可以使多晶硅薄膜大部分晶体结构非晶化,由于离子注入的隧道效应,只留下少量晶核。这些晶核在之后的SPC重结晶过程中长成了大尺寸晶粒。
N.Yamauchi等(IEEE Electron Device Letters,Vol.11,No.1,1990及Journal of Applied Physics,vol.75,pp.3235-3257,1994)用以上方法获得的多晶硅制作了TFT。由于晶粒变大,器件的迁移率增大,亚阈值摆幅陡峭,但是同时,文章中也报道了由于大晶粒的随机分布使得小尺寸器件的均匀性严重下降。
以上文献表明,高剂量硅离子自注入可以将多晶硅大部分非晶化。非晶化使得晶核密度降低,并在重结晶后得到大尺寸晶粒。晶粒增大使得晶界缺陷减少,器件特性提高。但是此方法一方面需要大剂量的硅离子注入,一方面需要再一次的结晶退火制程,另外还存在器件均匀性问题。
迄今为止,不引致非晶化的较低剂量的硅离子注入的效应还没有被研究并应用于多晶硅。
发明内容
本发明的目的在于提供一种多晶硅薄膜的制备方法,能够减少多晶硅的晶界缺陷密度,改善多晶硅薄膜的质量。
本发明的另一目的在于提供一种多晶硅TFT结构,能够降低开启状态下的晶界势垒,增大载流子迁移率,增大开态电流,减小阈值电压,改善TFT特性。
为实现上述目的,本发明首先提供一种多晶硅薄膜的制备方法,其特征在于,包括如下步骤:
步骤1、提供一基片,在所述基片上形成一层多晶硅薄膜,该多晶硅薄膜的厚度符合制造半导体器件所要求的厚度;
步骤2、对所述多晶硅薄膜进行硅离子自注入,且硅离子的注入剂量低于使多晶硅非晶化的计量限度。
所述多晶硅薄膜的制备方法,还包括:步骤3、对完成硅离子自注入的多晶硅薄膜进行后退火处理。
所述步骤1中的基片为覆盖有缓冲层的硅基片、覆盖有缓冲层的玻璃基片、或覆盖有缓冲层的柔性基片,所述缓冲层的材料为氧化硅、氮化硅、或二者的组合。
所述步骤1通过直接气相沉积多晶硅形成所述多晶硅薄膜;
或者,所述步骤1通过固相晶化工艺、或金属诱导晶化工艺使非晶硅结晶形成所述多晶硅薄膜;
再或者,所述步骤1采用激光或LED为热源使非晶硅产生液相结晶形成所述多晶硅薄膜。
所述步骤2使用离子注入机、或离子喷淋机对所述多晶硅薄膜进行硅离子自注入。
所述步骤3使用炉管、或快速热退火设备进行后退火处理。
所述多晶硅薄膜的制备方法对所述多晶硅薄膜进行硅离子自注入之前还需要在所述多晶硅薄膜上沉积一层保护层,所述保护层的材料为氧化硅、氮化硅、或二者的组合。
本发明还提供一种多晶硅TFT结构,包括:基片、覆盖所述基片的缓冲层、设于所述缓冲层上的岛状半导体层、覆盖所述岛状半导体层的栅极绝缘层、设于栅极绝缘层上的栅极、设于所述栅极与栅极绝缘层上的钝化层、及设于所述钝化层上的源极与漏极;
所述岛状半导体层包括位于该岛状半导体层中部的沟道区、及分别位于所述沟道区两侧的源极接触区、与漏极接触区,所述源极接触所述源极接触区,所述漏极接触所述漏极接触区;
所述岛状半导体层由上述的多晶硅薄膜的制备方法所制备的多晶硅薄膜经光刻及离子掺杂形成,所述源极接触区与漏极接触区对应于离子掺杂的区域;
所述多晶硅TFT结构属于P型TFT器件或N型TFT器件。
所述栅极绝缘层与钝化层的材料为氧化硅、氮化硅、或二者的组合,所述栅极、源极、与漏极的材料为铝。
本发明的有益效果:本发明提供的一种多晶硅薄膜的制备方法,通过对多晶硅薄膜进行硅离子自注入,且硅离子的注入剂量低于使多晶硅非晶化的计量限度,使注入的硅离子形成间隙硅,并移动到多晶硅晶界处,能够减少多晶硅的晶界缺陷密度,改善多晶硅薄膜的质量。本发明提供的一种多晶硅TFT结构,其岛状半导体层由经过低剂量硅离子自注入的多晶硅薄膜制成,能够降低开启状态下的晶界势垒,增大载流子迁移率,增大开态电流,减小阈值电压,改善TFT特性。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的多晶硅薄膜的制备方法的流程图;
图2、图3为本发明的多晶硅薄膜的制备方法的步骤1的示意图;
图4为本发明的多晶硅薄膜的制备方法的步骤2的示意图;
图5为本发明的多晶硅薄膜的制备方法的步骤2中不同的硅离子注入剂量及对应的样品标号表;
图6为本发明的多晶硅TFT结构的剖面示意图;
图7为对采用不同样品的多晶硅TFT进行载流子迁移率测试的测试结果图;
图8为对应于图7的数据表。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明首先提供一种多晶硅薄膜的制备方法,包括如下步骤:
步骤1、请参阅图2与图3,提供一基片1,在所述基片1上形成一层多晶硅薄膜3,该多晶硅薄膜3的厚度符合制造半导体器件所要求的厚度。
具体地,该步骤1中的基片1为覆盖有缓冲层11的硅基片、覆盖有缓冲层11的玻璃基片、或覆盖有缓冲层11的柔性基片,所述缓冲层11的材料为氧化硅、氮化硅、或二者的组合,优选的,所述缓冲层11的材料为二氧化硅(SiO2)。
该步骤1可以通过直接气相沉积多晶硅形成所述多晶硅薄膜3。
该步骤1也可以通过固相晶化工艺、或金属诱导晶化工艺使非晶硅结晶形成所述多晶硅薄膜3。
该步骤1还可以采用激光或LED为热源使非晶硅产生液相结晶形成所述多晶硅薄膜3。
进一步地,如图2与图3所示,以金属诱导晶化工艺使非晶硅结晶形成所述多晶硅薄膜3为例,该步骤1的详细过程为:首先使用低压化学气相沉积(LPCVD)沉积一层厚度为50nm的非晶硅薄膜3’;再在所述非晶硅薄膜3’上沉积一薄层(厚度<5nm)的金属镍4’;然后进行氮气退火将非晶硅晶化,退火温度为600℃,退火时间为10小时;非晶硅晶化完成形成多晶硅薄膜3后,使用加温的硫酸双氧水混合物清洗基片1,以将残余的金属镍4’去除。
步骤2、对所述多晶硅薄膜3进行硅离子自注入,且硅离子的注入剂量应低于使多晶硅非晶化的计量限度,优选的,硅离子的注入剂量为4×1014/cm2~8×1014/cm2
具体地,如图4所示,仍以金属诱导晶化工艺使非晶硅结晶形成多晶硅薄膜3为例,对所述多晶硅薄膜3进行硅离子自注入之前按照实际需要可在所述多晶硅薄膜3上沉积一层保护层4,所述保护层4的厚度根据后续硅离子注入的能量大大小来进行选择,当然,也可以不用该保护层4,在本实施例中,沉积厚度为25nm的保护层4,所述保护层4的材料为氧化硅、氮化硅、或二者的组合,优选的,所述保护层4的材料为SiO2;然后使用离子注入机、或离子喷淋机对所述多晶硅薄膜3进行硅离子自注入,注入的能量为15keV。
为验证硅离子的注入剂量对多晶硅薄膜以及最终产品多晶硅TFT的性能影响,本发明以注入不同剂量硅离子的多个样品进行实验:如图5所示,分别将硅离子注入剂量为2×1014/cm2、4×1014/cm2、6×1014/cm2、8×1014/cm2、10×1014/cm2、100×1014/cm2的样品标号为1、2、3、4、5、6,每个标号的样品各选取20件进行后续的多晶硅TFT性能测试。
完成步骤2后,还需要进行步骤3、对完成硅离子自注入的多晶硅薄膜3进行氮气后退火处理,氮气后退火的温度为600℃,退火时间为4小时。
本发明的多晶硅薄膜的制备方法使得注入的硅离子形成间隙硅,并移动到多晶硅晶界处,能够减少多晶硅的晶界缺陷密度,改善多晶硅薄膜的质量。
请参阅图6,在上述多晶硅薄膜的制备方法的基础上,本发明还提供一种多晶硅TFT结构,包括:基片1、覆盖所述基片1的缓冲层11、设于所述缓冲层11上的岛状半导体层30、覆盖所述岛状半导体层30的栅极绝缘层5、设于栅极绝缘层5上的栅极7、设于所述栅极7与栅极绝缘层5上的钝化层8、及设于所述钝化层8上的源极91与漏极92。
制作所述多晶硅TFT结构的过程为:按照上述方法制备完多晶硅薄膜3后,首先将多晶硅薄膜3光刻为岛状;然后采用LPCVD沉积厚度为50nm的栅极绝缘层5,该栅极绝缘层5的材料为氧化硅、氮化硅、或二者的组合,优选SiO2;接着沉积厚度为300nm的铝并光刻为栅极7;再以栅极7为遮挡,对光刻后的岛状多晶硅薄膜进行自对准的离子注入掺杂,离子注入的剂量为4×1015/cm2,注入能量20keV,使得岛状多晶硅薄膜成为岛状半导体层30,其中,对应于离子掺杂的区域形成源极接触区32与漏极接触区33,被栅极7遮挡未进行离子掺杂的区域成为沟道区30;接下来,采用LPCVD沉积厚度为500nm的钝化层8,并在钝化层8与栅极绝缘层5上对应源极接触区32与漏极接触区33的上方分别开第一过孔81、第二过孔82,该钝化层8的材料为氧化硅、氮化硅、或二者的组合,优选SiO2;溅射700nm厚的铝(含硅1%)并光刻为源极91与漏极92,所述源极91经由所述第一过孔81接触所述源极接触区32,所述漏极92经由所述第二过孔82接触所述漏极接触区33;最后进行30分钟的氢化处理。
上述制作多晶硅TFT结构的过程中,根据对岛状多晶硅薄膜掺杂离子的不同,可制得P型TFT器件或N型TFT器件,如掺杂硼离子可制得P型TFT器件,掺杂磷离子可制得N型TFT器件。
制成对应于不同标号样品的多个多晶硅TFT后,在室温下使用HP4156B半导体参数分析仪对多晶硅TFT性能进行测试并计算对应于同一标号样品的多个多晶硅TFT的平均载流子迁移率。
如图7、图8所示,多晶硅TFT的沟道区的长度L和宽度W都是10μm,源漏极电压Vds为-0.1V,在硅离子注入剂量为4×1014/cm2~8×1014/cm2这个范围内,载流子迁移率得到改善,随着硅离子注入剂量的增大,载流子迁移率亦增大,这是因为硅离子的注入剂量低于使多晶硅非晶化的计量限度,注入的硅离子形成间隙硅,并移动到多晶硅晶界处,减少了多晶硅的晶界缺陷密度。而当硅离子注入剂量大于或等于1×1015/cm2时,载流子迁移率明显下降,这是因为多晶硅薄膜中注入了大量的硅离子,多晶硅被不同程度的非晶化,而本发明的制备方法并未对注入硅离子的多晶硅薄膜进行高温退火重结晶处理,多晶硅的晶格结构已遭到破坏,造成多晶硅TFT的性能劣化。测试结果验证了:本发明多晶硅薄膜的制备方法将对多晶硅薄膜3进行硅离子自注入的剂量设置为低于使多晶硅非晶化的计量限度是正确的。
综上所述,本发明的多晶硅薄膜的制备方法,通过对多晶硅薄膜进行硅离子自注入,且硅离子的注入剂量低于使多晶硅非晶化的计量限度,使注入的硅离子形成间隙硅,并移动到多晶硅晶界处,能够减少多晶硅的晶界缺陷密度,改善多晶硅薄膜的质量。本发明的多晶硅TFT结构,其岛状半导体层由经过低剂量硅离子自注入的多晶硅薄膜制成,能够降低开启状态下的晶界势垒,增大载流子迁移率,增大开态电流,减小阈值电压,改善TFT特性。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (9)

1.一种多晶硅薄膜的制备方法,其特征在于,包括如下步骤:
步骤1、提供一基片(1),在所述基片(1)上形成一层多晶硅薄膜(3),该多晶硅薄膜(3)的厚度符合制造半导体器件所要求的厚度;
步骤2、对所述多晶硅薄膜(3)进行硅离子自注入,且硅离子的注入剂量低于使多晶硅非晶化的计量限度。
2.如权利要求1所述的多晶硅薄膜的制备方法,其特征在于,还包括:
步骤3、对完成硅离子自注入的多晶硅薄膜(3)进行后退火处理。
3.如权利要求1所述的多晶硅薄膜的制备方法,其特征在于,所述步骤1中的基片(1)为覆盖有缓冲层(11)的硅基片、覆盖有缓冲层(11)的玻璃基片、或覆盖有缓冲层(11)的柔性基片,所述缓冲层(11)的材料为氧化硅、氮化硅、或二者的组合。
4.如权利要求1所述的多晶硅薄膜的制备方法,其特征在于,所述步骤1通过直接气相沉积多晶硅形成所述多晶硅薄膜(3);
或者,所述步骤1通过固相晶化工艺、或金属诱导晶化工艺使非晶硅结晶形成所述多晶硅薄膜(3);
再或者,所述步骤1采用激光或LED为热源使非晶硅产生液相结晶形成所述多晶硅薄膜(3)。
5.如权利要求1所述的多晶硅薄膜的制备方法,其特征在于,所述步骤2使用离子注入机、或离子喷淋机对所述多晶硅薄膜(3)进行硅离子自注入。
6.如权利要求2所述的多晶硅薄膜的制备方法,其特征在于,所述步骤3使用炉管、或快速热退火设备进行后退火处理。
7.如权利要求4所述的多晶硅薄膜的制备方法,其特征在于,对所述多晶硅薄膜(3)进行硅离子自注入之前还需要在所述多晶硅薄膜(3)上沉积一层保护层(4),所述保护层(4)的材料为氧化硅、氮化硅、或二者的组合。
8.一种多晶硅TFT结构,其特征在于,包括:基片(1)、覆盖所述基片(1)的缓冲层(11)、设于所述缓冲层(11)上的岛状半导体层(30)、覆盖所述岛状半导体层(30)的栅极绝缘层(5)、设于栅极绝缘层(5)上的栅极(7)、设于所述栅极(7)与栅极绝缘层(5)上的钝化层(8)、及设于所述钝化层(8)上的源极(91)与漏极(92);
所述岛状半导体层(30)包括位于该岛状半导体层(30)中部的沟道区(31)、及分别位于所述沟道区(31)两侧的源极接触区(32)、与漏极接触区(33),所述源极(91)接触所述源极接触区(32),所述漏极(92)接触所述漏极接触区(33);
所述岛状半导体层(30)由如权利要求1至8任一项所述的多晶硅薄膜的制备方法所制备的多晶硅薄膜经光刻及离子掺杂形成,所述源极接触区(32)与漏极接触区(33)对应于离子掺杂的区域;
所述多晶硅TFT结构属于P型TFT器件或N型TFT器件。
9.如权利要求8所述的多晶硅TFT结构,其特征在于,所述栅极绝缘层(5)与钝化层(8)的材料为氧化硅、氮化硅、或二者的组合,所述栅极(7)、源极(91)、与漏极(92)的材料为铝。
CN201510314265.3A 2015-06-09 2015-06-09 多晶硅薄膜的制备方法及多晶硅tft结构 Pending CN104992899A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201510314265.3A CN104992899A (zh) 2015-06-09 2015-06-09 多晶硅薄膜的制备方法及多晶硅tft结构
US14/892,199 US10204787B2 (en) 2015-06-09 2015-06-25 Manufacture method of polysilicon thin film and polysilicon TFT structure
PCT/CN2015/082265 WO2016197410A1 (zh) 2015-06-09 2015-06-25 多晶硅薄膜的制备方法及多晶硅tft结构
US16/233,027 US20190131132A1 (en) 2015-06-09 2018-12-26 Manufacture method of polysilicon thin film and polysilicon tft structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510314265.3A CN104992899A (zh) 2015-06-09 2015-06-09 多晶硅薄膜的制备方法及多晶硅tft结构

Publications (1)

Publication Number Publication Date
CN104992899A true CN104992899A (zh) 2015-10-21

Family

ID=54304692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510314265.3A Pending CN104992899A (zh) 2015-06-09 2015-06-09 多晶硅薄膜的制备方法及多晶硅tft结构

Country Status (3)

Country Link
US (2) US10204787B2 (zh)
CN (1) CN104992899A (zh)
WO (1) WO2016197410A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107749423A (zh) * 2017-10-12 2018-03-02 华南理工大学 一种非晶氧化物柔性薄膜晶体管及其制备方法
CN108834429A (zh) * 2016-03-11 2018-11-16 株式会社国际电气 半导体装置的制造方法、记录介质以及基板处理装置
EP3373338A4 (en) * 2015-11-05 2019-06-05 Boe Technology Group Co. Ltd. THIN-LAYER TRANSISTOR WITH POLYCRYSTALLINE LOW-TEMPERATURE SILICON AND MANUFACTURING METHOD THEREFOR, ARRAY SUBSTRATE, DISPLAY PANEL AND DISPLAY DEVICE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847703B (zh) * 2017-04-11 2020-04-10 京东方科技集团股份有限公司 低温多晶硅薄膜晶体管的制造方法和显示装置
US10141194B1 (en) * 2017-05-24 2018-11-27 United Microeletronics Corp. Manufacturing method of semiconductor structure
CN113161229A (zh) * 2021-04-12 2021-07-23 上海新昇半导体科技有限公司 多晶硅薄膜衬底的制备方法
US11948991B2 (en) 2021-12-09 2024-04-02 Nanya Technology Corporation Semiconductor structure having an electrical contact

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582514A (ja) * 1991-09-24 1993-04-02 Sumitomo Metal Ind Ltd 半導体装置の製造方法
JPH05275699A (ja) * 1992-03-25 1993-10-22 Toshiba Corp 薄膜トランジスタおよびその製造方法
CN1273436A (zh) * 1999-05-10 2000-11-15 松下电器产业株式会社 薄膜晶体管制造方法及薄膜晶体管

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4740481A (en) * 1986-01-21 1988-04-26 Motorola Inc. Method of preventing hillock formation in polysilicon layer by oxygen implanation
KR0124626B1 (ko) * 1994-02-01 1997-12-11 문정환 박막 트랜지스터 제조방법
KR100269289B1 (ko) * 1997-02-19 2000-10-16 윤종용 실리콘막의결정화방법
KR100487426B1 (ko) * 2001-07-11 2005-05-04 엘지.필립스 엘시디 주식회사 폴리실리콘 결정화방법 그리고, 이를 이용한 폴리실리콘박막트랜지스터의 제조방법 및 액정표시소자의 제조방법
US6864161B1 (en) * 2003-02-20 2005-03-08 Taiwan Semiconductor Manufacturing Company Method of forming a gate structure using a dual step polysilicon deposition procedure
CN1892996A (zh) * 2005-07-05 2007-01-10 中华映管股份有限公司 薄膜晶体管的制造方法与修补多晶硅膜层之缺陷的方法
US8222646B2 (en) * 2005-07-08 2012-07-17 The Hong Kong University Of Science And Technology Thin-film transistors with metal source and drain and methods of fabrication
KR101002667B1 (ko) * 2008-07-02 2010-12-21 삼성모바일디스플레이주식회사 박막트랜지스터, 그의 제조방법 및 그를 포함하는유기전계발광표시장치
CN103578948B (zh) * 2012-07-30 2016-06-08 上海华虹宏力半导体制造有限公司 抑制pmos器件工艺中栅极多晶硅耗尽的方法
CN104465319B (zh) * 2014-10-30 2017-07-28 深圳市华星光电技术有限公司 低温多晶硅的制作方法及tft基板的制作方法
KR20160122893A (ko) * 2015-04-14 2016-10-25 삼성디스플레이 주식회사 박막 트랜지스터 기판, 이를 구비한 디스플레이 장치, 박막 트랜지스터 기판 제조방법 및 디스플레이 장치 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582514A (ja) * 1991-09-24 1993-04-02 Sumitomo Metal Ind Ltd 半導体装置の製造方法
JPH05275699A (ja) * 1992-03-25 1993-10-22 Toshiba Corp 薄膜トランジスタおよびその製造方法
CN1273436A (zh) * 1999-05-10 2000-11-15 松下电器产业株式会社 薄膜晶体管制造方法及薄膜晶体管

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3373338A4 (en) * 2015-11-05 2019-06-05 Boe Technology Group Co. Ltd. THIN-LAYER TRANSISTOR WITH POLYCRYSTALLINE LOW-TEMPERATURE SILICON AND MANUFACTURING METHOD THEREFOR, ARRAY SUBSTRATE, DISPLAY PANEL AND DISPLAY DEVICE
CN108834429A (zh) * 2016-03-11 2018-11-16 株式会社国际电气 半导体装置的制造方法、记录介质以及基板处理装置
CN108834429B (zh) * 2016-03-11 2023-04-18 株式会社国际电气 半导体装置的制造方法、记录介质以及基板处理装置
CN107749423A (zh) * 2017-10-12 2018-03-02 华南理工大学 一种非晶氧化物柔性薄膜晶体管及其制备方法

Also Published As

Publication number Publication date
US10204787B2 (en) 2019-02-12
US20170194151A1 (en) 2017-07-06
US20190131132A1 (en) 2019-05-02
WO2016197410A1 (zh) 2016-12-15

Similar Documents

Publication Publication Date Title
CN104992899A (zh) 多晶硅薄膜的制备方法及多晶硅tft结构
Arai Oxide‐TFT technologies for next‐generation AMOLED displays
Arai et al. 49.1: invited paper: emergent Oxide TFT technologies for next‐generation AM‐OLED displays
Park et al. Source/drain series-resistance effects in amorphous gallium–indium zinc-oxide thin film transistors
CN103779420A (zh) 一种具有搭桥晶粒结构的多晶硅薄膜晶体管
Takeda et al. 37‐2: Development of high mobility top gate IGZO‐TFT for OLED display.
US11843057B2 (en) Oxide semiconductor transistor having dual gate structure and method of fabricating the same
CN105304500A (zh) N型tft的制作方法
Chen et al. Abnormal dual channel formation induced by hydrogen diffusion from SiN x interlayer dielectric in top gate a-InGaZnO transistors
US8975124B2 (en) Thin film transistor, array substrate and preparation method thereof
Baek et al. Electrical instability of double-gate a-IGZO TFTs with metal source/drain recessed electrodes
US10424672B2 (en) Oxide semiconductor transistor
Ha et al. 69‐1: Invited Paper: Oxide TFT Development for AMLCDs and AMOLEDs
US20120187407A1 (en) Thin film transistor and manufacturing method thereof
US20090256203A1 (en) Top Gate Thin Film Transistor with Independent Field Control for Off-Current Suppression
Wehrspohn et al. Stability of plasma deposited thin film transistors—comparison of amorphous and microcrystalline silicon
US9583633B2 (en) Oxide for semiconductor layer of thin film transistor, thin film transistor and display device
Kuo et al. Advanced amorphous silicon thin-film transistors for AM-OLEDs: Electrical performance and stability
US20150364553A1 (en) Oxide for semiconductor layer of thin film transistor, thin film transistor, and display device
Chen et al. Improvements in the reliability of a-InGaZnO thin-film transistors with triple stacked gate insulator in flexible electronics applications
Chien et al. Performance enhancement of InGaZnO top-gate thin film transistor with low-temperature high-pressure fluorine treatment
Huang et al. 3.6: High‐Reliability OLED Display Panel using Top Gate IGZO TFTs for 55inch UHD TVs
CN103258855A (zh) 基于固相结晶技术的多晶硅薄膜晶体管及其制造方法
Son et al. Effect of LDD structure on electrical properties of polysilicon n-TFT prepared by metal-induced lateral crystallization
Kim et al. Improvement of negative bias temperature instability of LTPS TFTs by high pressure H2O annealing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20151021