CN104959623B - 一种简易可控的纳米级载银氧化硅的制备方法 - Google Patents

一种简易可控的纳米级载银氧化硅的制备方法 Download PDF

Info

Publication number
CN104959623B
CN104959623B CN201510324189.4A CN201510324189A CN104959623B CN 104959623 B CN104959623 B CN 104959623B CN 201510324189 A CN201510324189 A CN 201510324189A CN 104959623 B CN104959623 B CN 104959623B
Authority
CN
China
Prior art keywords
silver
sio
parts
nano
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510324189.4A
Other languages
English (en)
Other versions
CN104959623A (zh
Inventor
何丹农
张彬
周涓
朱君
金彩虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai Jiaotong University
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University, Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai Jiaotong University
Priority to CN201510324189.4A priority Critical patent/CN104959623B/zh
Publication of CN104959623A publication Critical patent/CN104959623A/zh
Application granted granted Critical
Publication of CN104959623B publication Critical patent/CN104959623B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供了一种简易可控的纳米级载银氧化硅的制备方法,其具体步骤:(1)Stober法制备单分散的球状纳米SiO2颗粒;(2)在纳米SiO2球表面修饰还原性基团;(3)在纳米SiO2球表面还原出直径1~3nm的银颗粒。本发明得到的载银氧化硅形貌规整,粒径均匀,其表面银颗粒的粒径、密度均可轻易调控,整体上制备工艺简单易行、产品体系稳定,具备工业化制备的潜力。

Description

一种简易可控的纳米级载银氧化硅的制备方法
技术领域
本发明涉及纳米材料的制备领域,具体地,涉及一种简易可控的纳米级载银氧化硅的制备方法。
背景技术
金属纳米颗粒因其区别于凝结相和单个分子的独特的光电学性能而具备应用于诸如生物标记、表面拉曼增强、太阳能电池、变色元件、发光薄膜、非线性光学开关、高密度信息存储系统等领域的巨大潜力。其中,胶体粒子包覆或沉积功能性金属纳米颗粒表现出来的特异的光学性能受到材料领域科研人员的高度重视。
银纳米颗粒因其表面自由电子的激发作用而表现出较强的等离子体光学响应特性,在静电屏蔽涂层、杀菌、催化及表面拉曼增强等诸多方面都有广泛应用。但由于氧化硅表面所带负电荷和水相体系中纳米银颗粒之间存在静电排斥,直接在其表面沉积纳米银颗粒存在一定的困难。为此,研究人员设计了各种各样制备方法,包括电化学沉积法、化学沉积法、光化学法、静电吸附法和离子交换法等等,然而控制纳米银颗粒的形核分布及长大仍然是技术难题。
S.C.Tang等(S.C.Tang,Y.F.Tang,et al.Nanotechnology,2007,18,295607)设计了一种超声电化学沉积法用于在直径760±10nm的氧化硅表面沉积粒径8~10nm的均匀分布的纳米银颗粒,但是这种方法所需设备较为复杂,并且对参数变化极为敏感,因此产率较低。陈志民等(Chen Z,Chen X,Zheng L,et al.Journal of colloid and interfacescience,2005,285(1):146-151.)利用简单的银镜反应原理在胶体微球表面沉积纳米银颗粒的方法即属于典型的化学沉积法,然而这种方法只能生成粒径~25nm的纳米银颗粒,对于合成更小粒径的纳米银颗粒则无能为力。
综上,目前存在的技术方法在调控纳米银颗粒的尺寸及其包覆程度等方面都存在着一定的局限性。
发明内容
针对现有技术中胶体微球表面银纳米颗粒的尺寸难以进一步减小,分布不够均匀等问题,本发明提供了一种简易可控的纳米级载银氧化硅的制备方法。该技术在氧化硅表面修饰氨基之后直接还原出纳米银,具有制备工艺简单易行、产品体系稳定、可操作性强等多项优点,可满足大规模工业生产的需要。
为实现上述的目的,本发明采用以下技术方案:
一种简易可控的纳米级载银氧化硅的制备方法,包括如下步骤:
步骤1:Stober法制备单分散的球状纳米SiO2颗粒;
步骤2:在步骤1所述球状纳米SiO2颗粒表面修饰还原性基团;
步骤3:以银氨溶液为原料,在步骤2所得球状纳米SiO2颗粒表面还原出银颗粒。
优选地,所述步骤1,具体如下:
步骤1.1:将体积份数为160份的无水乙醇和2~12份的TEOS混合均匀,升温至25~50℃;将2~7份浓氨水,2~100份水和20份无水乙醇混合均匀,加入到以上混合液中,在25~50℃温度下搅拌8~24小时;
步骤1.2:将步骤1.1所得溶液在室温下经过离心,洗涤,干燥,得到单分散的球状SiO2颗粒。
进一步地,步骤1.2的干燥过程需首先在-80℃温度下完全冻干,再于60℃烘箱中烘干12~24小时,以保持SiO2微球的形貌并完全去除残余反应物。
优选地,所述步骤2,具体如下:
步骤2.1:将质量份数为1份的球状纳米SiO2颗粒和1~8份氨基硅烷偶联剂分散在50~200份有机溶剂中,在25~80℃温度下反应12~24小时;
步骤2.2:将步骤2.1所得混合液用无水乙醇和水分别离心洗涤3次,再超声分散在60~300份水中。
进一步地,步骤2.1所用氨基硅烷偶联剂为γ-氨丙基三乙氧基硅烷、γ-氨丙基三甲氧基硅烷、N-β(氨乙基)-γ-氨丙基三甲氧基硅烷、N-β(氨乙基)-γ-氨丙基甲基二甲氧基硅烷、N-β(氨乙基)-γ-氨丙基三乙氧基硅烷、N-β(氨乙基)-γ-氨丙基甲基二乙氧基硅烷、苯氨基甲基三甲氧基硅烷、苯氨基甲基三乙氧基硅烷、氨乙基氨丙基三甲氧基硅烷中一种,为氧化硅表面修饰提供氨基基团。
进一步地,步骤2.1所用有机溶剂为无水甲醇、三氯甲烷、氯仿、庚烷、乙醚、四氢呋喃、三乙胺、甲苯中一种。这些溶剂仅作为反应介质的有机溶剂,不参与反应本身。
优选地,所述步骤3,具体如下:
步骤3.1:取步骤2所得的SiO2的水溶液20~80份,滴加5~20份、0.05~0.2M的银氨溶液,在15~50℃温度下搅拌6~24小时;
步骤3.2:将步骤3.1所得的混合液经3次水洗离心后,干燥得到纳米级载银SiO2颗粒。
本发明以Stober法制备的单分散的二氧化硅胶体微球为基体,对其表面进行氨基修饰,再以银氨溶液为原料,在其表面还原出粒径~2nm的纳米银,得到载银均匀的纳米SiO2,直径大约1~3nm。本发明可以方便快捷地满足在宏观的玻璃、硅片等,以及微观的氧化硅、羟基磷灰石纳米颗粒等各种尺度的表面沉积纳米银颗粒的需求。
与现有技术相比,本发明具有如下的有益效果:
(1)本发明首次采用了通过在SiO2表面修饰氨基基团并以之还原银氨溶液的方法在胶体微球表面负载银纳米颗粒;
(2)本发明制备的纳米级载银氧化硅微球表面的银颗粒分布均匀,粒径及密度均可控,且其粒径最小可达~1nm;
(3)本发明技术制备方法简单,可操作性强,可满足大规模工业生产需求。
附图说明
图1实施例1制备得到的载银氧化硅的透射电镜照片;
图2实施例2制备得到的载银氧化硅的透射电镜照片;
图3实施例3制备得到的载银氧化硅的透射电镜照片;
图4实施例4制备得到的载银氧化硅的透射电镜照片;
图5实施例5制备得到的载银氧化硅的透射电镜照片;
图6载银氧化硅的扫描电镜照片及其能谱分析;
图7氧化硅修饰氨基及其负载银纳米颗粒前后的红外光谱图。
具体实施方式
下面结合具体实施例对本发明技术方案进一步描述。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
a.将160mL无水乙醇和6mL的TEOS混合均匀;将7mL浓氨水,40mL水和20mL无水乙醇混合均匀,加入到以上混合液中,在25℃温度下搅拌12小时。
b.将步骤a.所得溶液在室温下经过离心,洗涤,干燥,得到单分散的球状SiO2颗粒。
c.将1g步骤b.所得的SiO2颗粒和8mL氨基硅烷偶联剂分散在120mL甲苯中,在80℃温度下回流反应24小时;
d.将步骤c.所得混合液用无水乙醇和水分别离心洗涤3次,再超声分散在60mL水中。
e.取步骤d.所得的SiO2的水溶液20mL,滴加20mL,0.2M的银氨溶液,在15℃温度下搅拌24小时;
f.将步骤e.所得的混合液经3次水洗离心后,干燥得到纳米级载银SiO2颗粒。
检测表明所得载银氧化硅形貌规整,分散性良好,粒径~90nm,其表面银纳米颗粒分布均匀,粒径约为1~2nm之间(见图1)。
实施例2
a.将160mL无水乙醇和6mL的TEOS混合均匀;将7mL浓氨水,40mL水和20mL无水乙醇混合均匀,加入到以上混合液中,在25℃温度下搅拌12小时。
b.将步骤a.所得溶液在室温下经过离心,洗涤,干燥,得到单分散的球状SiO2颗粒。
c.将1g步骤b.所得的SiO2颗粒和4mL氨基硅烷偶联剂分散在120mL甲苯中,在80℃温度下回流反应24小时;
d.将步骤c.所得混合液用无水乙醇和水分别离心洗涤3次,再超声分散在60mL水中。
e.取步骤d.所得的SiO2的水溶液20mL,滴加20mL,0.2M的银氨溶液,在15℃温度下搅拌24小时;
f.将步骤e.所得的混合液经3次水洗离心后,干燥得到纳米级载银SiO2颗粒。
检测表明所得载银氧化硅形貌规整,分散性良好,粒径~90nm,其表面银纳米颗粒分布均匀,粒径约为1~2nm之间(见图2);与实施例1相比,其表面的银纳米颗粒密度减小。
实施例3
a.将160mL无水乙醇和6mL的TEOS混合均匀,升温至50℃;将7mL浓氨水,10mL水和20mL无水乙醇混合均匀,加入到以上混合液中,在50℃温度下搅拌8小时。
b.将步骤a.所得溶液在室温下经过离心,洗涤,干燥,得到单分散的球状SiO2颗粒。
c.将1g步骤b.所得的SiO2颗粒和4mL氨基硅烷偶联剂分散在120mL甲苯中,在80℃温度下回流反应24小时;
d.将步骤c.所得混合液用无水乙醇和水分别离心洗涤3次,再超声分散在60mL水中。
e.取步骤d.所得的SiO2的水溶液20mL,滴加20mL,0.05M的银氨溶液,在15℃温度下搅拌6小时;
f.将步骤e.所得的混合液经3次水洗离心后,干燥得到纳米级载银SiO2颗粒。
检测表明所得载银氧化硅形貌规整,分散性良好,粒径~57nm,其表面银纳米颗粒密度较小且分布均匀,粒径~1nm(见图3)。
实施例4
a.将160mL无水乙醇和6mL的TEOS混合均匀,升温至50℃;将7mL浓氨水,10mL水和20mL无水乙醇混合均匀,加入到以上混合液中,在50℃温度下搅拌8小时。
b.将步骤a.所得溶液在室温下经过离心,洗涤,干燥,得到单分散的球状SiO2颗粒。
c.将1g步骤b.所得的SiO2颗粒和4mL氨基硅烷偶联剂分散在120mL甲苯中,在80℃温度下回流反应24小时;
d.将步骤c.所得混合液用无水乙醇和水分别离心洗涤3次,再超声分散在60mL水中。
e.取步骤d.所得的SiO2的水溶液20mL,滴加20mL,0.2M的银氨溶液,在15℃温度下搅拌6小时;
f.将步骤e.所得的混合液经3次水洗离心后,干燥得到纳米级载银SiO2颗粒。
检测表明所得载银氧化硅形貌规整,分散性良好,粒径~62nm,其表面银纳米颗粒分布均匀,粒径~2nm(见图4);与实施例3相比,其表面的银纳米颗粒粒径明显增大,密度也有所增大。
实施例5
a.将160mL无水乙醇和6mL的TEOS混合均匀,升温至50℃;将7mL浓氨水,10mL水和20mL无水乙醇混合均匀,加入到以上混合液中,在50℃温度下搅拌8小时。
b.将步骤a.所得溶液在室温下经过离心,洗涤,干燥,得到单分散的球状SiO2颗粒。
c.将1g步骤b.所得的SiO2颗粒和4mL氨基硅烷偶联剂分散在120mL甲苯中,在80℃温度下回流反应24小时;
d.将步骤c.所得混合液用无水乙醇和水分别离心洗涤3次,再超声分散在60mL水中。
e.取步骤d.所得的SiO2的水溶液20mL,滴加20mL,0.2M的银氨溶液,在50℃温度下搅拌6小时;
f.将步骤e.所得的混合液经3次水洗离心后,干燥得到纳米级载银SiO2颗粒。
检测表明所得载银氧化硅形貌规整,分散性良好,粒径~62nm,其表面银纳米颗粒分布均匀,大多颗粒粒径在1.7~2.5nm之间(见图5);与实施例3相比,其表面的银纳米颗粒粒径、密度均明显增大。
本发明在氧化硅表面修饰氨基之后直接还原出纳米银,相比电化学方法,设备、操作更为简单;相比其他化学方法,其形貌更加可控,粒径可以更小。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (2)

1.一种简易可控的纳米级载银氧化硅的制备方法,其特征在于该方法包括如下步骤:
步骤1:Stober法制备单分散的球状纳米SiO2颗粒;
步骤2:在步骤1所述球状纳米SiO2颗粒表面修饰还原性基团;
步骤3:以银氨溶液为原料,在步骤2所得球状纳米SiO2颗粒表面还原出银颗粒;
所述步骤1,具体如下:
步骤1.1:将体积份数为160份的无水乙醇和2~12份的TEOS混合均匀,升温至25~50℃;将2~7份浓氨水,2~100份水和20份无水乙醇混合均匀,加入到以上混合液中,在25~50℃温度下搅拌8~24小时;
步骤1.2:将步骤1.1所得溶液在室温下经过离心,洗涤,干燥,得到单分散的球状SiO2颗粒;
所述步骤1.2所述的干燥过程需首先在-80℃温度下完全冻干,再于60℃烘箱中烘干12~24小时,以保持SiO2微球的形貌并完全去除残余反应物;
所述步骤2,具体如下:
步骤2.1:将质量分数为1份的步骤1.2所得的SiO2颗粒和1~8份氨基硅烷偶联剂分散在50~200份有机溶剂中,在25~80℃温度下反应12~24小时;所述氨基硅烷偶联剂为苯氨基甲基三甲氧基硅烷或苯氨基甲基三乙氧基硅烷;
步骤2.2:将步骤2.1所得混合液用无水乙醇和水分别离心洗涤3次,再超声分散在60~300份水中;
所述步骤3,具体如下:
步骤3.1:取步骤2所得的SiO2的水溶液20~80份,滴加5~20份,0.05~0.2M的银氨溶液,在15~50℃温度下搅拌6~24小时;
步骤3.2:将步骤3.1所得的混合液经3次水洗离心后,干燥得到纳米级载银SiO2颗粒。
2.根据权利要求1所述的简易可控的纳米级载银氧化硅的制备方法,其特征在于步骤2.1所用有机溶剂为无水甲醇、三氯甲烷、氯仿、庚烷、乙醚、四氢呋喃、三乙胺、甲苯中一种。
CN201510324189.4A 2015-06-12 2015-06-12 一种简易可控的纳米级载银氧化硅的制备方法 Expired - Fee Related CN104959623B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510324189.4A CN104959623B (zh) 2015-06-12 2015-06-12 一种简易可控的纳米级载银氧化硅的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510324189.4A CN104959623B (zh) 2015-06-12 2015-06-12 一种简易可控的纳米级载银氧化硅的制备方法

Publications (2)

Publication Number Publication Date
CN104959623A CN104959623A (zh) 2015-10-07
CN104959623B true CN104959623B (zh) 2018-08-03

Family

ID=54213800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510324189.4A Expired - Fee Related CN104959623B (zh) 2015-06-12 2015-06-12 一种简易可控的纳米级载银氧化硅的制备方法

Country Status (1)

Country Link
CN (1) CN104959623B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105386017B (zh) * 2015-11-09 2017-11-10 上海纳米技术及应用国家工程研究中心有限公司 一种银纳米颗粒修饰硅表面拉曼增强基底的制备方法
CN105562714A (zh) * 2016-02-03 2016-05-11 宁波大学 一种用于sers检测的纳米材料及其制备方法
CN106914630A (zh) * 2017-03-28 2017-07-04 运城学院 一种铜/二氧化硅核壳结构纳米粒子的制备方法
CN109276763A (zh) * 2018-09-29 2019-01-29 深圳先进技术研究院 多糖修饰mbg支架、组织修复支架及其制备方法和应用
CN109485272B (zh) * 2018-11-21 2022-01-11 江苏大学 高反射红外节能复合玻璃及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103223488A (zh) * 2013-05-08 2013-07-31 宁波大学 银包覆二氧化硅复合微球粒子的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507556B2 (en) * 2007-09-22 2013-08-13 Boise State University Fluorescent particles comprising nanoscale ZnO layer and exhibiting cell-specific toxicity
CN101995382B (zh) * 2009-08-12 2012-06-06 吉林师范大学 一种原位检测纳米贵金属催化剂的方法
CN102530969B (zh) * 2012-02-10 2014-01-01 中国科学院上海硅酸盐研究所 功能化改性的中空介孔或核/壳介孔二氧化硅纳米颗粒的制备方法
CN102632247B (zh) * 2012-04-20 2013-12-04 武汉大学 一种负载型银纳米复合材料的制备方法
CN103861657B (zh) * 2014-02-24 2015-07-08 浙江大学 纳米银负载多孔二氧化硅的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103223488A (zh) * 2013-05-08 2013-07-31 宁波大学 银包覆二氧化硅复合微球粒子的制备方法

Also Published As

Publication number Publication date
CN104959623A (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
CN104959623B (zh) 一种简易可控的纳米级载银氧化硅的制备方法
Yin et al. Synthesis and characterization of mesoscopic hollow spheres of ceramic materials with functionalized interior surfaces
Carotenuto et al. Preparation and characterization of nanocomposite thin films for optical devices
Breen et al. Sonochemically produced ZnS-coated polystyrene core− shell particles for use in photonic crystals
Nozawa et al. Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process
Miguez et al. Evidence of FCC crystallization of SiO2 nanospheres
CN105056929B (zh) 一种具有空心微球状的石墨烯/二氧化钛复合材料及其制备方法
Deng et al. Synthesis of monodisperse polystyrene@ vinyl-SiO2 core–shell particles and hollow SiO2 spheres
Tissot et al. Hybrid latex particles coated with silica
CN101559951B (zh) 一种制备纳米级二氧化硅空心微球的方法
Zou et al. A simple and low-cost method for the preparation of monodisperse hollow silica spheres
CN110088040A (zh) 一种制备微米级球形二氧化硅气凝胶的方法
CN104259473A (zh) 一种空心球状贵金属纳米材料的制备方法
CN101767205B (zh) 一种镍纳米空心球的制备方法
CN105664936A (zh) 一种以多巴胺为碳源制备核壳结构纳米复合材料的方法
JP2007217258A (ja) ナノ炭素粒子分散液及びその製造方法とコア・シェル型ナノ炭素粒子及びその製造方法
CN110726711B (zh) 金属修饰的半导体基仿生复眼碗结构的sers基底及构筑方法
CN103063647A (zh) 核壳结构SiO2@Ag纳米复合材料简易制备方法
CN108101385A (zh) 一种透明超疏水涂层及其制备方法和应用
CN102600773B (zh) 一种壳层荧光微球的制备方法
CN104874789B (zh) 一种超薄壳层Au@SiO2纳米复合材料的可控制备方法
CN108654528B (zh) 磁性高分子核壳结构微球及其制备方法和应用
CN104193862A (zh) 一种聚苯乙烯/银/二氧化钛复合材料的制备方法
Liu et al. Synthesis of a Au/silica/polymer trilayer composite and the corresponding hollow polymer microsphere with a movable Au core
CN112694093A (zh) 一种低介电损耗二氧化硅微球及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180803

Termination date: 20210612