CN104894989B - 吸音板 - Google Patents

吸音板 Download PDF

Info

Publication number
CN104894989B
CN104894989B CN201510093242.4A CN201510093242A CN104894989B CN 104894989 B CN104894989 B CN 104894989B CN 201510093242 A CN201510093242 A CN 201510093242A CN 104894989 B CN104894989 B CN 104894989B
Authority
CN
China
Prior art keywords
porous plate
reinforced ribs
design
thickness
abatvoix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510093242.4A
Other languages
English (en)
Other versions
CN104894989A (zh
Inventor
山极伊知郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of CN104894989A publication Critical patent/CN104894989A/zh
Application granted granted Critical
Publication of CN104894989B publication Critical patent/CN104894989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

本发明提供一种能够一边使屈服强度提高,一边维持吸音性能的吸音板。设多孔板(2)(表面多孔板(2a),内部多孔板(2b))的允许应力为A,作用于多孔板(2)的设计上的载荷为p0,系数K1(=0.93),补强肋(5)的宽度为B,多孔板(2)的面被补强肋(5)分割的数量为N,不设补强肋(5)而进行吸音设计时的多孔板(2)的设计开口率为α,并设为系数K2时,相邻的补强肋(5)间的距离a与多孔板(2)的板厚t满足下式(1),并且多孔板(2)的开口率β满足下式(2)。a/t<K1×(A/p0)1/2…式(1),β=(B(1‑1/N)/a+1)×α×K2…式(2)。

Description

吸音板
技术领域
本发明涉及设在道路和铁轨的邻域,特别是设在新干线等的高速铁路车辆行驶的铁轨的邻域,以减少噪音的吸音板。
背景技术
在道路和铁轨的邻域设置隔音壁,进行噪音的减少。另外,设置在道路的邻域的隔音壁,历来使用的是使用了玻璃棉等的纤维的吸音材料。在此,设置于新干线等的高速铁路车辆行驶的铁轨的邻域的隔音壁,在车辆通过时会遭受到列车风压。因此,若将道路用的隔音壁所使用的玻璃棉等的使用了纤维的吸音材料,应用于高速铁路车辆行驶的铁轨用的隔音壁,则由于长期性的使用造成的劣化情形,纤维有可能因反复受到的风压而飞散。
因此,在专利文献1中公开有一种吸音结构体,其是在框体的内部空间,形成有被具有多个的贯通孔的第1多孔板和第2多孔板分隔开的多个空间。若来自声源的声音从多孔板的贯通孔进入到空间内,则发生共鸣,由于贯通孔部的空气的振动,导致在贯通孔的内壁与空气之间产生摩擦,振动能的一部分转化成热能而产生吸音作用。而且,该吸音结构体为金属制,有耐气候性,不使用玻璃棉等的纤维,因此不存在伴随长期使用而来的纤维的飞散和吸音性能的劣化。
现有技术文献
专利文献
专利文献1:日本专利第5171559号说明书
然而,专利文献1所述的吸音结构体,因为多孔板的板厚为0.1mm左右,所以屈服强度低。因此,将该吸音结构体设置在高速铁路车辆行驶的铁轨的邻域时,被长期性的列车风压形成的反复载荷破坏的可能性高。
因此,为了使吸音结构体的屈服强度提高,考虑以肋材补强多孔板。但是,在这种情况下,因为贯通孔的一部分被肋材覆盖,所以存在吸音率降低这样的问题。
发明内容
本发明的目的在于,提供一种既可以使屈服强度提高,又可以维持吸音性能的吸音板。
本发明是吸收来自声源的声音的吸音板,其特征在于,具有如下:具有多个的贯通孔的多孔板;在与所述多孔板之间空出规定的间隔并与所述多孔板相对配置的背面板;围绕由所述多孔板和所述背面板夹着的空间的框体;在所述多孔板的所述背面板侧的面上以规定的间隔安装的多个补强肋,相邻的所述补强肋间的距离a与所述多孔板的板厚t满足下式(1),并且,所述多孔板的开口率β满足下式(2)。
a/t<K1×(A/p0)1/2…式(1)
β=(B(1-1/N)/a+1)×α×K2…式(2)
在此,A是所述多孔板的允许应力,p0是作用于所述多孔板的设计上的载荷,K1=0.93,B是所述补强肋的宽度,N是所述多孔板的面被所述补强肋分割的数量,α是不设所述补强肋而进行吸音设计时的所述多孔板的设计开口率,K2是系数。还有,多孔板的允许应力的值,例如由后述的“铁路结构物等设计标准·同解说”等所示的计算式决定。
另外,本发明是吸收来自声源的声音的吸音板,其特征在于,具有如下:具有多个的贯通孔的多孔板;在与所述多孔板之间空出规定的间隔并与所述多孔板相对配置的背面板;围绕由所述多孔板和所述背面板夹着的空间的框体;在所述多孔板的所述背面板侧的面上以规定的间隔安装的多个补强肋,相邻的所述补强肋间的距离a与所述多孔板的板厚t满足下式(1),并且在板厚为t’的所述多孔板上设有所述补强肋时的所述多孔板的开口率β’满足下式(3),且板厚为t的所述多孔板的开口率γ满足下式(4)。
a/t<K1×(A/p0)1/2…式(1)
β’=(B(1-1/N)/a+1)×α×1…式(3)
γ=t/t’×β’×K3…式(4)
在此,A是所述多孔板的允许应力,p0是作用于所述多孔板的设计上的载荷,K1=0.93,B是所述补强肋的宽度,N是所述多孔板的面被所述补强肋分割的数量,α是不设所述补强肋而进行吸音设计时的所述多孔板的设计开口率,t’是不设所述补强肋而进行吸音设计时的所述多孔板的设计板厚,K3是系数,t’<t。
【发明的效果】
上述的式(1)表示的是,将多孔板视为两端被支承的一维梁时,对该梁施加模拟列车风压的均匀分布载荷时受到最大弯矩的梁中央部的应力值,与由多孔板的材料的屈服强度决定的允许应力的关系。于是,以满足该式(1)的方式,设计相邻的补强肋间的距离a和多孔板的板厚t,由此,相对于设计载荷(作用于多孔板的设计上的载荷)p0能够满足多孔板的允许应力A。据此,能够使吸音板的屈服强度提高,使之能够耐受得住高速铁路车辆在通过时的列车风压等。
但是,若在多孔板上安装多个补强肋,则贯通孔的一部分被补强肋堵塞,吸音面积减少,仍旧是按照不设补强肋而只有多孔板和空气层的系统进行吸音设计时的多孔板的设计开口率α,则吸音板的吸音性能降低。因此,通过以满足上述式(2)的方式设计多孔板的开口率β,即使在多孔板上安装补强肋时,也能够维持吸音板的吸音性能。
另外,为了提高吸音板的屈服强度,增厚多孔板的板厚即可,但以设计板厚t’实施吸音设计,并设计开口率α或设计板厚t’时的开口率β’满足吸音性能时,即,满足式(3)时,若将多孔板2的板厚从t’增厚至t,则空气难以通过贯通孔,因此,仍旧是设计开口率α或设计板厚t’时的开口率β’的时,吸音性能降低。因此,通过以满足上述式(4)的方式设计多孔板的开口率γ,即使在多孔板上安装补强肋,此外即使增厚多孔板的板厚时,也能够维持吸音板的吸音性能。
据此,能够一边使屈服强度提高,一边维持吸音性能。
附图说明
图1A是吸音板的主视图。
图1B是图1A的A-A剖面图。
图2是表示各频段的吸音率的图。
图3是表示各频段的吸音率比率的图。
图4是表示各频段的吸音率的图。
图5是表示各频段的吸音率比率的图。
图6是表示对于1/3倍频程中心频率的吸音率的图。
图7是表示对于1/3倍频程中心频率的吸音率比率的图。
具体实施方式
以下一边参照附图一边对于本发明的优选的实施的方式进行说明。
[第一实施方式]
(吸音板的构成)
本发明的第一实施方式的吸音板1,是吸收来自声源的声音的吸音板,如作为主视图的图1A,和作为图1A的A-A剖面图的图1B所示,具有表面多孔板2a、背面板3、框体4、内部多孔板2b、补强肋5。吸音板1中使表面多孔板2a面对声源而进行配置。
表面多孔板2a和内部多孔板2b,是铝等的金属制,具有许多圆形的贯通孔。还有,贯通孔的形状不限定为圆形,也可以是四边形和三角形等的多边形状,也可以是狭缝形状。贯通孔的形状为这样的形状时,所谓贯通孔的直径,就是与孔面积等价的圆形的孔的直径。以后,将表面多孔板2a和内部多孔板2b统称为多孔板2。还有,内部多孔板2b的数不限定为1片,也可以是2片以上。
表面多孔板2a的板厚、开口率及贯通孔的孔径,以使之对于通过贯通孔的空气产生粘性的方式设定。例如,表面多孔板2a的板厚为0.8~1.2mm左右,表面多孔板2a的开口率为8%以下,表面多孔板2a的贯通孔的孔径为0.8~1.5mm左右。同样,内部多孔板2b的板厚、开口率及贯通孔的孔径,以使之对于通过贯通孔的空气产生粘性的方式设定。例如,内部多孔板2b的板厚为0.3mm左右,内部多孔板2b的开口率为0.5%左右,内部多孔板2b的贯通孔的孔径为0.5mm左右。还有,上述的板厚、开口率及贯通孔的孔径是例示,并不受其限定。表面多孔板2a也可以板厚是0.3~2.0mm,贯通孔的孔径是0.5~2.0mm,开口率是10%。
背面板3是铁和不锈钢等的金属制或树脂制,在与多孔板2(表面多孔板2a,内部多孔板2b)之间空出规定的间隔并与多孔板2相对配置。框体4是铁和不锈钢等的金属制或树脂制,围绕由表面多孔板2a和背面板3夹着的空间。由此,在表面多孔板2a和内部多孔板2b之间,形成有第一空气层6a,并且在内部多孔板2b和背面板3之间,形成有第二空气层6b。在与多孔板2的面正交的方向,第一空气层6a的厚度和第二空气层6b的厚度,例如是30mm。还有,第一空气层6a的厚度和第二空气层6b的厚度也可以不同。以后,将第一空气层6a和第二空气层6b统称为空气层6。
补强肋5是金属制或树脂制,具有与吸音板1的短边同等的长度,并以与吸音板1的短边平行的方式被安装在表面多孔板2a的背面板3侧的面、和内部多孔板2b的背面板3侧的面上。另外,补强肋5沿着吸音板1的长边以规定的间隔分别各安装4根。还有,补强肋5的数量不限定于此。由此,表面多孔板2a的背面板3侧的面和内部多孔板2b的背面板3侧的面分别被分割成5块。以后,将多孔板2的背面板3侧的面被多个补强肋5分割出的数量称为多孔板面分割数。还有,设于表面多孔板2a的补强肋5和设于内部多孔板2b的补强肋5中,相邻的补强肋5之间的间隔、补强肋5的条数、补强肋5的宽度B等可以相同,也可以不同。
在这样的构成中,声波通过多孔板2(表面多孔板2a,内部多孔板2b)的贯通孔时,由于与贯通孔的内壁面的摩擦,声波能的一部分转换成热能。由此,噪音被吸收。就是说,噪音在通过表面多孔板2a的贯通孔时、和通过内部多孔板2b的贯通孔时分别被吸收。
在此,如图1A所示,设相邻的补强肋5间的距离为a时,以满足下式(1)的方式,设计相邻的补强肋5间的距离a和多孔板2(表面多孔板2a,内部多孔板2b)的板厚t。
a/t<K1×(A/p0)1/2…式(1)
在此,A是多孔板2的允许应力,p0是设计载荷(作用于多孔板2的设计上的载荷),K1=0.93。还有,系数K1定义为边界条件下的系数K1a,和设计上的安全系数K1b相乘的值。
上述的式(1)表示的是,将多孔板2视为两端被支承的一维梁时,对该梁施加模拟列车风压的均匀分布载荷时受到最大弯矩的梁中央部的应力值、与由多孔板2的材料的屈服强度决定的允许应力的关系。梁中央部的应力值是理论值,该计算式一般公开梁的两端每一端的支承条件。即,梁中央部的应力值,根据梁的两端的支承条件变化。两端单纯支承时,边界条件的系数K1a=1.15。在此,所谓两端单纯支承,是指梁的一端固定在支承底座上,另一端在支承底座上自由支承的状态。另外,两端固定支承时,边界条件的系数K1a=1.41。在此,所谓两端固定支承,是指梁的两端分别固定在支承底座上的状态。于是,作为梁的两端的支承条件,上述的两种为两个极端的条件。因此,在实际构造中,边界条件的系数K1a必然是上述的2个值之间的值。
另外,用于计算多孔板的允许应力A的值的算式,例如“铁路结构物等设计标准·同解说”等所示,为预期安全系数的计算式。在安全系数中,有载荷系数、结构分析系数、材料系数、构件系数、结构物系数等。总的安全系数,根据使设计载荷p0为列车风压形成的最大压力值(极限状态),或运行状态下的变动压力值(使用极限状态)而有所不同。在此,所谓极限状态,是台风等的异常状态,所谓使用限界状态,是列车通常行驶的状态。使设计载荷p0为最大压力值时,设计上的安全系数K1b=0.81。另外,使设计载荷p0为变动压力值时,设计上的安全系数K1b=1.0。
因此,作为边界条件的系数K1a和设计上的安全系数K1b相乘的值的K1为0.93~1.41,但在作为最小值的0.93的情况下如果满足式(1),则对于设计载荷p0能够满足多孔板2的允许应力A。还有,多孔板2的允许应力A,若考虑向多孔部(设有贯通孔的部分)的应力集中,则成为未设贯通孔的材料本身的允许应力的1/3。
如此,通过满足式(1),能够提高吸音板1的屈服强度,以使之能够耐受高速铁路车辆的通过时的列车风压等。
但是,若在多孔板2上安装多个补强肋5,则贯通孔的一部分被补强肋5堵塞,吸音面积减少,因此,仍旧是按照不设补强肋5而只有多孔板2和空气层6的系统进行吸音设计时的多孔板2的设计开口率α,则吸音板1的吸音性能降低。
因此,以满足下式(2)的方式,设计多孔板2(表面多孔板2a,内部多孔板2b)的开口率β。
β=(B(1-1/N)/a+1)×α×K2…式(2)
在此,B是补强肋5的宽度(参照图1A),N是多孔板面分割数(多孔板2的面被补强肋5分割的数量),α是不设补强肋5而进行吸音设计时的多孔板2的设计开口率,K2是取0.8以上、1.4以下的值的系数。
上述的式(2),是根据也包含安装有补强肋5的这部分的面积在内的多孔板2的总面积、与除去安装有补强肋5的这部分的面积的多孔板2的面积的面积比,以使吸音性能保持在与原本的设计值大致等同的方式,计算开口率。
在此,K2=1.0时,吸音性能与原本的设计值相等。而且,K2=0.8~1.4的范围时,吸音性能与原本的设计值大致等同。由此,即使在多孔板2上安装补强肋5时,也能够维持吸音板1的吸音性能。
还有,也可以与平行于吸音板1的短边的补强肋5相区别,设置与吸音板1的长边平行的补强肋。在设有这样的补强肋的情况下,通过满足式(1)和式(2),也能够一边提高吸音板1的屈服强度,一边维持吸音板1的吸音性能。
(吸音性能评价)
接着,评价吸音板1的吸音性能。使不设补强肋5而进行吸音设计时的表面多孔板2a的设计开口率α为3%,使K2的值为不同的1.0、0.8(下限值)、1.4(上限值)、0.75(下限值以下)、1.45(上限值以上)这5种,使表面多孔板2a的开口率β为不同的3%、2.4%、4.2%、2.25%、4.35%这5种。表面多孔板2a的计算条件(规格)显示在表1中。另外,使第一空气层6a和第二空气层6b的厚度(与多孔板2的面正交的方向的厚度)分别为30mm,内部多孔板2b的板厚为0.3mm,内部多孔板2b的开口率为0.5%,内部多孔板2b的孔径为0.5mm。
【表1】
各频段的吸音率显示在图2中。K2=1.0的附注(1)虽是吸音性能与吸音设计的设计值相等,但是在K2=0.8的附注(2)和K2=1.4的附注(3)中,可知为接近设计值的吸音性能。
各频段的吸音率比率显示在图3中。吸音率比率是从1中减去用吸音率除以设计目标的吸音率(设计吸音率)的值而得到的值,表示吸音率相对于设计吸音率的偏移量。若该吸音率比率为0%,则偏移量是0,与设计吸音率一致。附注(1)的吸音率是设计目标值,因此吸音率比率为0%,但在附注(2)、附注(3)中,吸音率比率低于20%。在此,例如,设计吸音率为0.92左右时,若吸音率比率有20%的差异,则噪音碰到吸音板1而反冲的每1次反射为5dB左右,声音的减少量变小。由此可知,吸音率比率20%以内认为是设计上合适的范围。那么,附注(2)、附注(3)的吸音率比率低于20%,可知附注(2)、附注(3)的吸音率与设计吸音率大致等同。
还有,K2的值在0.8~1.4的范围内的附注(2)和附注(3)中,吸音率比率低于20%,相对于此,K2的值在0.8~1.4的范围外的附注(4)和附注(5)中,可知有吸音率比率大于20%的频带。因此,特别是K2的值在0.8~1.4的范围时,可知吸音性能为接近原本的设计值的值。
(效果)
如上所述,根据本实施方式的吸音板1,相邻的补强肋5间的距离a,和多孔板2的板厚t满足上述的式(1)。由此,能够提高吸音板1的屈服强度,以使之能够耐受高速铁路车辆的通过时的列车风压等。另外,多孔板2的开口率β满足上述的式(2)。由此,即使在多孔板2上安装有补强肋5时,也能够维持吸音板1的吸音性能。
另外,使K2的值处于0.8以上、1.4以下,能够使吸音板1的吸音性能与原本的设计值大致等同。由此,能够恰当地维持吸音板1的吸音性能。
[第二实施方式]
(吸音板的构成)
接下来,对于本发明的第二实施方式的吸音板201进行说明。还有,对于与上述构成要素相同的构成要素,附加相同的参照编号并省略其说明。本实施方式的吸音板201与第一实施方式的吸音板1的不同点是,表面多孔板2a和内部多孔板2b的至少一方的板厚t,比不设补强肋5而进行吸音设计时的多孔板2的设计板厚t’厚,并且在作为板厚t’的多孔板2(表面多孔板2a,内部多孔板2b)上设有补强肋5时的多孔板2的开口率β’满足下式(3),并且,作为板厚t的多孔板2的开口率γ满足下式(4)。
β’=(B(1-1/N)/a+1)×α×1…式(3)
γ=t/t’×β’×K3…式(4)
在此,B是补强肋5的宽度,N是多孔板面分割数(多孔板2的面被补强肋5分割的数量),α是不设补强肋5而进行吸音设计时的多孔板2的设计开口率,t’是不设补强肋5而进行吸音设计时的多孔板2的设计板厚,K3是取0.85以上、1.15以下的值的系数,t’<t。还有,式(3)是在式(2)中,作为“K2=1”而计算开口率β’,没有设置补强肋5时,作为“N=1”计算开口率β’即可。
为了使吸音板201的屈服强度提高,增厚多孔板2的板厚即可。但是,以设计板厚t’实施吸音设计,以设计开口率α或设计板厚t’时的开口率β’满足吸音性能时,即,满足式(3)时,若将多孔板2的板厚从t’增厚至t,则空气难以通过贯通孔,因此,仍旧为设计开口率α或设计板厚t’时的开口率β’时,吸音性能降低。
因此,以满足上述的式(4)的方式设计多孔板2(表面多孔板2a,内部多孔板2b)的开口率γ。在此,K3=1.0时,吸音性能与原本的设计值大致相同。而且,K3=0.85~1.15的范围时,吸音性能为接近原本的设计值的值。由此,即使在多孔板2上安装补强肋5,再增厚多孔板2的板厚时,也能够维持吸音板201的吸音性能。
还有,也可以与平行于吸音板201的短边的补强肋5相区别,设置与吸音板201的长边平行的补强肋。在设有这样的补强肋的情况下,通过满足式(1)、式(3)和式(4),也能够一边提高吸音板201的屈服强度,一边维持吸音板201的吸音性能。
(吸音性能评价)
接着,评价吸音板201的吸音性能。使不设补强肋5而进行吸音设计时的表面多孔板2a的设计开口率α为3%,使不设补强肋5而进行吸音设计时的表面多孔板2a的设计板厚t’为0.8mm。另外,作为设计开口率α且设计板厚t’的吸音性能为设计目标值(设计吸音率),相对于此,将表面多孔板2a的板厚t增厚至1.2mm,使用K3的值为不同的0.67(开口率仍旧是3%)、1.0、0.85(下限值)、1.15(上限值)、0.8(下限值以下)、1.2(上限值以上)这6种进行评价。表面多孔板2a的计算条件(规格)显示在表2中。另外,使第一空气层6a和第二空气层6b的厚度(与多孔板2的面正交的方向的厚度)分别为30mm,内部多孔板2b的板厚为0.3mm,内部多孔板2b的开口率为0.8%,内部多孔板2b的孔径为0.5mm。
【表2】
各频段的吸音率显示在图4中。另外,各频段的吸音率比率显示在图5中。附注(1)是基于吸音设计的设计吸音率,相对于附注(1),将表面多孔板2a的板厚t增厚至1.2mm的附注(2)中,吸音率大幅偏离设计吸音率,可知有吸音率比率为20%以上的频带。因此,相对于以设计开口率α且设计板厚t’满足吸音性能的,若不改变设计开口率α而将表面多孔板2a的板厚从t’增厚至t,则可知吸音性能降低。另外,在附注(3)~(5)中,吸音率比率低于20%,可知吸音率为接近设计吸音率的值。特别是K3=1.0的附注(3)的情况,吸音率比率为10%以下,可知为与设计吸音率等同的吸音率。
还有,K3的值在0.85~1.15的范围内的附注(3)、附注(4)和附注(5)中,吸音率比率低于20%,相对于此,K3的值在0.85~1.15的范围外的附注(2)、附注(6)和附注(7)中,可知有吸音率比率大于20%的频带。因此,特别是K3的值在0.85~1.15的范围时,可知吸音性能为接近原本的设计值的值。
此外,评价吸音板201的吸音性能。使不设补强肋5而进行吸音设计时的表面多孔板2a的设计开口率α为5%,使不设补强肋5而进行吸音设计时的表面多孔板2a的设计板厚t’为0.8mm。另外,作为设计开口率α且设计板厚t’的吸音性能为设计目标值,相对于吸音性能为设计目标值的,使用计算条件(规格)不同的表面多孔板2a进行评价。表面多孔板2a的计算条件(规格)显示在表3中。另外,使第一空气层6a和第二空气层6b的厚度(与多孔板2的面正交的方向的厚度)分别为30mm,内部多孔板2b的板厚为0.3mm,内部多孔板2b的开口率为0.8%,内部多孔板2b的孔径为0.5mm。
【表3】
对于1/3倍频程中心频率的吸音率显示在图6中。另外,对于1/3倍频程中心频率的吸音率比率显示在图7中。附注(1)是基于吸音设计的设计吸音率。K3的值在0.85~1.15的范围内的附注(4)和附注(5)中,吸音率比率低于20%,相对于此,K3的值在0.85~1.15的范围外的附注(2)和附注(3)中,可知有吸音率比率大于20%的频带。因此,K3的值为0.85~1.15的范围时,可知吸音性能为接近原本的设计值的值。
(效果)
如上所述,根据本实施方式的吸音板201,相邻的补强肋5间的距离a,和多孔板2的板厚t满足上述的式(1)。由此,能够提高吸音板201的屈服强度,以使之能够耐受高速铁路车辆的通过时的列车风压等。另外,在设计板厚t’的多孔板2上设有补强肋5时的多孔板2的开口率β’满足上述式(3),并且,作为板厚t的多孔板2的开口率γ满足上述的式(4)。由此,即使在多孔板2上安装补强肋5,此外再增厚多孔板2的板厚,也能够维持吸音板201的吸音性能。
另外,使K3的值处于0.85以上、1.15以下,能够使吸音板201的吸音性能为接近原本的设计值的值。由此,能够恰当地维持吸音板201的吸音性能。
(本实施方式的变形例)
以上,说明了本发明的实施方式,但具体例不过是例示,并非特别用于限定本发明,具体的构成等可以适宜设计变更。另外,发明的实施的方式所的作用和效果,不过是列举由本发明产生的最佳的作用及效果,本发明的作用及效果并不限定为本发明的实施方式所述的。
【符号的说明】
1 201吸音板
2 多孔板
2a 表面多孔板
2b 内部多孔板
3 背面板
4 框体
5 补强肋
6 空气层
6a 第一空气层
6b 第二空气层

Claims (2)

1.一种吸音板,其特征在于,其为吸收来自声源的声音的吸音板,所述吸音板具备:
具有多个贯通孔的多孔板;
在与所述多孔板之间空出规定的间隔并与所述多孔板相对配置的背面板;
围绕由所述多孔板和所述背面板夹着的空间的框体;
在所述多孔板的所述背面板侧的面上以规定的间隔安装的多个补强肋;相邻的所述补强肋间的距离a与所述多孔板的板厚t满足下式(1),并且所述多孔板的开口率β满足下式(2),
a/t<K1×(A/p0)1/2 …式(1)
β=(B(1-1/N)/a+1)×α×K2 …式(2)
在此,A是所述多孔板的允许应力,p0是作用于所述多孔板的设计上的载荷,K1=0.93,B是所述补强肋的宽度,N是所述多孔板的面被所述补强肋分割的数量,α是不设所述补强肋而进行吸音设计时的所述多孔板的设计开口率,K2是系数,K2的值是0.8以上且1.4以下。
2.一种吸音板,其特征在于,其是吸收来自声源的声音的吸音板,所述吸音板具备:
具有多个贯通孔的多孔板;
在与所述多孔板之间空出规定的间隔并与所述多孔板相对配置的背面板;
围绕由所述多孔板和所述背面板夹着的空间的框体;
在所述多孔板的所述背面板侧的面上以规定的间隔安装的多个补强肋;
相邻的所述补强肋间的距离a与所述多孔板的板厚t满足下式(1),并且在板厚为t’的所述多孔板上设有所述补强肋时的所述多孔板的开口率β’满足下式(3),且板厚为t的所述多孔板的开口率γ满足下式(4),
a/t<K1×(A/p0)1/2 …式(1)
β’=(B(1-1/N)/a+1)×α×1 …式(3)
γ=t/t’×β’×K3 …式(4)
在此,A是所述多孔板的允许应力,p0是作用于所述多孔板的设计上的载荷,K1=0.93,B是所述补强肋的宽度,N是所述多孔板的面被所述补强肋分割的数量,α是不设所述补强肋而进行吸音设计时的所述多孔板的设计开口率,t’是不设所述补强肋而进行吸音设计时的所述多孔板的设计板厚,t’<t,K3为系数,K3的值是0.85以上且1.15以下。
CN201510093242.4A 2014-03-06 2015-03-02 吸音板 Active CN104894989B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-044041 2014-03-06
JP2014044041A JP6190291B2 (ja) 2014-03-06 2014-03-06 吸音パネル

Publications (2)

Publication Number Publication Date
CN104894989A CN104894989A (zh) 2015-09-09
CN104894989B true CN104894989B (zh) 2017-05-24

Family

ID=54027919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510093242.4A Active CN104894989B (zh) 2014-03-06 2015-03-02 吸音板

Country Status (2)

Country Link
JP (1) JP6190291B2 (zh)
CN (1) CN104894989B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6495094B2 (ja) * 2015-05-19 2019-04-03 株式会社神戸製鋼所 多孔板
US20180265856A1 (en) 2015-08-28 2018-09-20 Amano Enzyme Inc. Endotoxin-reduced thermolysin
JP6352336B2 (ja) * 2015-11-27 2018-07-04 株式会社神戸製鋼所 多孔吸音板
JP6790978B2 (ja) * 2017-04-11 2020-11-25 株式会社デンソー 送風装置
EP3678127A4 (en) * 2017-08-28 2020-09-09 FUJIFILM Corporation SOUND INSULATION STRUCTURE AND SOUND INSULATION SYSTEM
WO2019059046A1 (ja) * 2017-09-25 2019-03-28 富士フイルム株式会社 防音構造体
TWI752540B (zh) * 2020-06-30 2022-01-11 國立成功大學 吸音裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100394A (ja) * 2005-10-04 2007-04-19 Univ Of Yamanashi 吸音パネル
JP2008138505A (ja) * 2006-11-02 2008-06-19 Kobe Steel Ltd 吸音構造体
JP2013087433A (ja) * 2011-10-14 2013-05-13 Kobe Steel Ltd 透光性吸音パネル
CN203007859U (zh) * 2012-12-31 2013-06-19 上海拓孚环保科技有限公司 一种用于移动声源的吸音板
CN203320433U (zh) * 2013-07-04 2013-12-04 衡水中铁建环保工程有限公司 一种高速铁路金属声屏障单元板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567513B2 (ja) * 2004-04-30 2010-10-20 株式会社神戸製鋼所 多孔質吸音構造体
JP2007058109A (ja) * 2005-08-26 2007-03-08 Kobe Steel Ltd 吸音用多孔板とこれを用いた吸音板および吸音用多孔板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100394A (ja) * 2005-10-04 2007-04-19 Univ Of Yamanashi 吸音パネル
JP2008138505A (ja) * 2006-11-02 2008-06-19 Kobe Steel Ltd 吸音構造体
JP2013087433A (ja) * 2011-10-14 2013-05-13 Kobe Steel Ltd 透光性吸音パネル
CN203007859U (zh) * 2012-12-31 2013-06-19 上海拓孚环保科技有限公司 一种用于移动声源的吸音板
CN203320433U (zh) * 2013-07-04 2013-12-04 衡水中铁建环保工程有限公司 一种高速铁路金属声屏障单元板

Also Published As

Publication number Publication date
JP2015169774A (ja) 2015-09-28
JP6190291B2 (ja) 2017-08-30
CN104894989A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
CN104894989B (zh) 吸音板
CN202595645U (zh) 一种适用于轨道交通的声屏障
CN105803965B (zh) 一种宽频带吸声单元板
DE102007046253A1 (de) Windkraftanlagen-Rotorblatt mit Akustikverkleidung
DE102010061638A1 (de) Flügelschalldämpfer im Bogenstück für eine Gasturbine
CN105803966A (zh) 一种新型结构铁路声屏障
CN107245964A (zh) 一种基于Bragg散射声子晶体的吸声型声屏障顶部结构
CN105755974A (zh) 阻尼式高抗荷高吸声铁路金属声屏障
CN106223222A (zh) 基于宽频带微穿孔板吸声体的声屏障单元板及其设计方法
CN104727241A (zh) 整体式多层微穿孔金属声屏障
CN105803964B (zh) 双曲面锯齿型阻尼可控式减载屏障
EP2210992A3 (de) Thermoaktive Fertigteilplatte mit Akustikabsorber
CN205421054U (zh) 高铁用桥梁金属高强声屏障
CN111501594A (zh) 一种基于仿生学原理的交通噪声防治声屏障结构
RU2362855C1 (ru) Шумопоглощающая панель
CN201770950U (zh) 一种用于高速铁路的声屏障
CN106245549B (zh) 城市轨道交通声屏障高效吸声单元板及其设计方法
DE19952689A1 (de) Schalldämmwand und Verwendung derselben
JP6635836B2 (ja) 圧力変動低減構造
CN204875576U (zh) 一种尖劈噪音处理屏障
CN108049320A (zh) 中空板式声屏障单元板
EP1954919B1 (de) Vorrichtung zum schalldämpfen bei kraftwerken
CN204097894U (zh) 轻质高强金属陶瓷复合吸声板
CN210482102U (zh) 一种隔声板
CN207143759U (zh) 一种轻轨隔声装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant