CN104810126A - 具有超薄封闭二氧化硅层的磁性粒子及其制造和使用方法 - Google Patents

具有超薄封闭二氧化硅层的磁性粒子及其制造和使用方法 Download PDF

Info

Publication number
CN104810126A
CN104810126A CN201510236646.4A CN201510236646A CN104810126A CN 104810126 A CN104810126 A CN 104810126A CN 201510236646 A CN201510236646 A CN 201510236646A CN 104810126 A CN104810126 A CN 104810126A
Authority
CN
China
Prior art keywords
magnetic particle
silicon dioxide
particle
magnetic
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510236646.4A
Other languages
English (en)
Other versions
CN104810126B (zh
Inventor
吉多.亨尼格
卡尔海因茨.希尔登布兰德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthcare Diagnostics GmbH Germany
Original Assignee
Siemens Healthcare Diagnostics GmbH Germany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36968634&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN104810126(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Healthcare Diagnostics GmbH Germany filed Critical Siemens Healthcare Diagnostics GmbH Germany
Publication of CN104810126A publication Critical patent/CN104810126A/zh
Application granted granted Critical
Publication of CN104810126B publication Critical patent/CN104810126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/1013Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by using magnetic beads
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/112Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Compounds Of Iron (AREA)
  • Saccharide Compounds (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Soft Magnetic Materials (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种涂有二氧化硅(SiO2)的磁性粒子,其中,二氧化硅层封闭、致密,且具有厚度极薄的特点,其厚度仅在几纳米范围内(下文也称其为“二氧化硅纳米层”)。此外,本发明还涉及一种制备这种含二氧化硅磁性粒子的改良方法,与现有技术相比,通过这种方法不仅能获得具有封闭二氧化硅层的产品,还能大幅提高纯度。通过这种新方法还能避免磁铁矿表面不受控制地形成硅酸盐聚集体,从而对下文将要说明的特性和生物用途产生有利影响。此外,这种新方法还可在分级离心基础上减少纳米固体颗粒。本发明的磁性粒子具有最佳磁化性能和悬浮性能,并且能非常有利地脱离塑料表面。这种涂有二氧化硅的高纯度磁性粒子优选用于从细胞样品或组织样品中分离核酸,其中,这种样品基质分离借助于磁场而实现。这种粒子特别适用于核酸(大多源于生物体样品)的自动提纯,以便通过各种扩增方法对其进行检测。

Description

具有超薄封闭二氧化硅层的磁性粒子及其制造和使用方法
本申请是申请日为2006年06月13日、申请号为200680020971.6且名称为“具有超薄封闭二氧化硅层的磁性粒子及其制造和使用方法”的分案申请。
技术领域
本发明涉及一种涂有二氧化硅(SiO2)的磁性粒子,其中,硅酸盐层封闭、致密,且具有厚度极薄的特点,其厚度仅在几纳米范围内(由此,下文也称其为“二氧化硅纳米层”)。此外,本发明还涉及一种制备这种含硅酸盐磁性粒子的改良方法,与现有技术相比,这种方法可以获得具有封闭硅酸盐层的产品,从而使纯度大幅提高。通过这种新方法还能避免磁铁矿表面不受控制地形成硅酸盐聚集体,从而有利于下文将要说明的特性和生物用途。此外,这种新方法还可在分级离心基础上减少纳米固体颗粒。本发明的磁性粒子具有最佳磁化性能和悬浮性能,并且能非常有利地脱离塑料表面。这种涂有二氧化硅的高纯度磁性粒子优选用于从细胞样品或组织样品中分离核酸,其中,这种样品基质分离借助于磁场而实现。这种粒子特别适用于对核酸(大多源于生物体样品)自动提纯,以便通过各种扩增方法对其进行分析。
背景技术
最近一段时间以来,分子诊断学变得越来越重要。分子诊断学已进入了对疾病的临床诊断阶段。这包括分子标记测量,这种测量可改善疾病诊断、早期查明、治疗过程中的病症监控、疾病预后和药物疗效或副作用的预测(包括检测传染病病原体,检测基因组突变,依据给定的或在病情发展过程中取得的遗传样品预测药物的疗效和副作用,发现正在扩散的肿瘤细胞以及疾病易感体质风险因数的鉴定等)。目前,兽医学、环境分析学和食品检测领域也应用到了分子诊断学的方法。更进一步的应用为病理/细胞学研究院或法律问题调查中展开的研究。基因诊断学目前也应用于保健领域(例如对库存血进行是否含有传染病病原体的检验),立法者计划通过法律手段对这种检验加以规范。临床分子诊断学所用的方法(例如杂交技术或扩增技术,如PCR(Polymerase Chain Reaction,聚合酶链反应)、TMA(Transcription MediatedAmplification,转录介导的扩增)、LCR(Ligase Chain Reaction,连接酶链反应)、bDNA(branched DNA,分支DNA)或NASBA-(Nucleic Acid SequenceBased Amplification,基于核酸序列的扩增))在基础性科学研究领域中也属于常规方法。
实施分子诊断学分析的前提通常是从待分析样品中分离出DNA或RNA。虽然存在允许核酸分离和检测反应同时进行的分析方法(例如基于bDNA的试验),但作为分子诊断学中应用最广泛的生物分子方法,PCR由于会受外因影响而几乎总是要求预先对核酸进行提纯。
传统的核酸制备方法以液-液萃取为基础。例如从组织样品中苯酚-氯仿萃取DNA。但巨大的工作量和部分情况下需要使用剧毒物质的条件,使这类方法在近年来远不如基于固相的方法受欢迎。
使用基于固相的核酸萃取方法时,无论具体问题是什么,样品制备属于分析过程,其大致可分为四个基本步骤:1.调整固相;2.使分析物与固相进行选择性结合或特异结合,去除多余的样品基质;3.从固相中洗去有可能存在的杂质;4.对提纯后浓缩的分析物进行洗脱。
在核酸的选择性和可逆性结合方面利用了核酸早已为人所知的特性,在高离液盐或其他高盐(即高浓度离液盐或其他高浓度盐)条件下,将核酸特异性地与含二氧化硅的吸附材料(例如玻璃粉[Proc.Natl.Acad.USA 76(1979)615-619,Anal.Biochem.121(1982)382-387]、硅藻土diamatomeenerde[Methods Enzymol.65(1979)176-182]或天然硅石[J.Clin.Microbiol.28(1990)495-503,EP 0 389 063 B1])结合。随后借助一种含有水溶性有机溶剂的缓冲剂(通常为低级脂肪醇)从吸附剂中洗去杂质,对基质进行干燥,并用蒸馏水或所谓的低盐缓冲剂(即低离子强度的缓冲剂)对所吸附的核酸进行洗脱。
在价格低廉的全自动核酸分离方面,使用超顺磁吸附材料的方法的作用越来越大。
最简单的实施例(WO 01/46404)是在对为技术用途(例如电子照相调色剂)而商业化制备的磁性粒子不采取进一步改性措施的情况下就将其直接用于核酸制备。
这种大规模生产的产品虽然满足了几个最重要的先决条件,例如一定的核酸吸附率和磁化率,但在另一方面,这些通过商业途径可购得的产品并未满足某些对于取得高灵敏及可再现结果而言不可或缺的重要边界条件。举例而言,在病毒诊断(例如HCV或HIV)领域非常重要的一点是,从血清或血浆中萃取定量的病毒核酸(即接近100%的产率),以便从中推导出正确的血清/血浆病毒浓度,并据此决定所需采用的治疗方法。磁性粒子的纯度在光学分析中也起着决定性作用。正是由于磁性粒子大多仍呈微孔状,因而从粒子内部扩散出来的铁原子会使溶液变色,从而对透射测量和反射测量造成严重影响。
因此,目前有大量描述生物用途磁性粒子研发情况的文献,尤其是手动核酸分离和自动核酸分离方面的研发情况。
其中,表面具有大密度SiOH基团的磁性粒子具有很重要的作用。因为SiOH基团可与核酸进行可逆结合。二氧化硅改性磁性粒子也是本发明的主题。
为能取得高灵敏、定量及可再现结果,这种磁性粒子除磁化性和核酸结合能力外还须符合一系列其他边界条件,下文将对这些边界条件进行详细说明。
粒度和粒度分布:
事实表明,由Fe3O4(磁铁矿)构成、主粒度范围约为0.1μm至1μm的电子照相调色剂用磁性粒子(例如可从Fa.Lanxess公司购得的名为Bayoxide E的产品)具有近乎理想的粒度条件。因为通过这种粒度可实现对于生物用途而言重要的“悬浮稳定性”的重要边界条件。这种悬浮稳定性必须满足的条件是:摇匀后几分钟(例如10至15分钟)内(核酸的吸附阶段)不出现明显的沉淀现象,而施加磁场后,为尽可能缩短分析时间,带有核酸的磁性粒子必须在短短的几分钟(例如1至5分钟)内完全分离。
就这一方面而言,可使用的Fe3O4(磁铁矿)磁性粒子上仍然存在的缺陷是:还含有少量纳米范围内的极细的磁性粒子。
这种会因其较大表面而结合大量核酸的非期望副产品在磁场中无法在短短的几分钟内分离,因而(正是在核酸的定量测定方面)可能会导致这部分核酸所含信息的丢失。
除产量损失外,这还会导致出现浑浊的黄褐色上清液,这种黄褐色上清液不仅会给产品销售带来不利影响,也会对洗脱液的光度分析造成一定影响。
因此,如果能针对此处所述的生物用途对这部分“纳米磁性粒子”进行分离,是非常有利的。
硅酸盐含量:
如上文所述,几种大规模生产的磁性粒子(例如Fa.Lanxess公司的Bayoxide E系列)在未经过专门的二氧化硅后处理的情况下仍具有一定的核酸结合能力,这是因为这类磁性粒子在大批量生产下,在表面也具有少量SiOH基团。这类产品由于核酸吸附量较低而相应需要相对较高的磁性粒子量,这会加大小体积样品的处理难度。
此外,这类产品具有相对于此处所述用途而言不利的容器壁(例如进行核酸提纯时通常所需用到的微量滴定板上的玻璃或塑料壁)润湿特性。因此,悬浮液中残留有大量未改性的相对疏水的磁性粒子,这些磁性粒子吸附在微量滴定板壁上,从而影响移液精度,并造成产量损失。
在此情况下,具有大密度SiOH表面基团的粒子的特性非常有利,这种粒子由于其所具有的亲水性可以非常有利地从塑料壁(例如上述微量滴定板)上滚落。
因此,在很多用于核酸分离的磁性粒子研发产品中,二氧化硅含量相对于磁铁矿含量更为重要。如WO 01/71732中所述,在存在磁性粒子的情况下对活性硅土化合物(例如四乙氧基硅烷(TEOS))进行水解可得到二氧化硅粒子,这些二氧化硅粒子可被所夹杂的磁铁矿磁化。由于表面的SiOH基团密度很大,因此,这种粒子虽然具有良好的核酸结合能力和有利的微量滴定板壁润湿特性,但在另一方面,由于磁铁矿含量减少,粒子的磁性也相应地被大幅削弱。此外,通过这种方式制成的磁性二氧化硅粒子具有较为不利的形态特性,例如其粒度和粒度分布非常不均匀,其中需要指出的是,大体积的非球形粒子在自动移液过程中可能会引起堵塞。
可萃取成分:
用磁性粒子法分离出来的核酸通常还需接受进一步的处理,例如PCR(Polymerase Chain Reaction,聚合酶链反应)、TMA(Transcription MediatedAmplification,转录介导的扩增)、LCR(Ligase Chain Reaction,连接酶链反应)、或NASBA-(Nucleic Acid Sequence Based Amplification,基于核酸序列的扩增)。此处涉及的是高灵敏的酶控方法,会被各种例如具有酶阻断剂作用的杂质和铁化合物影响。
因此,用于核酸提纯的磁性粒子必须满足特别的纯度要求。如果使用大规模生产的氧化铁(例如Fa.Lanxess公司的Bayoxide),带来的问题就是不可忽视的,因为磁铁矿粒子具有一定的孔隙度和表面粗糙度。因此,杂质可能在氧化铁制备过程和随后的二氧化硅处理过程中嵌入微孔内,这些杂质在接下来的过程中不是起到酶阻断剂的作用,就是由于自身颜色而对光度分析造成干扰。
发明内容
从可购得的磁性粒子出发,本发明的目的是制备一种具有大密度SiOH表面基团和致密的封闭硅酸盐表面层的二氧化硅改性磁性粒子。通过二氧化硅改性,初始产品的形态和极好的磁性都不会受到较大影响。二氧化硅涂层也会给塑料表面的润湿特性带来有利影响。此外,二氧化硅改性磁性粒子在可萃取杂质方面经过了一定程度的优化,使得磁铁矿的芯内不会渗出杂质和铁化合物,从而避免生物检测反应和光度分析受到干扰。
现有技术
WO 03/058649从Fa.Lanxess公司的磁性粒子Bayoxide E出发,说明了一种用水玻璃溶液(例如Fa.Cognis公司的水玻璃HK 30)在粒子表面沉积二氧化硅的方法。通过对Bayoxide E/水玻璃溶液的pH值进行逐步稀释,即等同于将pH值从强碱性(pH 11.5)逐步转移到中性(pH 7),就可在磁性粒子表面进行柔和的二氧化硅沉积。如WO 03/058649中所述,如果通过添加酸来使pH值下降(WO 98/31840),酸滴入点上的水玻璃就会不受控制地转变成二氧化硅(SiO2),磁性粒子积聚在二氧化硅的结构中,从而使得上文所述的在磁性粒子表面进行的可控二氧化硅沉积无法实现。尽管如此,通过WO 03/058649中所说明的“成批处理法”仍无法完全避免表面上形成极小的二氧化硅聚集体。
也就是说,WO 03/058649中所述的二氧化硅改性磁性粒子虽然在表面结构和核酸结合能力方面显示出了良好特性,但在对相关悬浮液进行长期性能检验时(几个星期),观察到了非常不利的黄褐色上清液。在通常都会使用表面活性剂的生物化验中,只需较短时间就能观察到这种效果。除水玻璃成分外,通过分析法还能从这部分有色上清液中检测出痕量的铁化合物和极细的磁铁矿粒子。显然,这些杂质是从二氧化硅表面嵌入多孔的磁性粒子结构内,并从此处开始随时间推移逐步向外扩散。此外,这些观察结果还表明了,通过WO 03/058649中所说明的成批处理法无法制备完全封闭或分布均匀的硅酸盐层,因而也无法避免铁化合物的渗出。
本申请还涉及以下各项:
项1.一种涂有二氧化硅的磁性粒子,其特征在于,
所述涂有二氧化硅的磁性粒子具有一个最大层厚为5nm的含有硅酸盐的封闭表面涂层。
项2.根据项1所述的涂有二氧化硅的磁性粒子,其中,硅酸盐的最大层厚为2nm。
项3.根据项1所述的涂有二氧化硅的磁性粒子,其中,硅酸盐的最大层厚为0.5nm。
项4.根据项1至3所述的涂有二氧化硅的磁性粒子,其中,磁性材料为氧化铁或磁铁矿。
项5.根据项4所述的涂有二氧化硅的磁性粒子,其特征在于,
粒度分布介于0.1μm和1μm之间。
项6.一种制备根据项1至5所述的粒子的方法,其特征在于,
先通过铁粒子表面特性诱发硅酸盐从水玻璃或硅溶胶中分离出来,并沉积在磁铁矿粒子上,随后通过缓慢、持续的稀释将pH值降到中性pH值,对所述表面进行整平和密封。
项7.一种通过使用根据项1至5所述的磁性粒子来对生物组织样品进行核酸提纯的方法。
项8.根据项7所述的方法,其特征在于,
所述核酸涉及的是RNA或DNA。
项9.根据项7所述的方法,其特征在于,
涉及的是HCV或HIV的RNA。
项10.根据项7所述的方法,其特征在于,
涉及的是来自于固定组织样品的RNA或DNA。
附图说明
图1是用Nanodrop公司的分光计测定的批号为HIE 13266和HIE12106R2的涂二氧化硅磁性粒子的水性上清液的吸收光谱,对照物为水;
图2是在MX4000上对批号为HIE 13266和HIE 12106R2的涂二氧化硅磁性粒子的水性上清液进行定量RT-PCR时的扩增曲线,对照物为水。
具体实施方式
为能除去上文所述的可萃取干扰成分,本发明实施了下文将要加以说明的方法优化措施,其中,本发明的改进之处可通过与WO 03/058649中所述方法的比较而得到体现。在下文将要说明的试验中,使用的并不是WO03/058649中所用的Bayoxide E 8707(不再是标准产品),而是非常相似的型号Bayoxide E 8706。两种情况下涉及的都是由于生产原因而含有少量Si的Fe3O4磁铁矿,其中,型号8707的Fe/Si含量为99.1/0.9,Bayoxide E 8706为99.4/0.4。本发明的方法的重要之处在于表面特性,主要是Fe3O4磁铁矿的pH值。pH值为6.5的Bayoxide E 8707具有弱酸性表面,而本发明所用的型号Bayoxide E 8706所测出的pH值为中性,根据不同批次,甚至测出了弱碱性值(pH 7.5)。本发明令人惊讶地发现,即便是这种弱碱性表面特性也能诱发水玻璃-二氧化硅分离。一般情况下是通过添加酸来从强碱性水玻璃溶液中分离出二氧化硅。
在进行比较试验的过程中,本发明令人惊讶地发现,如果用一种连续处理法(例如膜法)来代替WO 03/058649中所述的pH值逐步降低法,就能在可萃取成分方面取得明显有所改善的结果。其中,使用“错流微滤”,通过一个小时的反应时间可对水玻璃/磁性粒子悬浮液实现提纯,下文将在实例中对此进行详细说明。如M·穆尔德(M.Mulder)在《膜技术基本原理》(BasicPrinciples of Membrane Technology)中所说明的那样,“错流微滤”是一种已知的在低超压情况下进行的分离或提纯方法。这种方法在体积恒定(即通过输入相同体积流量的淡水来置换含有杂质的渗透物体积流量)的情况下实施。与生物学中已知的渗析法不同,微滤过程中,根据孔隙的具体直径,不仅可分离出低分子盐,还能分离出颗粒状杂质。这种连续提纯处理一直进行到排出的渗透物纯度与所输入淡水的纯度相当为止,大约需持续12至15小时。
在用ESCA进行表面分析表征时,本发明令人惊讶地发现,通过这种方式制成的二氧化硅改性磁性粒子在二氧化硅表面方面具有一种新型的(即超薄的)二氧化硅结构,这种二氧化硅结构可以改善提纯效果,提高纯度。这种二氧化硅纳米层的特点在于一个均匀分布在整个粒子表面上的、厚度不超过5nm的硅酸盐层。此外,通过本发明的方法还能实现2nm的层厚,非常有利的情况下也能实现0.5nm至0.2nm的层厚。经过这种涂层处理的粒子所具有的表面涂层的特征(例如)在于,其可避免铁离子渗入周围溶液中。
下文将在实例3中对二氧化硅层厚为0.2nm的磁性粒子的制备方法进行说明。
此外,本发明的方法的特征还在于一个致密的封闭硅酸盐层,这个硅酸盐层也可改善纯度和上清液中可观察到的沾污效应。与WO 03/058649中所说明的方法相比,使用本发明的方法制成的具有二氧化硅涂层的磁性粒子的纯度有了明显改善。因此,制成和洗净后,上清液不会再出现看得见的变色现象(参见实例2和3)。借助于致密的封闭二氧化硅层可避免看得见或看不见的杂质(例如铁离子)渗出,这些杂质会对生物试验的扩增方法或光学分析造成干扰(参见实例4和5)。
除此之外,本发明还令人惊讶地发现,在上文所述的膜滤法中通过缓慢的持续稀释将pH值降到中性值,可近乎完全地避免磁铁矿表面形成硅酸盐聚集体,或者说,与WO 03/058649中所说明的“成批处理法”相比,借此可进一步大幅减少形成在磁铁矿表面的硅酸盐聚集体。这种定义明确的硅纳米层会对下文将要说明的特性和生物用途产生有利影响。
此外,本发明还发现,如果在膜法之后实施分级离心法(可对缓慢沉淀下来的氧化铁粒子进行分离),就可实现以获得纯净的上清液为目的的附加性产品优化。
通过这种方式制成的悬浮液形式的样品符合了所有的标准,例如与初始产品完全相同的磁化性、稳定不变的形态、良好的核酸结合能力、可从微量滴定板壁上滚落的有利特性、突出的悬浮稳定性(即在短短的几分钟内在上清液中未出现明显杂质的情况下在磁场中顺利分离出磁性粒子)。
“涂有二氧化硅的磁性粒子”这一表述包括涂有二氧化硅纳米层的磁铁矿芯。
“致密的封闭二氧化硅层”这一表述包括厚度在5nm以内的均匀均质的单分子至多分子二氧化硅层,层厚优选为2nm,特别优选为0.5nm至0.2nm。这个封闭的二氧化硅层可避免铁化合物和铁离子渗入涂有二氧化硅的磁性粒子的周围环境中。
“改良的制备方法”这一表述包括一个借助微滤或超滤单元而实现的、既易于实施又很彻底的清洗过程,这个清洗过程可使涂有二氧化硅的磁性粒子具有极高的纯度。使用这种方法时,一开始硅酸盐纳米层会沉淀在粒子表面,随后,反应液会以可控方式得到持续性的缓慢稀释,从而其pH值降到中性,借此可在磁铁矿表面形成一个极其均匀、致密的封闭型均质硅酸盐层。此外还可避免形成具有干扰作用的硅酸盐聚集体,或者说,可显著减少具有干扰作用的硅酸盐聚集体。
“借助离心技术减少纳米微粒成分”这一表述包括离心技术或简单的重力技术的应用。其中,有用成分发生沉淀,而非期望的纳米微粒成分则可与上清液一起去除。借助超速离心法确定粒度分布后,可借助减少了的微粒状成分对这种效应进行检测。离心技术是对约3000g的初始悬浮液进行离心分离15分钟,去除上清液后加入同等量的水或缓冲剂,进行再悬浮,并将这些步骤重复多次(最多可达10次)。采用重力技术时,只需等待较长时间而不采用离心分离,直至大部分粒子沉淀在容器底部为止,随后再置换掉水性上清液。
“最佳磁化性能”这一表述包括本发明的粒子的下述特性,即具有尽可能大的磁铁矿含量,因此,从外部向反应容器上施加磁场时,本发明的粒子可在短短的几分钟(例如1至5分钟)内在提纯过程中与样品基质完全分离。这一点主要是针对下述情况而言,即在自动移液设备上实施的自动方法所用的提纯时间尽可能短,以及将磁场强度有限的价格尽可能低廉的磁体用作硬件成分。
“悬浮性能”这一表述包括本发明的粒子的下述特性,即在提纯阶段,本发明的粒子基于最佳粒度分布而在摇匀后的几分钟(例如10至15分钟)内(核酸的吸附阶段)不出现明显的沉淀现象。
“脱离塑料表面的最佳脱离性能”这一表述包括本发明的粒子的下述特性,即本发明的粒子基于亲水的表面特性而与生物提纯过程所用的塑料物品之间具有很小的亲合性。所用的塑料物品包括聚苯乙烯、聚乙烯容器和聚丙烯容器以及由类似塑料制成的任意形状和任意尺寸的微量滴定板。其中,本发明的磁性粒子的特殊二氧化硅层与这些塑料表面之间存在排斥性的相互作用,因此,涂层磁性粒子会从这些表面上滚落,而不与之发生较大的相互作用,这种较大的相互作用最终会在核酸的生物提纯过程中导致产量损失。
“分离”这一表述包括使用上述涂有二氧化硅的磁性粒子对生物样品进行核酸提纯,主要分成以下几个单个步骤:
a)用裂解缓冲液将样品溶解在反应容器内,经培养后加入特定而言含有高离液盐、优选含有高摩尔浓度的异硫氰酸胍的结合缓冲液
b)加入涂有硅酸盐的磁性粒子
c)在能使核酸结合到磁性粒子上的温度下进行培养
d)通过施加磁场从待反应物中去除未结合成分,磁场使磁性粒子与周围液体分离
e)多次添加清洗缓冲液,在粒子发生磁化以将不确定的结合分子从核酸中清除后,再去除清洗缓冲液
f)在核酸与磁性粒子分离的情况下加入洗脱缓冲液
g)重新施加磁场后将分离带有核酸的洗脱液
“自动提纯”这一表述包括这种方法的实施方案,即全部或仅在几个分步骤中取消操作人员的手动操作,自动提纯主要在以下几个步骤中实施:用专用缓冲剂溶解生物组织样品、添加磁性粒子、在一定的温度条件下进行培养、去除未吸附的样品成分、清洗步骤、在一定的温度条件下从粒子上洗脱已结合的核酸、从粒子悬浮液中分离出洗脱液。
“核酸”这一表述包括寡聚和聚合核糖核苷酸或链长超过10个单体单元的2'-脱氧核糖核苷酸。核酸中的单体单元通过相邻单体单元的3'-和5'-羟基之间的磷酸二酯键而连接起来,一个杂环碱基通过糖苷键结合在碳水化合物成分的1'-原子上。核酸可通过形成分子间氢键而构成双链和三链分子。
“核酸”也指蛋白质/核酸复合物和带有合成核苷酸的核酸,例如吗啉或PNA(peptide nucleic acid,肽核酸)。
“生物组织样品”这一表述包括含核酸的生物材料,例如全血、血清或血浆(特别是含病毒的血清或血浆,其中尤指感染了HIV和HCV的血清样品)、“血沉棕黄层”(即血液中的白细胞成分)、排泄物、腹水、涂片、唾液、器官抽出物、活组织检查、组织切片(尤指用含福尔马林的固定剂嵌在石蜡中的各种固定程度不一的组织切片)、分泌物、液体、胆汁、淋巴液、小便、大便、精液、细胞和细胞培养物。“生物组织样品”也可以是来自于生化处理过程、随后需加以提纯的核酸。
“通过各种扩增方法进行检测”这一表述包括借助各种分子生物技术(特别是PCR、转录介导的扩增(TMA)、LCA或NASBA)复制已提纯的核酸和在此之后进行的或同步进行的扩增产物检测。“通过各种扩增方法进行检测”也指用信号扩增法(例如bDNA)进行的检测,即不通过核酸扩增而实现的检测。PCR检测可特别通过借助荧光技术的动态方法在“实时”条件下进行,或在传统的琼脂糖凝胶上进行。“实时”PCR可在使用相应校准器的情况下对核酸进行非常有效的定量测定。其中,对于临床灵敏度而言关键且起限制作用(避免假阴性结果)的是核酸的有效提纯,即将核酸有效地结合到磁性粒子上,并在PCR相容条件下可逆地将其释放。
本发明的另一主题是用于实施本发明的方法的试剂盒,其包含以下各组成部分:
(a)用于溶解样品的试剂
(b)含二氧化硅的磁性粒子或含二氧化硅的磁性粒子的悬浮液
(c)清洗缓冲液
(d)洗脱缓冲液
有关试剂盒的各组成部分的用途和用法,参见上文中的实施方案和下文中的实例。也可以不同于此的其他形式对试剂盒的单个或多个组成部分进行使用。
通过本发明可在使用专门制备的涂二氧化硅磁性粒子的基础上,借助相应的扩增技术对生物组织样品的提纯物进行特别有效的、自动的定量核酸检测。
本发明借此为核酸诊断学作出了重要贡献。
实例
下面涉及的是实施上述方法的详细报告。这些实例给出了适用于待提纯核酸的精确反应条件,但可依据待提纯核酸对各项参数(例如磁性粒子量、培养和清洗温度、培养和清洗时间、裂解缓冲液浓度、清洗缓冲液浓度和洗脱缓冲液浓度)进行修改。
实例一:用Bayoxide E 8706和水玻璃37/40通过逐步降低pH值制备涂有硅酸盐的磁铁矿粒子(与WO 03/058649 A1中公开的方法相同)
反应部分:
在带有KPG搅拌器的6l三颈烧瓶内加入4000g的水玻璃溶液37/40(Cognis有限公司)。一边搅拌一边在10分钟内加入2000g的Bayoxide 8706(Bayer股份公司)。随后在室温下再搅拌一个小时。
处理:
搅拌器关闭后,涂有二氧化硅的磁铁矿粒子沉淀下来。必要时可通过施加磁场使这个过程加速进行。等待一个小时后抽出上清液。加入4l水,搅拌约10分钟。再次将上清液抽出。这个清洗过程还需重复至少四次,直至最终的洗水达到7.5-7.0的pH值为止。
二氧化硅磁性粒子的特性:
Zeta电位:                -50.2
根据ESCA的二氧化硅含量:  7.0原子%Si
纯度:在室温下静置10天后,上清液变成了黄/褐色。
实例二:用Bayoxide E 8706和水玻璃37/40,通过“错流微滤”连续降低pH值来制备涂有硅酸盐的高纯度磁铁矿粒子。
重复实例一中所述的反应部分,但不是以逐步或成批的方式,而是借助Fa.PALL公司的带有0.2μm膜盒的微滤单元来进行处理。
为此,用泵通过软管将磁性粒子悬浮液抽出,并将其引导到膜盒上,倒掉渗透物,但将滞留物重新导入反应容器内。在粒子悬浮液中再次加入与渗透物等量的悬浮液。
经过12小时的过滤后,渗透物在pH值和电导率方面均达到了原水的品质,提纯过程至此结束。
最终产品的特性:
Zeta电位:  -41mV
Si含量:    根据ESCA为4.9原子%Si。初始产品Bayoxide 8706的二氧化硅含量:2.4原子%Si。
据此,2.5原子%Si的差量通过用水玻璃实施的二氧化硅处理后沉淀在粒子表面。由此产生的二氧化硅层厚为0.4nm。
纯度:经超滤提纯的粒子悬浮液在室温下静置好几个月后,其上清液也未出现变色现象。
实例三:
用Bayoxide E 8706和水玻璃37/40通过“错流微滤”连续降低pH值, 随后实施分级离心法,以制备涂有硅酸盐的高纯度磁铁矿粒子,
用离心器(Eppendorf 5810)对3225g的实例二中所述的最终产品进行7分钟的离心分离。当产品的主要部分(>98%)沉淀下来后,将深褐色上清液倒掉。
将沉淀物重新放入水中,并对其进行离心分离,将其与有色上清液分离。这个分级离心过程还需重复8次,直至得到无色的上清液为止。
最终产品(第九份离心产物)的特性:
Zeta电位:  -35mV
Si含量:    3.0%Si。0.6原子%的差量通过用水玻璃实施的二氧化硅处理后沉淀在粒子表面。由此产生的二氧化硅层厚为0.2nm。
纯度:通过这种方法制成的磁性粒子悬浮液的上清液在放置好几个月后仍完全保持无色。
这种产品品质主要在磁性分离方面具有很高的价值。因此,施加磁体后,在不超过20秒的时间内就可观察到绝对纯净的上清液。
实例四:对来自于涂二氧化硅磁性粒子的悬浮液的水性上清液进行光学测量
这个试验采用的是两份批号分别为HIE 13266(源于本发明的方法的实例二和实例三)和HIE 12106R2(源于WO 03/058649 A1中公开的方法,基于Bayoxide E 8707)的涂二氧化硅磁性粒子的水性上清液,用Nanodrop公司的分光计测定的其吸收光谱在221–750nm范围内(参见图1)。
从这些光谱中得出的水体光谱用作参考。还将另一份水体光谱用作对照样品(零线)。
从光谱中可以看出,批号为HIE 13266的涂二氧化硅磁性粒子的水性上清液具有与水相似的吸收性能。而批号为HIE 12106R2的上清液的吸收曲线则显示出了明显不同的更强的吸收性能(范围约在500nm)。
从中可以看出,与通过依次进行多次清洗或通过逐步降低pH值(另见WO 03/058649 A1)而制成的HIE 12106R2粒子相比,本发明的新型制备方法(即在微滤单元中连续清洗(粒子HIE 13266))可以改善沾污效应或减少渗入上清液中的铁化合物。粒子HIE 12106R2的这种沾污效应体现在上清液放置一段时间后所发生的可见变色现象和强度有所增大的吸收特性上。此外还可看出,通过本发明的方法实现的上清液中的这种有所改善的沾污效应表明粒子上有封闭的二氧化硅层。
实例五:涂有二氧化硅的磁性粒子的水性上清液在RT-PCR时的特性
在磁化条件下对两份不同的涂二氧化硅磁性粒子(批号HIE 13266和HIE 12106R2)的水性上清液进行检测。批号为HIE 13266的粒子用本发明的制备方法通过在微滤单元内连续清洗而制成(参见实例二和实例三)。批号为HIE 12106R2的粒子通过依次进行的多次清洗而制成(参见WO03/058649 A1,基于Bayoxide E 8707)。随后对两份上清液进行定量RT-PCR:
在Stratagene公司的MX4000上进行所谓的定量RT(ReverseTranscription,反转录)-PCR。其中,在三份20μl的预混试剂中分别加入两种粒子的5μl上清液和5μl对照用水。预混试剂中含有下列成分:400nM引物A、400nM引物B、10ng MCF-7RNA(Ambion)、Taqman引物200nM、一份缓冲剂A、5mM MgCl2;1.2mM dNTP、8U RNase抑制剂、20U MuLV反转录酶、1.25U Taq Gold(均来自Applied Biosystems公司)。PCR方案为:45℃时30分钟,95℃时10分钟,96℃时15秒钟内45个循环,63℃时60秒钟,72℃时30秒钟。
将配制品放入96孔微量滴定板(Stratagene),锁紧96孔微量滴定板后将其放入分析器内。分析器启动后,在信号曲线的扩增指数范围内选定一个基值(荧光强度)的情况下为每份样品分配一个特有的Ct值(使选定基值与扩增曲线相交的循环数)。
从图2中可以看出,粒子HIE 13266的上清液的扩增曲线与作为样品的水的扩增曲线相似。而从图2的右边可看到,HIE 12106R2上清液的扩增曲线约偏移了三个Ct值,这表明,RT-PCR的效率受到了干扰或不利影响。

Claims (16)

1.一种制备涂有二氧化硅的磁性粒子的方法,其特征在于,包括:
先通过铁粒子表面特性诱发硅酸盐从水玻璃或硅溶胶中分离出来,并沉积在磁铁矿粒子上,随后通过缓慢、持续的稀释将pH值降到中性pH值,对所述表面进行整平和密封。
2.根据权利要求1所述的方法,其中,通过膜滤法来稀释。
3.根据权利要求2所述的方法,其中,包括在使用错流微滤分离颗粒状杂质之后,提纯水玻璃和磁性粒子的悬浮液。
4.根据权利要求3所述的方法,其中,错流微滤一直进行到排出的渗透物纯度与所输入淡水的纯度相当为止。
5.根据权利要求1所述的方法,其中,包括通过持续稀释来避免磁性粒子上形成硅酸盐聚集体。
6.根据权利要求1所述的方法,其中,通过膜滤法来进行持续的稀释,在膜滤法之后实施分级离心法,对沉淀下来的氧化铁粒子进行分离。
7.根据权利要求1所述的方法,其中,包括减少纳米微粒成分。
8.根据权利要求7所述的方法,其中,包括涂有二氧化硅的磁性粒子的粒度分布介于0.1μm和1μm之间。
9.根据权利要求7所述的方法,其中,借助离心技术来减少纳米微粒成分,其中对水玻璃的初始悬浮液和磁性粒子进行离心分离,去除上清液,加入同等量的水或缓冲剂,进行再悬浮。
10.根据权利要求7所述的方法,其中,借助重力技术来减少纳米微粒成分,其中沉淀大部分磁性粒子,并置换掉水性上清液。
11.根据权利要求1所述的方法,其中,所述涂有二氧化硅的磁性粒子具有一个最大层厚为5nm的均匀均质的封闭二氧化硅表面涂层。
12.根据权利要求11所述的方法,其中,硅酸盐的最大层厚为2nm。
13.根据权利要求11所述的方法,其中,硅酸盐的最大层厚为0.5nm。
14.根据权利要求11所述的方法,其中,硅酸盐的层厚为0.2nm至0.5nm。
15.根据权利要求1所述的方法,其中,所述涂有二氧化硅的磁性粒子包括磁体矿芯和该磁体矿芯上的均匀均质的单分子至多分子二氧化硅层,其中所述二氧化硅层的层厚0.2nm至5nm,所述涂有二氧化硅的磁性粒子的粒度分布介于0.1μm和1μm之间。
16.一种制备涂有二氧化硅的磁性粒子的方法,其特征在于,包括:
提供磁性粒子;
在所述磁性粒子上沉积从水玻璃或硅溶胶中分离出来的硅酸盐,由磁性粒子的表面特性触发,形成磁性初始涂敷的磁性粒子;
通过膜滤法来持续稀释将pH值降低到中性pH,平滑和封闭所述初始涂敷磁性粒子;
其中,所述涂有二氧化硅的磁性粒子包括磁体矿芯和该磁体矿芯上的均匀均质的单分子至多分子二氧化硅层,其中所述二氧化硅层的层厚0.2nm至5nm,所述涂有二氧化硅的磁性粒子的粒度分布介于0.1μm和1μm之间。
CN201510236646.4A 2005-06-23 2006-06-13 具有超薄封闭二氧化硅层的磁性粒子及其制造和使用方法 Active CN104810126B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05013522 2005-06-23
EP05013522.7 2005-06-23
CNA2006800209716A CN101213619A (zh) 2005-06-23 2006-06-13 具有超薄封闭二氧化硅层的磁性粒子及其制造和使用方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800209716A Division CN101213619A (zh) 2005-06-23 2006-06-13 具有超薄封闭二氧化硅层的磁性粒子及其制造和使用方法

Publications (2)

Publication Number Publication Date
CN104810126A true CN104810126A (zh) 2015-07-29
CN104810126B CN104810126B (zh) 2018-08-10

Family

ID=36968634

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2006800209716A Pending CN101213619A (zh) 2005-06-23 2006-06-13 具有超薄封闭二氧化硅层的磁性粒子及其制造和使用方法
CN201510236646.4A Active CN104810126B (zh) 2005-06-23 2006-06-13 具有超薄封闭二氧化硅层的磁性粒子及其制造和使用方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2006800209716A Pending CN101213619A (zh) 2005-06-23 2006-06-13 具有超薄封闭二氧化硅层的磁性粒子及其制造和使用方法

Country Status (7)

Country Link
US (4) US20100063263A1 (zh)
EP (1) EP1894214B9 (zh)
JP (1) JP4980349B2 (zh)
CN (2) CN101213619A (zh)
AT (1) ATE496380T1 (zh)
DE (1) DE502006008765D1 (zh)
WO (1) WO2006136314A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279444A (zh) * 2017-10-31 2020-06-12 豪夫迈·罗氏有限公司 改进的磁性粒子及其用途

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100063263A1 (en) * 2005-06-23 2010-03-11 Siemens Medical Solutions Diagnostics Gmbh Magnetic particles with a closed ultrathin silica layer, method for the production thereof and their use
US8317002B2 (en) * 2006-12-08 2012-11-27 The Regents Of The University Of California System of smart colloidal dampers with controllable damping curves using magnetic field and method of using the same
WO2008095155A2 (en) 2007-02-01 2008-08-07 Siemens Healthcare Diagnostics Inc. Silica magnetic particles with a high nucleic acid binding capability
EP2036988A1 (en) 2007-09-12 2009-03-18 Siemens Healthcare Diagnostics GmbH A method for predicting the response of a tumor in a patient suffering from or at risk of developing recurrent gynecologic cancer towards a chemotherapeutic agent
EP2065399A1 (en) 2007-11-30 2009-06-03 Siemens Healthcare Diagnostics GmbH The present invention relates to methods for prediction of the therapeutic success of breast cancer therapy
EP2065474A1 (en) 2007-11-28 2009-06-03 Siemens Healthcare Diagnostics GmbH A method to assess prognosis and to predict therapeutic response to endocrine treatment
EP2065475A1 (en) 2007-11-30 2009-06-03 Siemens Healthcare Diagnostics GmbH Method for therapy prediction in tumors having irregularities in the expression of at least one VEGF ligand and/or at least one ErbB-receptor
WO2009068423A2 (en) 2007-11-30 2009-06-04 Siemens Healthcare Diagnostics Gmbh Method for predicting therapy responsiveness in basal like tumors
WO2009132928A2 (en) * 2008-05-02 2009-11-05 Siemens Healthcare Diagnostics Gmbh Molecular markers for cancer prognosis
EP2244268B1 (en) 2009-04-23 2016-04-13 Turbobeads GmbH Process for manufacturing chemically stable magnetic carriers
WO2011013169A1 (ja) * 2009-07-29 2011-02-03 株式会社 東芝 油分吸着材および油分吸着材の製造方法
EP2678429B1 (en) 2011-02-21 2018-04-18 Rheonix, Inc. Microfluidic device-based nucleic acid purification method
JP2015024407A (ja) * 2014-09-12 2015-02-05 株式会社東芝 油分吸着材および油分吸着材の製造方法
WO2016065218A1 (en) 2014-10-23 2016-04-28 Corning Incorporated Polymer-encapsulated magnetic nanoparticles
JP6035500B1 (ja) * 2015-10-05 2016-11-30 エム・テクニック株式会社 塗料用ケイ素酸化物被覆酸化鉄組成物
EP3621089B1 (de) 2018-09-10 2021-08-25 Ivoclar Vivadent AG Dentalmaterial mit magnetpartikeln mit verbesserter farbabschirmung
WO2023055385A1 (en) * 2021-09-30 2023-04-06 Agilent Technologies, Inc. Magnetic nanoparticles for sample separation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235270B1 (en) * 1997-04-18 2001-05-22 Showa Denko K.K. Cosmetics, silica-coated metal oxide powder and production method therefor
WO2003058649A1 (de) * 2002-01-14 2003-07-17 Bayer Healthcare Ag Siliziumhaltige magnetpartikel, verfahren zu deren herstellung und verwendung der partikel
CN101031513A (zh) * 2004-06-27 2007-09-05 朱马国际公司 生产氧化铁纳米颗粒的方法
CN101172256A (zh) * 2006-10-31 2008-05-07 中国石油化工股份有限公司 一种耐高温磁性氧化铝载体的制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593086B2 (en) * 1996-05-20 2003-07-15 Mount Sinai School Of Medicine Of New York University Nucleic acid amplification methods
GB9425138D0 (en) * 1994-12-12 1995-02-08 Dynal As Isolation of nucleic acid
AU735388B2 (en) 1997-04-18 2001-07-05 Showa Denko Kabushiki Kaisha Cosmetics, silica-coated metal oxide powder and production method therefor
US6936414B2 (en) * 1999-12-22 2005-08-30 Abbott Laboratories Nucleic acid isolation method and kit
US6548264B1 (en) 2000-05-17 2003-04-15 University Of Florida Coated nanoparticles
JP2003104996A (ja) * 2001-09-28 2003-04-09 Hitachi Maxell Ltd 核酸結合用磁性担体およびその製造方法
WO2003089906A2 (en) * 2002-04-22 2003-10-30 University Of Florida Functionalized nanoparticles and methods of use
EP1376129B1 (en) * 2002-06-27 2007-10-10 Toyo Boseki Kabushiki Kaisha Magnetic carrier for biological substance, production method thereof and isolation method of biological substance using the same
CN1771463A (zh) * 2003-04-10 2006-05-10 株式会社尼康 用于沉浸光刻装置收集液体的溢出通道
JP4422982B2 (ja) * 2003-06-24 2010-03-03 日立マクセル株式会社 生体物質結合用磁性担体
JP2005069955A (ja) * 2003-08-27 2005-03-17 Hitachi Maxell Ltd 生体物質結合用磁性担体
JP2005286315A (ja) * 2004-03-01 2005-10-13 Showa Denko Kk シリカ被覆した希土類系磁性粉末およびその製造方法並びにその用途
JP2005265654A (ja) * 2004-03-19 2005-09-29 Hitachi Maxell Ltd 複合化粒子
US20100063263A1 (en) * 2005-06-23 2010-03-11 Siemens Medical Solutions Diagnostics Gmbh Magnetic particles with a closed ultrathin silica layer, method for the production thereof and their use
WO2008095155A2 (en) * 2007-02-01 2008-08-07 Siemens Healthcare Diagnostics Inc. Silica magnetic particles with a high nucleic acid binding capability
DE102008029356A1 (de) * 2008-06-20 2009-12-24 Siemens Healthcare Diagnostics Gmbh Verfahren zur Aufreinigung von Nukleinsäuren, insbesondere aus fixiertem Gewebe
DE102008061714A1 (de) * 2008-12-12 2010-06-17 Siemens Healthcare Diagnostics Inc., Deerfield Verfahren zur Aufreinigung von Nukleinsäuren, inbesondere aus fixiertem Gewebe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235270B1 (en) * 1997-04-18 2001-05-22 Showa Denko K.K. Cosmetics, silica-coated metal oxide powder and production method therefor
WO2003058649A1 (de) * 2002-01-14 2003-07-17 Bayer Healthcare Ag Siliziumhaltige magnetpartikel, verfahren zu deren herstellung und verwendung der partikel
CN101031513A (zh) * 2004-06-27 2007-09-05 朱马国际公司 生产氧化铁纳米颗粒的方法
CN101172256A (zh) * 2006-10-31 2008-05-07 中国石油化工股份有限公司 一种耐高温磁性氧化铝载体的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279444A (zh) * 2017-10-31 2020-06-12 豪夫迈·罗氏有限公司 改进的磁性粒子及其用途
JP2021501107A (ja) * 2017-10-31 2021-01-14 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 改良された磁性粒子およびその使用

Also Published As

Publication number Publication date
US20190241885A1 (en) 2019-08-08
JP2008546623A (ja) 2008-12-25
US11046950B2 (en) 2021-06-29
WO2006136314A1 (de) 2006-12-28
EP1894214B2 (de) 2018-02-14
US20170159043A1 (en) 2017-06-08
US9617534B2 (en) 2017-04-11
DE502006008765D1 (de) 2011-03-03
CN101213619A (zh) 2008-07-02
US10385331B2 (en) 2019-08-20
CN104810126B (zh) 2018-08-10
EP1894214B1 (de) 2011-01-19
US20100063263A1 (en) 2010-03-11
EP1894214B9 (de) 2018-05-23
ATE496380T1 (de) 2011-02-15
JP4980349B2 (ja) 2012-07-18
EP1894214A1 (de) 2008-03-05
US20150191718A1 (en) 2015-07-09

Similar Documents

Publication Publication Date Title
CN104810126B (zh) 具有超薄封闭二氧化硅层的磁性粒子及其制造和使用方法
EP1466018B1 (en) Use of silica material in an amplification reaction
JP2965131B2 (ja) 核酸結合用磁性担体およびそれを用いる核酸単離方法
JP2008529516A (ja) エチレングリコール多量体の使用を含む核酸の単離方法
JP6684868B2 (ja) 核酸の精製のための1工程法
CN113004546B (zh) 一种硅羟基磁珠及其制备方法和应用
Rahman et al. Nucleic acid sample preparation for in vitro molecular diagnosis: from conventional techniques to biotechnology
KR20100017232A (ko) 생물학적 물질을 단리하기 위한 조성물, 방법, 및 장치
CN109215998A (zh) 改进磁性硅颗粒及其用于核酸纯化的方法
EP1177420B1 (en) Fta-coated media for use as a molecular diagnostic tool
JP2007006728A (ja) 被覆無機粒子およびその利用
US10752892B2 (en) Multilayer complex, method for manufacturing said complex and use of said complex
JPH11262387A (ja) 核酸結合性磁性担体およびそれを用いた核酸単離方法
JP2001078761A (ja) 核酸結合性磁性シリカ粒子担体
WO2021100801A1 (ja) 核酸の分離方法、検出方法、核酸精製カラム及びその製造方法
US20050014153A1 (en) Reaction chambers containing complex stable reagent formulations and test kit for detection and isolation of pathogenic microbial nucleic acids
Choi Versatile Biological Sample Preparation Platform using Microfluidic Cell Sorting Device
CN115786353A (zh) 一种特异性结合猪流行性腹泻病毒的核酸适配体及其应用
US20100068823A1 (en) Carrier Material, Method for the Production and Use Thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant