CN104772048B - 一种无机填料与多巴胺复合的无机有机杂化膜及其制备方法和用途 - Google Patents

一种无机填料与多巴胺复合的无机有机杂化膜及其制备方法和用途 Download PDF

Info

Publication number
CN104772048B
CN104772048B CN201510147356.2A CN201510147356A CN104772048B CN 104772048 B CN104772048 B CN 104772048B CN 201510147356 A CN201510147356 A CN 201510147356A CN 104772048 B CN104772048 B CN 104772048B
Authority
CN
China
Prior art keywords
inorganic
dopamine
inorganic filler
film
combined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510147356.2A
Other languages
English (en)
Other versions
CN104772048A (zh
Inventor
张国亮
徐泽海
叶帅菊
孟琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201510147356.2A priority Critical patent/CN104772048B/zh
Publication of CN104772048A publication Critical patent/CN104772048A/zh
Application granted granted Critical
Publication of CN104772048B publication Critical patent/CN104772048B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种无机填料与多巴胺复合的无机有机杂化膜及其制备方法和用途,利用线形或管状纳米颗粒为载体,在其表面接枝左旋多巴胺,得到的复合多巴胺无机颗粒与膜材料聚合物共混,浸没相转化法制备平板膜。左旋多巴胺提高了共混杂化平板膜的亲水性,制备的无机填料与多巴胺复合的无机有机杂化膜的渗透性能得到显著提升、纯水通量提高,过滤效率高,截留率提高。

Description

一种无机填料与多巴胺复合的无机有机杂化膜及其制备方法 和用途
技术领域
本发明属于无机/有机杂化分离技术领域,具体涉及一种无机填料与多巴胺复合的无机有机杂化膜的制备方法和用途
背景技术
有机聚合物膜材料具有柔韧性好、透气性高、密度低、成膜性好、价格低廉等优点,但其易压密,机械强度、耐溶剂、耐腐蚀、耐热性较差,对一些体系不能提供足够的选择性和渗透通量。而无机膜材料具有机械强度高、耐腐蚀、耐溶剂、耐高温等优点,但其质脆,不易加工,成膜性差,且目前成本较贵。有机无机杂化膜材料结合了有机组分和无机组分的优良性能,同时也呈现出一些新的性能,它的快速发展为膜材料的设计与开发提供了新的思路。有机无机杂化膜在有机基体中引入无机组分,可增强膜的机械强度,提高膜的热稳定性,改善和修饰膜的孔结构和分布,提高膜的耐溶剂性,调整疏水平衡,控制膜溶胀,提高膜的选择性和渗透性。这种杂化膜材料具有良好的物化稳定性、呈现出高的分离性能,且具有好的成膜性,已成为高分子材料科学和膜材料制备等领域的研究热点。为防止无机颗粒的流失和团聚,表面接枝和形貌重构成为主要发展方向。
在水溶液中,多巴胺的邻苯二酚基团很容易被空气中的氧所氧化,生成具有邻苯二醌结构的多巴胺醌化合物。多巴胺和多巴胺醌之间发生反歧化反应,产生半醌自由基,偶合形成交联键,同时在基体材料表面形成紧密附着的交联复合层。线状的载体能够穿过膜孔结构并且镶嵌在膜中增加物理阻力。线状颗粒表面的左旋多巴含有羧基、氨基等有机亲水基团,能够防止颗粒团聚、增加膜亲水性。
发明内容
本发明的目的是提供一种用于无机/有机杂化分离技术领域的一种无机填料与多巴胺复合的无机有机杂化膜的制备方法和用途,在低压力下具有通量高,选择性高等特性。
本发明将多巴胺涂覆于制备好的无机填料,将上述多巴胺涂覆的载体均匀的分散在铸膜液中,通过浸没相转化法制备平板膜。
本发明采用的技术方案是:
一种无机填料与多巴胺复合的无机有机杂化膜的制备方法,所述方法包括以下步骤:
(1)配制pH 9.5的Tris-HCl缓冲溶液,将无机填料加入Tris-HCl缓冲溶液中,室温下超声分散、搅拌均匀,得到无机填料混合液;所述无机填料为Cu2O纳米线、TiO2纳米线、ZnO纳米线、MnO2纳米线、Co3O4纳米棒或埃洛石纳米管(HNT),优选Cu2O纳米线、TiO2纳米线或埃洛石纳米管;
所述无机填料混合液中,无机填料的质量分数为0.01-1wt%,优选0.1~0.5%;
所述Tris-HCl缓冲溶液即为三羟甲基氨基甲烷-HCl缓冲溶液,为常用的缓冲溶液,浓度一般为10mmol/L。
(2)将多巴胺加入步骤(1)的无机填料混合液中,在室温条件下,在敞口容器中搅拌4~10小时;所得混合液用去离子水清洗,滤膜过滤收集固体、干燥得到复合多巴胺无机颗粒;
所述多巴胺的质量用量与无机填料的质量比为1:2~3;
所述滤膜过滤一般用0.45μm滤膜过滤。
本发明所述的多巴胺为左旋多巴胺,简称L-DOPA。
所述步骤(2)中,所述干燥一般为60℃干燥8~15h。
(3)将步骤(2)的复合多巴胺无机颗粒加入有机溶剂中,超声分散均匀,然后加入膜材料聚合物,搅拌混匀,静置、超声脱泡,得到铸膜液;
所述膜材料聚合物为下列之一:聚丙烯、聚乙烯、醋酸纤维素、聚氯乙烯、聚乙烯醇、聚砜、聚醚砜、聚偏氟乙烯、聚丙烯晴,优选聚砜或聚偏氟乙烯;
所述有机溶剂为下列之一或两种以上的混合物:N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、四氢呋喃、N-甲基吡咯烷酮,优选N,N-二甲基乙酰胺;
所述复合多巴胺无机颗粒的质量用量为复合多巴胺无机颗粒、有机溶剂和膜材料聚合物的总质量的0-1wt%,0的含义是无限接近于0但不为0,优选复合多巴胺无机颗粒的质量用量为复合多巴胺无机颗粒、有机溶剂和膜材料聚合物的总质量的0.1-0.5wt%;
所述有机溶剂的体积用量通常以膜材料聚合物的质量计为5.5~7mL/g。
所述步骤(3)中,搅拌混匀通常搅拌10~15h,得到均匀、稳定的混合液;
静置一般静置8~10h。
超声脱泡一般超声处理20~30分钟。
(4)将步骤(3)得到的铸膜液浇铸在洁净干燥的玻璃板上,刮刀刮至成膜,室温下蒸发10-20s后将玻璃板置于去离子水中进行相交换成膜,然后制得的膜用水清洗,即制得所述无机填料与多巴胺复合的无机有机杂化膜。
所述步骤(4)中,刮刀刮膜时优选调节环境湿度为60-70%rh,更优选60-65%rh,温度优选为20-25℃。
本发明还提供按上述方法制备的无机填料与多巴胺复合的无机有机杂化膜。
本发明提供的无机填料与多巴胺复合的无机有机杂化膜可应用作为微滤膜或超滤膜。
本发明的优点:L-DOPA具有丰富的有机亲水性基团,与无机填料接枝后的颗粒一方面加强了其在有机溶剂和有机膜体中的分散和相容性;另一方面同样增加了共混杂化平板膜的亲水性,并且无机填料为线形或管状纳米颗粒,线形或管状载体能够改善膜孔结构、提高通量和截留率,增加物理阻力从而减少无机颗粒从膜中流失。本发明制备的无机填料与多巴胺复合的无机有机杂化膜的渗透性能得到显著提升、纯水通量提高,过滤效率高,截留率提高。
附图说明
图1为左旋多巴胺自聚反应示意图。
图2为实施例2中TiO2-dopa-PSF杂化膜的断面和表面扫描电镜图,其中(a)图为断面扫描电镜图,(b)图为表面扫描电镜图。
图3为实施例2中TiO2-dopa-PSF杂化膜和纯PSF膜的红外吸收图。
具体实施方式
下面结合具体实施例,对本发明加以详细描述,但本发明并不限于下述实施例,在不脱离本发明内容和范围内,变化实施都应包含在本发明的技术范围内。
实施例1
(1)将4mmol/L的CuSO4溶液250ml、28mmol/L的NaOH溶液250mL、和1mmol/L的葡萄糖溶液500mL混合,搅拌均匀后加热至85-90℃间加热40分钟,反应液蓝色转变为黄绿色最终变为橙色,反应液用去离子水清洗,滤膜过滤收集固体,干燥得到Cu2O纳米线。
(2)配制100mL 10mM Tris(三羟甲基氨基甲烷)-HCl溶液中并调节pH为9.5,称取干燥0.4g Cu2O纳米线置于其中,室温下超声10min,搅拌1h至分散均匀,得到无机填料混合液;称取0.2g L-DOPA溶解于上述无机填料混合液中,在室温条件下敞口搅拌5h,获得的固体颗粒用大量的去离子水清洗,0.45μm膜过滤,60℃干燥过夜,制得复合多巴胺无机颗粒,记为Cu2O-dopa。将0.023g Cu2O-dopa颗粒加入20mL DMAC中,超声30min并搅拌2h分散均匀中,加入3.657g PSF(聚砜),磁力搅拌12h至得到均匀、稳定的铸膜液,而后将铸膜液静置8h、超声20min进行脱泡处理;调节环境湿度为60%、温度为25℃,将铸膜液浇铸在洁净干燥的玻璃板上,刮刀刮至成膜,室温蒸发15s后将玻璃板置于去离子水中进行相交换成膜,制得PSF与多巴胺复合的无机有机杂化膜,记为Cu2O-dopa-PSF杂化膜。
对Cu2O-dopa-PSF杂化膜测试接触角,由纯PSF膜的92.7°下降到89.5°。
其纯水通量在0.1MPa的测试压力、室温下由纯PSF膜的40.4L/m2h升高到85.34L/m2h,对BSA溶液截留率为91.2%。
实施例2
(1)将1.5g二氧化钛P25分散于140mL10M的NaOH水溶液中,超声混合均匀,在200℃进行水热反应36h,反应完成后冷却至室温,滤出沉淀物,将所得沉淀物置于0.1M的盐酸水溶液中浸渍酸化,之后用去离子水冲洗,于真空干燥箱内烘干,得到钛酸盐纳米线,将所得钛酸盐纳米线置于马弗炉中,于500~600℃煅烧5h,得到TiO2纳米线;
(2)制备杂化膜的操作同实施例1步骤(2),所不同的是,将0.4g Cu2O纳米线改为0.4g步骤(1)制备的TiO2纳米线,其他原料和操作都不变,制备得到TiO2-dopa-PSF杂化膜。
对TiO2-dopa-PSF杂化膜进行表面分析,如图2所示,其中(a)图为断面SEM图,(b)图为表面SEM图,从图2中可以看出杂化膜仍保持了由上面致密皮层和下面指状多孔支撑层的非对称结构,随着加入无机填料,指状孔结构逐渐增长、底部大孔形状进一步加大。这是因为无机颗粒的添加使铸膜液粘度上升,制膜过程相转化溶剂交换过程中,无机颗粒运动阻力增大且重力作用向下运动造成大孔的形成。
图3为TiO2-dopa-PSF杂化膜和纯PSF膜的红外吸收图,图3中,1613cm-1处的峰归因于芳环C=C伸缩振动和N-H的弯曲振动,1500cm-1为醌基和苯基中C=N的伸缩振动峰,1379cm-1为酚的C-O-H弯曲峰,1280cm-1为苯基弯曲振动峰,这些都是L-DOPA的特征峰,说明L-DOPA已经成功接枝到二氧化钛纳米线表面,并且在杂化膜复合后也能保持良好的粘附性和稳定性。
并且实施例2的TiO2-dopa-PSF杂化膜与实施例1中的Cu2O-dopa-PSF杂化膜的表面形貌类似。
其纯水通量为79.18L/m2h,对BSA溶液截留率为92.7%。
实施例3
操作同实施例1步骤(2),所不同的是,将0.4g Cu2O纳米线改为0.4g HNT(市售商品化产品,购自东明天合高温材料有限公司化学指标:Al2O3 37.3%;SiO2 45.8%;Fe2O30.5%;R2O 0.11%;TiO2 0.39%;烧失量14.5%物理指标:纳米管内径10-20nm,长度500-1000nm,比表面积60-80m2/g,密度2.0-2.2g/cm3),3.657g PSF改为3.657g PVDF(聚偏氟乙烯),其他原料和操作都不变,制备得到HNT-dopa-PVDF杂化膜。
HNT-dopa-PVDF杂化膜的表面形貌与实施例1基本相同,纯水通量为62L m-2 h-1,对BSA溶液截留率为92.3%。

Claims (10)

1.一种无机填料与多巴胺复合的无机有机杂化膜的制备方法,其特征在于所述方法包括以下步骤:
(1)配制pH 9.5的Tris-HCl缓冲溶液,将无机填料加入Tris-HCl缓冲溶液中,室温下超声分散、搅拌均匀,得到无机填料混合液;所述无机填料为Cu2O纳米线、TiO2纳米线、ZnO纳米线、MnO2纳米线、Co3O4纳米棒或埃洛石纳米管;
(2)将多巴胺加入步骤(1)的无机填料混合液中,在室温条件下,在敞口容器中搅拌4~10小时;所得混合液用去离子水清洗,滤膜过滤收集固体、干燥得到复合多巴胺无机颗粒;所述的多巴胺为左旋多巴胺;
(3)将步骤(2)的复合多巴胺无机颗粒加入有机溶剂中,超声分散均匀,然后加入膜材料聚合物,搅拌混匀,静置、超声脱泡,得到铸膜液;
所述膜材料聚合物为下列之一:聚丙烯、聚乙烯、醋酸纤维素、聚氯乙烯、聚乙烯醇、聚砜、聚醚砜、聚偏氟乙烯、聚丙烯晴;
(4)将步骤(3)得到的铸膜液浇铸在洁净干燥的玻璃板上,刮刀刮至成膜,室温下蒸发10-20s后将玻璃板置于去离子水中进行相交换成膜,然后制得的膜用水清洗,即制得所述无机填料与多巴胺复合的无机有机杂化膜。
2.如权利要求1所述的方法,其特征在于所述步骤(2)中,所述多巴胺的质量用量与无机填料的质量比为1:2~3。
3.如权利要求1所述的方法,其特征在于所述步骤(3)中,所述有机溶剂为下列之一或两种以上的混合物:N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、四氢呋喃、N-甲基吡咯烷酮。
4.如权利要求1所述的方法,其特征在于所述步骤(3)中,所述复合多巴胺无机颗粒的质量用量为复合多巴胺无机颗粒、有机溶剂和膜材料聚合物的总质量的0-1wt%,0的含义是无限接近于0但不为0。
5.如权利要求1所述的方法,其特征在于所述步骤(3)中,所述复合多巴胺无机颗粒的质量用量为复合多巴胺无机颗粒、有机溶剂和膜材料聚合物的总质量的0.1-0.5wt%。
6.如权利要求1所述的方法,其特征在于所述步骤(4)中,刮刀刮膜时调节环境湿度为60-70%rh,温度为20-25℃。
7.如权利要求1所述的方法,其特征在于所述步骤(1)中,所述无机填料混合液中,无机填料的质量分数为0.01-1wt%。
8.如权利要求1所述的方法,其特征在于所述步骤(3)中,所述有机溶剂的体积用量以膜材料聚合物的质量计为5.5~7mL/g。
9.如权利要求1~8之一所述的方法制备得到的无机填料与多巴胺复合的无机有机杂化膜。
10.如权利要求9所述的无机填料与多巴胺复合的无机有机杂化膜作为微滤膜或超滤膜的应用。
CN201510147356.2A 2015-03-31 2015-03-31 一种无机填料与多巴胺复合的无机有机杂化膜及其制备方法和用途 Active CN104772048B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510147356.2A CN104772048B (zh) 2015-03-31 2015-03-31 一种无机填料与多巴胺复合的无机有机杂化膜及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510147356.2A CN104772048B (zh) 2015-03-31 2015-03-31 一种无机填料与多巴胺复合的无机有机杂化膜及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN104772048A CN104772048A (zh) 2015-07-15
CN104772048B true CN104772048B (zh) 2017-07-25

Family

ID=53614002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510147356.2A Active CN104772048B (zh) 2015-03-31 2015-03-31 一种无机填料与多巴胺复合的无机有机杂化膜及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN104772048B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105233705B (zh) * 2015-09-10 2017-09-26 三达膜科技(厦门)有限公司 一种聚偏氟乙烯/聚多巴胺改性纳米高岭土中空纤维复合膜的制备方法
CN105498558B (zh) * 2015-12-17 2018-10-23 浙江工业大学 负载银纳米颗粒的杂化膜及其制备方法和用途
CN105566872B (zh) * 2015-12-23 2017-12-12 暨南大学 聚多巴胺改性埃洛石纳米管/聚乳酸复合材料及其制备与应用
CN105742700A (zh) * 2016-03-17 2016-07-06 北京化工大学 一种聚醚酰亚胺凝胶聚合物电解质及其制备方法
CN106178986A (zh) * 2016-07-06 2016-12-07 江苏大学 一种超亲水聚偏氟乙烯@多巴胺@二氧化硅复合材料的制备方法
CN106621857A (zh) * 2017-02-21 2017-05-10 北京理工大学 一种醋酸纤维素基纳米材料复合超滤膜及其制备方法
CN106943885B (zh) * 2017-04-13 2020-03-31 南开大学 一种控制膜污染的膜改性方法
CN107551828A (zh) * 2017-08-31 2018-01-09 河海大学 一种PES‑TiO2纳米线共混超滤膜及其制备方法和应用
CN107376673B (zh) * 2017-08-31 2021-01-26 河海大学 一种负载有TiO2纳米管的PES超滤膜及其制备方法和应用
CN107955418A (zh) * 2017-11-21 2018-04-24 北京林业大学 一种基于儿茶酚化学改性的疏水埃洛石及其制备方法
CN107875116A (zh) * 2017-12-28 2018-04-06 宁波工程学院 复合埃洛石纳米管的制备方法
CN108404687B (zh) * 2018-04-27 2020-06-05 南京工业大学 一种用于空气净化的多层次功能膜的制备方法
CN108532289B (zh) * 2018-05-09 2021-02-09 四川丝玛帛科技有限公司 多功能蚕丝蛋白纤维整理剂和多功能蚕丝蛋白纤维及其制备工艺和应用
CN108854586B (zh) * 2018-06-25 2020-10-02 福州大学 一种锰氧化合物/植物纤维共混膜的制备方法
CN108889146A (zh) * 2018-07-16 2018-11-27 山东大学 一种负载MnO2的PES膜及其制备方法与应用
CN109316778B (zh) * 2018-09-14 2021-10-15 浙江工业大学 一种浸渍涂覆聚合物纳米颗粒制备超疏水铜网的方法
CN110721600A (zh) * 2019-09-23 2020-01-24 江苏大学 一种PVDF@PDA@ZnO复合膜的制备方法及其用途
CN111974228B (zh) * 2020-06-27 2021-06-25 泰州泰慧达科技信息咨询中心 一种纳米颗粒改性的耐溶胀磺化聚醚砜纳滤膜及其制备方法
CN112239564B (zh) * 2020-09-21 2023-05-05 桂林理工大学 一种具有紫外屏蔽功能的醋酸纤维素纳米复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102614783A (zh) * 2012-03-27 2012-08-01 大连理工大学 一种多巴胺改性纳米材料制备高通量复合膜的方法
CN102728240A (zh) * 2012-07-05 2012-10-17 常州大学 一种新型聚偏氟乙烯膜及其制备方法和应用
CN103721579A (zh) * 2013-12-24 2014-04-16 巨化集团技术中心 一种含氟微孔膜表面亲水改性方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464013B (zh) * 2013-07-25 2014-11-05 烟台绿水赋膜材料有限公司 一种高性能杂化分离膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102614783A (zh) * 2012-03-27 2012-08-01 大连理工大学 一种多巴胺改性纳米材料制备高通量复合膜的方法
CN102728240A (zh) * 2012-07-05 2012-10-17 常州大学 一种新型聚偏氟乙烯膜及其制备方法和应用
CN103721579A (zh) * 2013-12-24 2014-04-16 巨化集团技术中心 一种含氟微孔膜表面亲水改性方法

Also Published As

Publication number Publication date
CN104772048A (zh) 2015-07-15

Similar Documents

Publication Publication Date Title
CN104772048B (zh) 一种无机填料与多巴胺复合的无机有机杂化膜及其制备方法和用途
Li et al. Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review
Emadzadeh et al. Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application
CN104209022B (zh) 一种高通量聚酰胺/zif-8纳滤复合膜及其制备方法
Zhang et al. Bioinspired superwettable covalent organic framework nanofibrous composite membrane with a spindle-knotted structure for highly efficient oil/water emulsion separation
Xiao et al. Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance
Yan et al. Fabrication of a super-hydrophobic polyvinylidene fluoride hollow fiber membrane using a particle coating process
TWI414345B (zh) 含有奈米纖維之薄膜、複合薄膜、其製造方法及其用途
CN106422423B (zh) 一种超疏水金属丝网及其制备方法
CN104174299B (zh) 基于超薄支撑层的高通量正渗透膜及其制备方法
Cao et al. Construction of Polytetrafluoroethylene nanofiber membrane via continuous electrospinning/electrospraying strategy for oil-water separation and demulsification
CN109126463A (zh) 一种含微孔中间层高通量纳滤膜的制备方法
CN104785129B (zh) 一种氨化中空纤维膜基底及其用于制备金属有机骨架膜的应用
CN109925891B (zh) 一种小孔径高通量的碳纳米管低压膜及其制备方法
CN107158959A (zh) 一种超亲水及水下超疏油多孔复合膜制备方法
CN110479119A (zh) 一种聚酰胺复合反渗透膜的制备方法
Zhao et al. High-performance PVDF water treatment membrane based on IL-Na+ MMT for simultaneous removal of dyes and oil-water emulsions
Li et al. Preparation of hydrophobic zeolitic imidazolate framework-71 (ZIF-71)/PVDF hollow fiber composite membrane for membrane distillation through dilute solution coating
Ding et al. Novel and versatile PEI modified ZIF-8 hollow nanotubes to construct CO2 facilitated transport pathway in MMMs
CN109879349A (zh) 一种弱酸性水处理专用成型滤芯的制备方法
Yang et al. Anti-fouling characteristic of carbon nanotubes hollow fiber membranes by filtering natural organic pollutants
CN107081068B (zh) 渗透汽化膜及其制备方法
CN104190264B (zh) 一种具有螯合功能中空纤维超滤膜的制备方法
Yang et al. Urchin-like fluorinated covalent organic frameworks decorated fabric for effective self-cleaning and versatile oil/water separation
Shen et al. Hydrophilic SPE/MPTES-PAN electrospun membrane prepared via click chemistry for high efficiency oil–water separation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant