CN104769847B - 高压监控逐次逼近型模数转换器 - Google Patents

高压监控逐次逼近型模数转换器 Download PDF

Info

Publication number
CN104769847B
CN104769847B CN201480001898.2A CN201480001898A CN104769847B CN 104769847 B CN104769847 B CN 104769847B CN 201480001898 A CN201480001898 A CN 201480001898A CN 104769847 B CN104769847 B CN 104769847B
Authority
CN
China
Prior art keywords
analog
capacitor
voltage
amplifier
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480001898.2A
Other languages
English (en)
Other versions
CN104769847A (zh
Inventor
爱德华·K·F·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graceful Scientific Research Foundation Of Aelfred E
Original Assignee
Graceful Scientific Research Foundation Of Aelfred E
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graceful Scientific Research Foundation Of Aelfred E filed Critical Graceful Scientific Research Foundation Of Aelfred E
Publication of CN104769847A publication Critical patent/CN104769847A/zh
Application granted granted Critical
Publication of CN104769847B publication Critical patent/CN104769847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36125Details of circuitry or electric components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37235Aspects of the external programmer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/129Means for adapting the input signal to the range the converter can handle, e.g. limiting, pre-scaling ; Out-of-range indication
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
    • H03M1/468Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors in which the input S/H circuit is merged with the feedback DAC array
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/68Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits
    • H03M1/682Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits both converters being of the unary decoded type
    • H03M1/685Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits both converters being of the unary decoded type the quantisation value generators of both converters being arranged in a common two-dimensional array
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/80Simultaneous conversion using weighted impedances
    • H03M1/802Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices
    • H03M1/804Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices with charge redistribution

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Theoretical Computer Science (AREA)
  • Pain & Pain Management (AREA)
  • Analogue/Digital Conversion (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明提供了逐次逼近型ADC,所述逐次逼近型ADC由低压可配置差分放大器和低压逻辑电路制成,所述低压逻辑电路可将高压模拟输入转换成数字等效形式。取决于运行模式,所述差分放大器可被配置为运放器或比较器。输入电容器C1可切换地耦合至电极,所述电极被选择用于电压采样。开关电容器阵列C2跨所述差分放大器输入和输出而耦合。耦合至所述开关电容器阵列的SAR提供与所述采样得到的模拟电压相对应的数字输出。在采样间隔和电荷传送间隔期间,所述差分放大器被配置为运放器。在所述传送间隔期间,所述输入电容器上的乘以比率C1/C2的所述电压被传送至所述开关电容器阵列。在模数转换间隔期间,所述ADC将所述模拟电压转换成等效数字输出。

Description

高压监控逐次逼近型模数转换器
本申请要求于2013年3月15日提交的美国临时申请No.61/788,926的权益。前述申请的主题据此全文以引用的方式并入本文。
技术领域
本发明涉及能够具有广泛用途的逐次逼近型模数转换器,具体来说涉及尤其在功能性电刺激(FES)应用中的高压刺激电极监控。
背景技术
通常在FES应用中,可编程电流发生器中生成的电流脉冲应用于神经组织以通过多个可选电极来刺激组织。对于许多应用而言,由于所需的电流脉冲振幅以及受刺激组织的阻抗和电极的阻抗,所以刺激器需要高恒流输出电压。恒流输出电压是指在电极处可提供的电压,该电压可用于迫使电流流经电极并且仍维持对电极电压的控制。
在许多应用中,电极电压的测量对于维持刺激器电路的运行完整性而言是必要的。例如在测量和确定组织阻抗和电极阻抗以及检测涉及电极的短路或开路是否存在时,应当需要此类样本。为适应生物医学设备中通常所用的数字处理电路,通常需要将一般由电极感测的模拟信号数字化。然而,通常使用低压晶体管来设计模数转换器(ADC)以使晶粒面积以及功率消耗最小化。因此,不能将高电极电压直接数字化。需要使电极电压衰减至ADC的输入电压范围。
实现衰减的常用技术是使用电阻分压器来将高电极电压分压成较低的电压。然而,这个技术不适用于FES应用,因为它会将电流从刺激器中抽出,并且因此影响刺激器的刺激脉冲振幅以及输出阻抗。为缓解这些问题,可在刺激器与分压器之间增设电压缓冲器[参见Lee,E.,“High Voltage Tolerant Stimulation Monitoring Circuit inConventional CMOS Process”,Proc.Of the IEEE 2009Int.Custom IntegratedCircuits Conference(CICC),pp.93-96,Sept.2009(Lee,E.,“常规CMOS工艺中的耐高压刺激监控电路”,IEEE 2009年国际定制集成电路会议论文集(CICC),第93-96页,2009年9月)]。然而,由于对高压轨至轨运算放大器(运放器)的需求,所以难以设计此类电压缓冲器。
另一可能的技术是将两个开关电容器(SC)用作两个独立的电阻器以形成分压器。以此方式,便不会从刺激器中抽出直流电流。然而,开关的电荷注入和在两个SC的连接节点处的非线性寄生电容将影响衰减增益的准确性以及分压器的线性。此外,ADC通常具有相当大的输入电容。在ADC输入连接至SC分压器时,将影响衰减器的实际衰减因数。因此,不是使用简单的SC分压器,而是通常使用电压增益等于所需衰减因数的SC放大器[参见Lee,E.,Dai,R.,Reeves,N.,and Yun,X.,“A 36V Biphasic Stimulator with ElectrodeMonitoring Circuit”,Proc.of the 2012IEEE Int.Symposium on Circuits andSystems,pp1087-1090,May2012(Lee,E.、Dai,R.、Reeves,N.和Yun,X.,“具有电极监控电路的36V双相刺激器”,2012年IEEE国际电路与系统研讨会论文集,第1087-1090页,2012年5月)]。SC放大器不仅用于驱动ADC,而且还可用于消除寄生电容效应以及可能的电荷注入效应。然而,这个设计需要额外的电源来对SC放大器供电。
在不同的ADC架构中,使用SC阵列数模转换器的逐次逼近型ADC是生物医学应用的常用架构,因为它针对大多数生物医学设备中所需的采样速率需要低功率消耗。基于这种类型的ADC,可以将衰减功能组合到ADC中。可在原来的ADC架构的输入处以与SC阵列串联的方式增设额外的开关电容器[Thomas Paul Kearney,“Programmable Input Range SARADC”(可编程输入范围SAR ADC),美国专利No.6,731,232]。通过正确控制时钟相位,可实现衰减。由于ADC的输入电容(SC阵列的电容)现在成为了衰减器的一部分,因此不需要缓冲器或SC放大器来驱动ADC输入。然而,由于开关的非线性寄生电容和电荷注入,所以衰减因数的准确性仍受到影响。因此,在一些情况下,所需要的可能是新型且新颖的逐次逼近型ADC架构,以弥补上文所述的技术中所存在的缺陷。
发明内容
本发明的一个非限制性实施例包括差分放大器,差分放大器可根据ADC的特定运行模式而配置为运放器或比较器。具有C1的电容值的输入电容器可切换地耦合至电极和差分放大器的第二输入(负输入),其中电极被选择用于电压采样。将基准电压施加至差分放大器的第一输入(正输入)。具有C2的总电容值的开关电容器阵列跨第二输入和差分放大器输出而耦合。开关电容器阵列可为用于ADC用途的二元加权阵列。逐次逼近型寄存器耦合至开关电容器阵列和差分放大器输出并提供对应于采样电极模拟电压的数字输出。
在一些情况下,在采样间隔期间,输入电容器被充电至采样电极模拟电压。同时,差分放大器被配置为运放器,使得在第二输入处建立虚拟接地端,该虚拟接地端提供了用于将输入电容器充电到最高至采样电极模拟电压的路径。
在一些情况下,在传送间隔期间,在将差分放大器维持被配置为运放器的同时,输入电容器上的电压乘以比率C1/C2被传送至开关电容器阵列。
在一些情况下,在模数转换间隔期间,差分放大器被配置为比较器,并且开关电容器阵列、逐次逼近型寄存器及比较器执行电极模拟电压到等效数字输出的转换。
在一个实施例中,本公开内容涉及周围植入式神经刺激系统。周围植入式神经刺激系统可包括多条引线,该引线可各自包括至少一个电极、模数转换器、和一体式开关电容器放大器,其中模数转换器可以包括(例如)逐次逼近型模数转换器。在一些实施例中,逐次逼近型模数转换器和一体式开关电容器放大器可共享共用的差分放大器。在一些实施例中,该系统包括可生成一个或若干个电脉冲的脉冲发生器。在一些实施例中,脉冲发生器连接至引线,使得电脉冲传输至所述至少一个电极。
在一些实施例中,周围植入式神经刺激系统可包括逐次逼近型寄存器。在周围植入式神经刺激系统的一些实施例中,逐次逼近型寄存器可包括逻辑信号发生器,逻辑信号发生器可生成第一信号和第二信号,其中第一信号指导差分放大器在第一周期期间作为运放器运行,第二信号指导差分放大器在第二周期期间作为比较器运行。在一些实施例中,周围植入式神经刺激系统可在引线与模数转换器之间包括输入电容器,输入电容器可在第一周期期间充电。在一些实施例中,输入电容器可在第一周期期间并且继输入电容器的充电之后放电,并且电荷可传送至开关电容器阵列。
在一个实施例中,本公开内容涉及植入式电刺激系统。该植入式电刺激系统可包括脉冲发生器、电极阵列、模数转换器、和控制器,其中脉冲发生器可生成一个或若干个电脉冲,电极阵列可输出所述一个或若干个电脉冲,模数转换器可将与电极阵列的电极中的至少一者相关联的模拟信号转换成数字信号并且可包括可重新配置的差分放大器,控制器可在运算放大器模式与比较器模式之间重新配置差分放大器。
在植入式电刺激系统的一些实施例中,模数转换器可包括共享共用的差分放大器的逐次逼近型模数转换器和开关电容器放大器。在一些实施例中,植入式电刺激系统可包括逐次逼近型寄存器。
在植入式电刺激系统的一些实施例中,控制器可生成第一信号和第二信号,其中第一信号指导可重新配置的差分放大器在第一周期期间作为运放器运行,第二信号指导差分放大器在第二周期期间作为比较器运行。在一些实施例中,植入式电刺激系统可包括连接引线和模数转换器的输入电容器,该输入电容器可在第一周期期间充电。在一些实施例中,输入电容器在第一周期期间并且继输入电容器的充电之后放电,并且电荷可传送至开关电容器阵列。
在一个实施例中,本公开内容涉及治疗神经性疼痛的方法。治疗神经性疼痛的方法可包括由所植入的脉冲发生器以及至少一个电极来将至少一个电脉冲递送至在神经附近或神经处的身体组织,使用差分放大器来感测所述至少一个电脉冲的模拟属性,所述差分放大器被配置成运算放大器模式,以及使用被配置成比较器模式的差分放大器来将所感测的模拟属性转换成数字信号。
在治疗神经性疼痛的方法的一些实施例中,递送所述至少一个电脉冲的步骤可包括将至少一个电脉冲递送至在周围神经附近或周围神经处的周围身体组织。在一些实施例中,电脉冲可具有第一特性,所述第一特性可指示是否存在短路或开路和/或所述至少一个电极的电压。在一些实施例中,治疗神经性疼痛的方法可包括递送具有第二特性的第二电脉冲。在一些实施例中,第二电脉冲的第二特性可基于电脉冲的第一特性以及数字信号。
附图说明
图1为本发明的ADC的实施例的电路图;
图2为时序控制逻辑信号的时序图;
图3为常规开关电容器阵列的简化电路图;以及
图4为在本发明的操作中所涉及的步骤的简化流程图。
图5为感测系统的一个实施例的示意图。
图6为周围植入式神经刺激系统的一个实施例的示意图。
具体实施方式
现在参考图1,其中示出了模数转换器(ADC)的一个实施例的实施例的总体电路/框图10。具体来说,图1中描绘了十位ADC架构,该架构被配置为对在十六个不同电极处显现的电压进行选择性地测量/采样。然而,应当理解,涉及少于或多于十个数位的以及涉及针对少于或多于十六个电极进行电压采样的ADC架构在本发明的设想内。将要被数字转换的电极电压实质上是模拟电压,并且独立地选自电极阵列12,并且当信号Φ1为高时所限定的采样间隔期间采集电压样本(参见图2)。所关注电极的选择可由临床医生来确定或者可在于处理器(未示出)中实施的电压样本协议中进行编程。如图1所示,标记SE(j)·Φ1表示开关阵列SE(j),该开关阵列被配置为“与”函数开关,使得在针对电压样本选择E(j)电极时以及在由信号Φ1限定的采样间隔期间,被视为第一开关的开关SE(j)关闭并且测量在E(j)电极处的电压。在所描述的情况下,标记(j)可选自1到16,然而,其他实施例可具有更多或更少的开关。
开关阵列SE(j)通过与电容器C1和开关S3的串联电路布置耦合至可配置差分放大器16的一个输入(负输入)。基准电压Vref耦合至差分放大器16的另一个输入(正输入)。第二开关S2耦合在接地端与开关阵列SE(j)和电容器C1的互连件之间。开关S2的状态由信号Φ2控制,并且开关S3的状态由信号Φ3控制。
如图3所示,开关电容器阵列C2(18)跨差分放大器16的输入(负输入)和输出20而耦合。更具体来说,电容器阵列18可被配置成二元加权开关电容器布置,使得阵列中的每个电容器可通过将要并联的对应串联开关来在标识为Vx的共用第一端口与标识为Vi的共用第二端口之间切换。每个对应串联开关S2的状态由信号Φ2限定,使得在Φ2为高时,阵列中的所有电容器均并联地连接在第一端口与第二端口之间。在此类情况下,电容器阵列18的总电容值C2等于阵列中的所有电容器的电容值的和。此外,每个电容器可通过对应串联开关在第一端口与图3中标识为Vref的基准电压之间切换,使得对于10位开关电容器阵列而言,开关B(10)将阵列中的第十一电容器C(10)耦合至Vref,并且开关B(10)b将第十一电容器C(10)耦合至接地端。针对开关电容器阵列18中的每个其余电容器提供类似的切换机制。
此外,在一个实施例中,图3的10位开关电容器阵列18包括十一个电容器C(0)至C(11)。连接至开关B(0)b的电容器C(0)被视为“假”电容器。其余十个电容器各自有助于形成十位开关电容器阵列处理。就图3所示的“B”开关的切换协议而言,以下真值表限定开关的随信号Φ1、Φ2和Φ3而变的状态。
针对开关电容器阵列C2中的“B”开关的真值表
针对Φ1=1,B(k)=1且B(k)b=0
针对Φ2=1,B(k)=0且B(k)b=0
针对Φ3=0,B(k)和B(k)b互补
就上表而言,“k”从0到10变化
针对“n”位的DAC电容器阵列的例子可见于“Capacitor Array Structure andSwitch Control for Energy-Efficient SAR Analog-to-Digital Converters”byJeong-Sup Lee and In-Cheol Park,IEEE Circuits and Systems,2008.ISCAS2008.May,18-21,2008,pp.236-239(由Jeong-Sup Lee和In-Cheol Park提供的名称为“用于节能型SAR模数转换器的电容器阵列结构及开关控制”,IEEE电路及系统,2008年国际电路与系统年会,2008年5月18至21日,第236-239页)的技术文献。开关电容器阵列的另一参考出现在“Analog Integrated Circuit Design”,by David Johns and Ken Martin,JohnWiley&Sons,1997,pp.492-496(由David Johns和Ken Martin提供,“模拟集成电路设计”,约翰威立父子出版社,1997年,第492-496页)中,并且因此不需要详细描述开关电容器阵列的运行。
常规逐次逼近型寄存器(SAR)22耦合至开关电容器阵列18并且耦合至差分放大器16的输出20。时序控制逻辑信号Φ1、Φ2和Φ3以及时钟信号CK和开始信号START由包含在SAR 22内的逻辑信号发生器(未示出)生成并且应用于常规SAR运行。在SAR 22中包括逻辑信号发生器的布置方法往往会减小总电路面积,但在SAR 22外部具有作为独立电路块的逻辑信号发生器也在本发明的设想内。逻辑信号发生器生成用于总体电路运行的时序信号Φ1、Φ2和Φ3。如图2所示,在信号START变高或变成逻辑“1”时,信号Φ1、Φ2和Φ3的序列开始。SAR 22的输出24被标识为ADCO,其表示已转换的模数输出信号。由信号Φ1控制的开关S4跨差分放大器16的输出20及负输入耦合,在Φ1变高或处于逻辑“1”时,该负输入使差分放大器16作为运放器16工作。此外,并且如图1所示,信号Φ3以如下方式直接连接至差分放大器16:在Φ3为高或逻辑“1”时,使差分放大器16作为运放器工作,而在Φ3为低或逻辑“0”时,使差分放大器16作为比较器工作。
图2示出了指示时间间隔的时间轴,在所述时间间隔期间,差分放大器16被配置为运放器或比较器。图2还示出了指示ADC 10的三种运行模式的时间轴:采样、传送或将模拟输入转换成数字输出。在一些实施例中,ADC 10的这三种运行模式可对应于多个周期。在一个实施例中,例如,ADC 10的运行可分为第一周期和第二模式,其中采样和传送在第一周期中发生,模拟输入到数字输出的转换在第二模式中发生。在一个此类实施例中,采样可在第一周期的第一部分中发生,传送可在第一周期的第二部分中发生。在一个实施例中,例如,ADC 10的运行模式可分为第一周期、和第三周期,其中第一周期包括采样,第二周期包括传送,第三周期包括模拟输入到数字输出的转换。
在运行过程中,将特定电极选择用于电压采样,并且开关SE(j)为高或处于逻辑“1”,其中“j”表示所选择的特定电极的数量。在采样间隔期间,即,在信号Φ1为高或处于逻辑“1”时,在电容器C1上对在所选择的电极E(j)处显现的电压进行采样。在采样间隔期间,电荷从所选择的电极输出传送至电容器C1,从而使电容器C1充电到最高至电极输出电压。如上文所指出,在采样间隔期间,可配置差分放大器16在因正被关闭的开关S4(Φ1为高)而作为具有单位增益反馈的运放器来工作。通过在采样间隔期间将差分放大器配置为运放器,在差分放大器第二输入处建立虚拟接地端以用于促进从输入电容器C1到开关电容器阵列的电荷传送。此外,还在电容器C1上对可归因于运放器16的任何电压偏移(标注为Vos)进行采样。同时,开关B(1)至B(10)关闭使得开关电容器阵列18中的所有电容器均耦合至电压Vref。在采样间隔期间,信号Φ2为低使得开关S2打开,并且信号Φ3为高使得开关S3关闭。
在传送间隔期间,即,在信号Φ2为高或逻辑“1”时,开关电容器阵列18中的所有电容器均耦合至Vi(图3),Vi还耦合至运放器16的输出20。将电容器C1上由C1上的电压所产生的电荷传送至在图1中标识为电容器C2的开关电容器阵列18,并且跨电容器C2的标注为VC2的电压等于偏移电压Vos减去“j”电极上的标注为VE(j)的乘以比率C1/C2的电压,或者:
VC2=-VE(j)·(C1/C2)+Vos。电压VC2在开关电容器阵列18的第一端口Vx与第二端口Vi之间测得。正如应当注意并且重要的是,在电容器C2的电容值大于电容器C1的电容值时,在所选择的电极上显现的电压以因数C1/C2衰减。在这些情况下,在需要放大而不是衰减在所选择的电极上显现的电压时,电容器C1的电容值可设置为大于电容器C2的电容值,使得电容器的比率等于所需放大因数。
还应当注意的是,符号C2具有双重用途,使得就形成因数C1/C2而言,符号C2表示开关电容器阵列中所有电容器的总电容值,并且就描述电路运行而言,符号C2表示图1和图3的电路块18。
在传送间隔期间,信号Φ1为低使得开关S4打开,并且信号Φ3为高使得开关S3关闭。应当注意的是,在传送间隔期间,开关电容器阵列中的电容器耦合在差分放大器输出与负输入之间,并且由于Φ2为高而处于反馈回路中,并且差分放大器16保持被配置为运放器。
这个新的新型的布置通过首先将高电极电压范围衰减至跨电容器C2的较低电压范围来提供对大电极电压的测量。衰减因数由电容器C1和C2的比率来精确地给定,该比率(与先前所讨论的现有技术不同)不受与电容器C1和C2相关联的任何寄生电容的影响。由于跨电容器C2的电压具有较低的电压范围,因此包括逻辑电路的低压电路可用于将跨电容器C2的电压数字化。此外,由于使用了对需要小的晶粒面积的低压晶体管加以利用的低压电路,因此高压晶体管(其占用大的晶粒面积)仅需用于开关S2以及耦合在电极输入与电容器C1之间的输入开关阵列。因此,当与使用高压晶体管的电路相比,这减小了总的ADC晶粒面积。
在模数转换间隔期间,即,在信号Φ3为低或逻辑“0”时,差分放大器16被配置为比较器,并且电压VC2通过根据由比较器16生成的比较结果来切换开关电容器阵列18中的位于Vref与接地端之间的电容器,以类似于常规逐次逼近型ADC的方式转换成数字位(D1至D10,假设为10位ADC架构)。对于实例10位ADC而言,尽管附图中未示出处理器,但应当理解,被配置为执行开关电容器阵列中的切换活动以及逐次逼近型寄存器(SAR)22中的处理的处理器在本发明的设想内,并且充分地在本领域那些技术人员的能力范围内,因此这里不详细描述。在于模数转换间隔期间完成逐次逼近过程时,SAR 22在SAR输出24处提供经模数转换的输出。还应当理解,无论是在SAR 22中还是在生成ADCO(SAR输出24)之后完成,都必须根据情况以衰减因数C1/C2的倒数来升高或者以增益因数C1/C2来降低实际转换电压,以便获得对所选择电极电压的准确转换。
就偏移电压Vos而言,据认为,由于差分放大器16的正确设计,所以该电压在采样间隔和传送间隔期间是不变的。此外,差分放大器16的偏移电压被存储在电容器C2上的偏移电压抵消。
参考图2和图4,其中分别示出了ADC过程30的逻辑信号时序图和流程图,该过程用于在SAR 22的输出24处将采样得到的所选择电极电压转换成其数字等效形式。在方框32处,来自所述多个电极的电极被选择用于对应的模拟电压采样。在方框34处,电压采样间隔在Tstart处开始,并且电极电压E(j)被采样并保持在电容器C1上,并且差分放大器被配置为运放器。在方框36处,传送间隔在T1处开始,并且C1上的乘以比率C1/C2的电压被传送至开关电容器阵列,并且差分放大器维持被配置为运放器。在方框38处,模数转换在T2处开始,并且差分放大器被配置为比较器。在T3处,在方框40处,已转换为数字等效形式的模拟电压在逐次逼近型寄存器(SAR 22)输出处提供。在一些实施例中,从逐次逼近型寄存器(SAR 22)输出接收的信息可用于确定电极的阻抗和/或围绕电极的组织的阻抗。在一些实施例中,这可用于确定和/或检测电极中是否存在短路或开路和/或是否存在与电极有关的短路或开路。针对其模拟电压将要被采样并转换成数字等效形式的其他所选择的电极,重复该过程。
在一些非限制性实施例中,前述ADC架构可结合到植入式电刺激系统,诸如用于治疗神经性疼痛的周围植入式系统中。
大约8%的西方(欧盟和美国)人受到神经性疼痛(归因于神经损伤的慢性顽固性疼痛)的影响。在大约5%的人中,这种疼痛是严重的。有至少20万患者具有涉及神经的慢性顽固性疼痛。神经性疼痛可能非常难以治疗,只有半数患者实现了局部缓解。因此,确定个体患者的最佳治疗仍然具有挑战性。常规治疗包括某些抗抑郁药、抗癫痫药及阿片类药物。然而,这些药物的副作用可能是有害的。在这些情况中的一些情况下,电刺激(包括FES在内)可提供对这种疼痛的有效治疗而不产生与药物相关的副作用。
脊髓刺激器,其为一种类型的FES设备,是一种用于将脉冲电信号递送至脊髓以控制慢性疼痛的设备。由于电刺激是一种单纯的电治疗并且不导致与药物所致的那些副作用类似的副作用,因此越来越多的医生和患者偏爱将电刺激而不是药物用作疼痛治疗。脊髓刺激(SCS)的确切的疼痛缓解机制尚且未知。SCS试验的科学背景最初基于由Melzack和Wall于1965年首先描述的疼痛闸门控制理论。这个理论假设疼痛由两种传入神经纤维传输。一种是较大的有髓鞘的Aδ纤维,其携带快速强烈疼痛讯息。另一种是较小的无髓鞘的“C”纤维,其传输悸痛性慢性疼痛讯息。称为Aβ的第三类神经纤维是“非疼痛感受型”,这就意味着它不传输疼痛刺激。闸门控制理论宣称,由Aδ和C疼痛纤维传输的信号可被非疼痛感受型Aβ纤维的激活/刺激阻挠并且因此抑制个体对疼痛的感知。因此,神经刺激通过在疼痛讯息到达大脑之前阻滞这些疼痛讯息来提供疼痛缓解。
目前,SCS大多用在背部手术失败综合征的治疗中,背部手术失败综合征是一种具有由于局部缺血的顽固性疼痛的复杂的局部疼痛综合征。在所有SCS患者中30%到40%的患者已报告SCS并发症。这就增加了患者疼痛管理的总成本并降低了SCS的功效。常见并发症包括:感染、出血、神经组织损伤、将设备置于错误的腔室中、硬件失灵、引线迁移、引线破损、引线连接断开、引线腐蚀、植入部位处的疼痛、发生器过热以及充电器过热。常见并发症的发生率出奇高:9.5%由引线延伸部连接问题所致,6%由于引线破损,22.6%的情况与引线迁移相关,4.5%遭遇感染。
周围神经病变可能是先天性的或后天性的。后天性周围神经病变的原因包括神经的物理损伤(创伤)、病毒、肿瘤、毒素、自身免疫反应、营养不良、酒精中毒、糖尿病以及血管和代谢紊乱。后天性周围神经病变分为三个大类:由全身性疾病导致的那些、由创伤导致的那些以及由感染或影响神经组织的自身免疫疾病导致的那些。后天性周围神经病变的一个例子是三叉神经痛,其中三叉神经(头部和面部的大神经)的损伤导致面部一侧受到剧烈的闪电般疼痛的急性发作。
具有周围神经性疼痛的很大部分患者出于各种原因而并未从SCS中受益。然而,这些患者中的许多可经由直接电刺激对应周围神经而获得可接受水平的疼痛缓解。这种疗法称为周围神经刺激(PNS)。然而,在美国市场上没有获FDA批准的PNS设备。标准脊髓刺激器(SCS)设备通常被疼痛医生超说明书用于治疗这种病情。据估计,大约15%的SCS设备已超说明书用于PNS。
由于当前的市售SCS系统设计用于刺激脊髓而不是用于周围神经刺激,因此相比针对SCS,针对PNS存在更多的与SCS系统的使用相关联的设备并发症。当前的SCS设备(发生器)大而笨重。在将SCS用于PNS的情况下,SCS发生器通常植入在腹部中或者臀部上方的腰部中,并且长引线跨多个关节穿引到达臂部、腿部或面部中的目标周围神经。关节的过度穿引以及跨越引起增加的术后疼痛以及更高的设备故障率。此外,刚性引线可引起皮肤侵蚀和穿透,其中引线故障率在植入的3年内将近100%。大多数并发症导致置换手术以及甚至在某些情况下的多个置换手术。
图5中示出了周围植入式神经刺激系统的感测系统500的一个实施例。在一些实施例中,感测系统500的部件可位于周围植入式神经刺激系统的其他部件中,或者可被周围植入式神经刺激系统的其他部件共享。在一些实施例中,感测系统500可被配置为确定一个或若干个电压,其可包括在一个或若干个电极处对电压进行测量/采样。在图5所描绘的实施例中,感测系统500包括连接至多个电极504的模数转换器502。在一些实施例中,模数转换器502可为被配置为感测在电极504处电压的全范围和/或对在电极504处电压的全范围的所需部分进行感测的任何电路,并且可为例如图1所描绘的电路10。
在一些实施例中,模数转换器502可包括一个或若干个空间节省特征结构。在一个实施例中,例如,模数转换器502可包括一个或若干个开关电容器,所述开关电容器可为例如开关电容器放大器的一部分。在一个实施例中,开关电容器放大器可与逐次逼近型模数转换器组合,所述逐次逼近型模数转换器可包括比较器。图1中示出了开关电容器放大器与逐次逼近型模数转换器的组合。如图1所见,开关电容器放大器在差分放大器16作为运放器运行时的时间间隔和/或周期期间创建。在一个此类实施例中,开关电容器放大器和逐次逼近型模数转换器可共享共用差分放大器,该共用差分放大器可配置为运放器或配置为比较器。在一个此类实施例中,在模数转换器502正在采样时,逐次逼近型模数转换器的比较器可用作运放器,并且逐次逼近型模数转换器的比较器可用作用于使测得电压数字化的比较器。
如图5所见,模数转换器502可连接至多个电极504。在一些实施例中,电极504可为图1所示的电极阵列12的一部分。在一些实施例中,电极504可包括一条或多条引线的导电部分,例如,阳极引线和/或阴极引线的导电部分。在一些实施例中,单个电极504可位于引线上,并且在一些实施例中,多个电极504可位于一条引线上。在一些实施例中,电极504可置于与例如神经相邻的身体上或植入其中。在一些实施例中,识别是否存在短路或开路和/或指示一个或若干个电极504的电压的信息可用于更改对一个或若干个电脉冲和/或脉冲图形的创建。
图6中示出了周围植入式神经刺激系统600的一个实施例。在一些实施例中,周围植入式神经刺激系统600可用于治疗具有例如源自周围神经的慢性、严重、顽固性神经疼痛的患者。在一些实施例中,周围植入式神经刺激系统600可用于刺激目标周围神经或脊椎的后硬膜外腔隙。
周围植入式神经刺激系统600可包括一个或若干个脉冲发生器。脉冲发生器可包括各种形状和尺寸,并且可由各种材料制成。在一些实施例中,所述一个或若干个脉冲发生器可生成递送至神经以控制疼痛的电脉冲。在一些实施例中,脉冲发生器可为体外脉冲发生器602或植入式脉冲发生器604。在一些实施例中,体外脉冲发生器602可用于评估用周围植入式神经刺激系统600进行治疗和/或植入式脉冲发生器604的植入的患者适用性。
植入式脉冲发生器604的尺寸和形状可经设计并且由一定材料制成,以便允许将植入式脉冲发生器604植入到身体内部。在一些实施例中,植入式脉冲发生器604的尺寸和形状可经设计以便允许将植入式脉冲发生器604置于身体中的任何所需位置处,并且在一些实施例中,置于周围神经附近使得(下文所述的)引线不跨关节穿引和/或使得不需要延长线缆。在一些实施例中,脉冲发生器,并且具体来说植入式脉冲发生器604和/或体外脉冲发生器602,可结合图5的感测系统,并且具体来说图1的电路10。
在一些实施例中,由脉冲发生器生成的电脉冲可经由一条或多条引线递送至一条或若干条神经610和/或至一条或若干条神经610附近的组织。引线可包括称为电极的导电部分,以及非导电部分。引线可具有各种形状,可为各种尺寸,并且可由各种材料制成,所述尺寸、形状和材料可由应用或其他因素决定。
在一些实施例中,引线可包括阳极引线606和/或阴极引线608。在一些实施例中,阳极引线606和阴极引线608可为相同的引线,但可从脉冲发生器接收不同极性的脉冲。
在一些实施例中,引线可直接连接至脉冲发生器,并且在一些实施例中,引线可经由连接器612和连接器线缆614连接至脉冲发生器。连接器612可包括能够将引线电连接至连接器线缆614的任何设备。同样,连接器线缆可为能够将不同电脉冲传输至阳极引线606和阴极引线608的任何设备。
在一些实施例中,周围植入式神经刺激系统600可包括充电器616,该充电器可被配置为在植入式脉冲发生器604植入体内时对植入式脉冲发生器604再充电。充电器616可包括各种形状、尺寸和特征结构,并且可由各种材料制成。在一些实施例中,充电器616可经由电感耦合对植入式脉冲发生器604再充电。
在一些实施例中,可经由控制器来控制电脉冲的一个或若干个特性。在一些实施例中,这些特性可包括例如电脉冲的频率、强度、图形、持续时间或时序和量值的其他方面。在一个实施例中,这些特性可包括例如电压、电流等。在一个实施例中,第一电脉冲可具有第一特性,并且第二电脉冲可具有第二特性。电脉冲的此控制可包括对一个或若干个电脉冲程序、平面图或图形的创建,而在一些实施例中,这可包括对一个或若干个已有电脉冲程序、平面图或图形的选择。在图6所描绘的实施例中,周围植入式神经刺激系统600包括控制器,该控制器为临床医生编程器618。临床医生编程器618可用于创建一个或若干个脉冲程序、平面图或图形和/或用于选择已创建的脉冲程序、平面图或图形中的一者或若干者。在一些实施例中,临床医生编程器618可用于对脉冲发生器的运行进行编程,所述脉冲发生器包括例如体外脉冲发生器602和植入式脉冲发生器604中的一者或两者。临床医生编程器618可包括可有线地和/或无线地与脉冲发生器通信的计算设备。在一些实施例中,临床医生编程器618可被进一步配置为从脉冲发生器接收指示脉冲发生器和引线的运行和/或有效性的信息。
在一些实施例中,周围植入式神经刺激系统600的控制器可包括患者遥控器620。患者遥控器620可包括可经由有线或无线连接与脉冲发生器通信的计算设备。患者遥控器620可用于对脉冲发生器进行编程,并且在一些实施例中,患者遥控器620可包括由临床医生编程器618创建的一个或若干个脉冲生成程序、平面图或图形。在一些实施例中,患者遥控器620可用于选择已有脉冲生成程序、平面图或图形中的一者或若干者,并且选择例如所述一个或若干个脉冲生成程序、平面图或图形中的所选择者的持续时间。
有利的是,周围植入式神经刺激系统600的上文所概述的部件可用于控制并提供电脉冲的生成以迁移患者疼痛。
虽然已借助具体实施例及其应用描述了本发明,但应当理解,在不脱离本发明的实质和范围的情况下,本领域那些技术人员可对本发明进行多种修改和变型。因此,应当理解,在权利要求书的范围内,可以除本文具体所描述之外以其他方式实践本发明。例如,尽管某些电子设备被描述为耦合至差分放大器的特定正输入和负输入,但应当理解,借助对逻辑信号时序和信号处理所进行的对应调节以实现所需ADC运行,本发明设想了对此类电子设备的其他连接分配。

Claims (11)

1.一种植入式神经刺激系统,包括:
多条引线,其中所述多条引线中的每一者包括至少一个电极;
模数转换器,所述模数转换器包括逐次逼近型模数转换器和一体式开关电容器放大器,其中所述逐次逼近型模数转换器和所述一体式开关电容器放大器共享共用的差分放大器;
脉冲发生器,所述脉冲发生器被配置为生成一个或若干个电脉冲,其中所述脉冲发生器连接至所述引线,使得所述电脉冲传输至所述至少一个电极;和
控制器,所述控制器被配置为在运算放大器模式与比较器模式之间重新配置所述差分放大器。
2.根据权利要求1所述的植入式神经刺激系统,其特征在于,还包括逐次逼近型寄存器。
3.根据权利要求1所述的植入式神经刺激系统,其特征在于,所述控制器被配置为通过生成第一信号和第二信号来在运算放大器模式与比较器模式之间重新配置所述差分放大器,所述第一信号指导所述差分放大器在第一周期期间作为运放器运行,所述第二信号指导所述差分放大器在第二周期期间作为比较器运行。
4.根据权利要求3所述的植入式神经刺激系统,其特征在于,还包括输入电容器,所述输入电容器在所述引线与所述模数转换器之间,其中所述输入电容器在所述第一周期期间充电。
5.根据权利要求4所述的植入式神经刺激系统,其特征在于,所述输入电容器在所述第一周期期间并且继所述输入电容器的充电之后放电,并且电荷被传送至开关电容器阵列。
6.一种植入式电刺激系统,包括:
脉冲发生器,所述脉冲发生器被配置为生成一个或若干个电脉冲;
电极阵列,所述电极阵列被配置为输出所述一个或若干个电脉冲;
模数转换器,所述模数转换器被配置为将与所述电极阵列的所述电极中的至少一者相关联的模拟信号转换成数字信号,所述模数转换器包括可重新配置的差分放大器;和
控制器,所述控制器被配置为在运算放大器模式与比较器模式之间重新配置所述差分放大器。
7.根据权利要求6所述的植入式电刺激系统,其特征在于,所述模数转换器包括逐次逼近型模数转换器和开关电容器放大器,所述逐次逼近型模数转换器和所述开关电容器放大器共享共用的差分放大器。
8.根据权利要求7所述的植入式电刺激系统,其特征在于,还包括逐次逼近型寄存器。
9.根据权利要求6所述的植入式电刺激系统,其特征在于,所述控制器被配置为生成第一信号和第二信号,所述第一信号指导所述可重新配置的差分放大器在第一周期期间作为运放器运行,所述第二信号指导所述差分放大器在第二周期期间作为比较器运行。
10.根据权利要求9所述的植入式电刺激系统,其特征在于,还包括输入电容器,所述输入电容器连接所述电极阵列与所述模数转换器,其中所述输入电容器在所述第一周期期间充电。
11.根据权利要求10所述的植入式电刺激系统,其特征在于,所述输入电容器在所述第一周期期间并且继所述输入电容器的充电之后放电,并且电荷被传送至开关电容器阵列。
CN201480001898.2A 2013-03-15 2014-03-17 高压监控逐次逼近型模数转换器 Active CN104769847B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361788926P 2013-03-15 2013-03-15
US61/788,926 2013-03-15
PCT/US2014/030890 WO2014146019A2 (en) 2013-03-15 2014-03-17 High voltage monitoring successive approximation analog to digital converter

Publications (2)

Publication Number Publication Date
CN104769847A CN104769847A (zh) 2015-07-08
CN104769847B true CN104769847B (zh) 2018-02-13

Family

ID=50639999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480001898.2A Active CN104769847B (zh) 2013-03-15 2014-03-17 高压监控逐次逼近型模数转换器

Country Status (7)

Country Link
US (2) US9044614B2 (zh)
EP (1) EP2974034B1 (zh)
JP (1) JP6174781B2 (zh)
CN (1) CN104769847B (zh)
AU (1) AU2014232255B2 (zh)
CA (1) CA2903860C (zh)
WO (1) WO2014146019A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221714A1 (ja) * 2016-06-21 2017-12-28 ソニー株式会社 半導体装置および細胞電位測定装置
CN106972861B (zh) * 2017-02-21 2019-04-12 和芯星通科技(北京)有限公司 一种模数转换器
US10284213B2 (en) * 2017-04-21 2019-05-07 Analog Devices, Inc. Analog-to-digital converter reusing comparator for residue amplifier for noise shaping
CN107171667B (zh) * 2017-06-09 2023-07-28 江西联智集成电路有限公司 逐次逼近型模数转换器及其自检测方法
CN108011637A (zh) * 2017-11-28 2018-05-08 海宁海微电子科技有限公司 一种运放共享的流水型模数转换器
TWI659620B (zh) * 2018-02-07 2019-05-11 瑞昱半導體股份有限公司 循序漸進式類比數位轉換電路與相關方法
EP3539609B1 (en) 2018-03-16 2021-04-28 Universität Ulm Versatile control for a neural stimulation device
CN109690954B (zh) * 2018-05-31 2023-02-17 深圳市汇顶科技股份有限公司 高效逐次逼近寄存器模数转换器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85104529A (zh) * 1985-06-13 1986-12-10 科德曼及舒特莱夫有限公司 用于经皮肤的神经刺激装置的治疗脉冲序列
US6351145B1 (en) * 1999-06-21 2002-02-26 Xilinx, Inc. Realizing analog-to-digital converter on a digital programmable integrated circuit
CN101099670A (zh) * 2007-06-15 2008-01-09 西安电子科技大学 失眠的神经反馈治疗装置

Family Cites Families (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646940A (en) 1969-07-15 1972-03-07 Univ Minnesota Implantable electronic stimulator electrode and method
US3942535A (en) 1973-09-27 1976-03-09 G. D. Searle & Co. Rechargeable tissue stimulating system
US4019518A (en) 1975-08-11 1977-04-26 Medtronic, Inc. Electrical stimulation system
US4044774A (en) 1976-02-23 1977-08-30 Medtronic, Inc. Percutaneously inserted spinal cord stimulation lead
US4082097A (en) 1976-05-20 1978-04-04 Pacesetter Systems Inc. Multimode recharging system for living tissue stimulators
US4340062A (en) 1978-11-06 1982-07-20 Medtronic, Inc. Body stimulator having selectable stimulation energy levels
US4468723A (en) 1981-04-24 1984-08-28 Hewlett-Packard Company Magnetically regulated power supply
US4558702A (en) 1983-01-21 1985-12-17 Cordis Corporation Cardiac pacer having input/output circuit programmable for use with unipolar and bipolar pacer leads
US4673867A (en) 1986-06-30 1987-06-16 Motorola, Inc. Current mirror circuit and method for providing zero temperature coefficient trimmable current ratios
US4744371A (en) 1987-04-27 1988-05-17 Cordis Leads, Inc. Multi-conductor lead assembly for temporary use
JPH01108814A (ja) * 1987-10-22 1989-04-26 Oki Electric Ind Co Ltd A−d変換器
DE3914662A1 (de) 1989-05-03 1990-11-08 Alt Eckhard Vorrichtung zum uebertragen elektrischer signale zwischen einem implantierbaren medizinischen geraet und elektrisch erregbarem menschlichen gewebe
GB9211085D0 (en) 1992-05-23 1992-07-08 Tippey Keith E Electrical stimulation
US6249703B1 (en) 1994-07-08 2001-06-19 Medtronic, Inc. Handheld patient programmer for implantable human tissue stimulator
US6035237A (en) 1995-05-23 2000-03-07 Alfred E. Mann Foundation Implantable stimulator that prevents DC current flow without the use of discrete output coupling capacitors
US5702431A (en) 1995-06-07 1997-12-30 Sulzer Intermedics Inc. Enhanced transcutaneous recharging system for battery powered implantable medical device
US5690693A (en) 1995-06-07 1997-11-25 Sulzer Intermedics Inc. Transcutaneous energy transmission circuit for implantable medical device
US5877472A (en) 1996-02-22 1999-03-02 Pacesetter, Inc. System for laser-welding components of an implantable device
DE19623788A1 (de) 1996-06-04 1997-12-11 Biotronik Mess & Therapieg Implantierbares Stimulationsgerät
US6609031B1 (en) 1996-06-07 2003-08-19 Advanced Neuromodulation Systems, Inc. Multiprogrammable tissue stimulator and method
US5741316A (en) 1996-12-02 1998-04-21 Light Sciences Limited Partnership Electromagnetic coil configurations for power transmission through tissue
US5735887A (en) 1996-12-10 1998-04-07 Exonix Corporation Closed-loop, RF-coupled implanted medical device
JP3954177B2 (ja) 1997-01-29 2007-08-08 日本碍子株式会社 金属部材とセラミックス部材との接合構造およびその製造方法
US7114502B2 (en) 1997-02-26 2006-10-03 Alfred E. Mann Foundation For Scientific Research Battery-powered patient implantable device
US7460911B2 (en) 1997-02-26 2008-12-02 Alfred E. Mann Foundation For Scientific Research System and method suitable for treatment of a patient with a neurological deficit by sequentially stimulating neural pathways using a system of discrete implantable medical devices
US8684009B2 (en) 1997-02-26 2014-04-01 Alfred E. Mann Foundation For Scientific Research System for determining relative distance(s) and/or angle(s) between at least two points
US6164284A (en) 1997-02-26 2000-12-26 Schulman; Joseph H. System of implantable devices for monitoring and/or affecting body parameters
US6208894B1 (en) 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US8555894B2 (en) 1997-02-26 2013-10-15 Alfred E. Mann Foundation For Scientific Research System for monitoring temperature
AU6667698A (en) 1997-02-26 1998-09-18 Alfred E. Mann Foundation For Scientific Research Battery-powered patient implantable device
US5835049A (en) * 1997-03-27 1998-11-10 Lucent Technologies Inc. Amplifier for use in time-sharing applications
US5871513A (en) 1997-04-30 1999-02-16 Medtronic Inc. Centerless ground feedthrough pin for an electrical power source in an implantable medical device
US6191365B1 (en) 1997-05-02 2001-02-20 General Science And Technology Corp Medical devices incorporating at least one element made from a plurality of twisted and drawn wires
JPH114166A (ja) * 1997-06-12 1999-01-06 Matsushita Electric Ind Co Ltd 逐次比較型a/d変換器
ES2224420T3 (es) 1997-08-01 2005-03-01 Alfred E. Mann Foundation For Scientific Research Dispositivo implantable con configuracion mejorada de alimentacion y recarga de bateria.
US6427086B1 (en) 1997-10-27 2002-07-30 Neuropace, Inc. Means and method for the intracranial placement of a neurostimulator
US6265789B1 (en) 1997-11-20 2001-07-24 Seiko Epson Corporation Electronic apparatus
US6306100B1 (en) 1997-12-16 2001-10-23 Richard L. Prass Intraoperative neurophysiological monitoring system
US6402793B1 (en) 1998-04-03 2002-06-11 Medtronic, Inc. Implantable medical device having flat electrolytic capacitor with cathode/case electrical connections
US6221513B1 (en) 1998-05-12 2001-04-24 Pacific Coast Technologies, Inc. Methods for hermetically sealing ceramic to metallic surfaces and assemblies incorporating such seals
US6735474B1 (en) 1998-07-06 2004-05-11 Advanced Bionics Corporation Implantable stimulator system and method for treatment of incontinence and pain
US6941171B2 (en) 1998-07-06 2005-09-06 Advanced Bionics Corporation Implantable stimulator methods for treatment of incontinence and pain
US6027456A (en) 1998-07-10 2000-02-22 Advanced Neuromodulation Systems, Inc. Apparatus and method for positioning spinal cord stimulation leads
US6178353B1 (en) 1998-07-27 2001-01-23 Advanced Bionics Corporation Laminated magnet keeper for implant device
US7231254B2 (en) 1998-08-05 2007-06-12 Bioneuronics Corporation Closed-loop feedback-driven neuromodulation
US6212431B1 (en) 1998-09-08 2001-04-03 Advanced Bionics Corporation Power transfer circuit for implanted devices
US7142925B1 (en) 1998-09-16 2006-11-28 Axon Engineering, Inc. Combined stimulation of ventral and dorsal sacral roots for control of bladder function
IL127481A (en) 1998-10-06 2004-05-12 Bio Control Medical Ltd Urine excretion prevention device
EP1124502B1 (en) 1998-10-06 2007-04-04 Bio Control Medical, Ltd. Incontinence treatment device
WO2000025859A1 (en) 1998-10-30 2000-05-11 Aalborg University A method to control an overactive bladder
US7555346B1 (en) 1999-01-07 2009-06-30 Boston Scientific Neuromodulation Corporation Implantable pulse generator having current steering means
US6393325B1 (en) 1999-01-07 2002-05-21 Advanced Bionics Corporation Directional programming for implantable electrode arrays
AU772100B2 (en) 1999-02-08 2004-04-08 Cochlear Limited Offset coils for radio frequency transcutaneous links
US6172556B1 (en) 1999-03-04 2001-01-09 Intersil Corporation, Inc. Feedback-controlled low voltage current sink/source
US8666495B2 (en) 1999-03-05 2014-03-04 Metacure Limited Gastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar
WO2000056677A1 (en) 1999-03-24 2000-09-28 Alfred E. Mann Foundation Method and apparatus of a strong metal-ceramic braze bond
DE60042155D1 (de) 1999-03-24 2009-06-18 Second Sight Medical Prod Inc Retinale farbprothese zur wiederherstellung des farbsehens
US6055456A (en) 1999-04-29 2000-04-25 Medtronic, Inc. Single and multi-polar implantable lead for sacral nerve electrical stimulation
US6212430B1 (en) 1999-05-03 2001-04-03 Abiomed, Inc. Electromagnetic field source with detection of position of secondary coil in relation to multiple primary coils
US6505075B1 (en) 1999-05-29 2003-01-07 Richard L. Weiner Peripheral nerve stimulation method
US7177690B2 (en) 1999-07-27 2007-02-13 Advanced Bionics Corporation Implantable system having rechargeable battery indicator
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US6363277B1 (en) * 1999-08-20 2002-03-26 Cardiac Pacemakers, Inc. Cardiac rhythm management system with differential sensing channel
US7047082B1 (en) 1999-09-16 2006-05-16 Micronet Medical, Inc. Neurostimulating lead
US6654642B2 (en) 1999-09-29 2003-11-25 Medtronic, Inc. Patient interactive neurostimulation system and method
JP2001108814A (ja) 1999-10-07 2001-04-20 Canon Inc スペーサー付カラーフィルタとその製造方法、該カラーフィルタを用いた液晶素子
US6442434B1 (en) 1999-10-19 2002-08-27 Abiomed, Inc. Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system
WO2001037728A1 (en) 1999-11-24 2001-05-31 Nuvasive, Inc. Electromyography system
US6466817B1 (en) 1999-11-24 2002-10-15 Nuvasive, Inc. Nerve proximity and status detection system and method
US6438423B1 (en) 2000-01-20 2002-08-20 Electrocore Technique, Llc Method of treating complex regional pain syndromes by electrical stimulation of the sympathetic nerve chain
US6662051B1 (en) 2000-03-31 2003-12-09 Stephen A. Eraker Programmable pain reduction device
CA2406158A1 (en) 2000-04-20 2001-11-01 Cochlear Limited Transcutaneous power optimization circuit for cochlear implant
US6456220B1 (en) * 2000-06-19 2002-09-24 Cygnal Integrated Products, Inc. Analog-to-digital converter for processing differential and single-ended inputs
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
IT1316598B1 (it) 2000-08-07 2003-04-24 Caen Microelettronica E Sistem Manufatto tessile con fibre illuminate, capo di abbigliamento daquesto ottenuto e metodo di produzione del manufatto.
US7054689B1 (en) 2000-08-18 2006-05-30 Advanced Bionics Corporation Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction
US6864755B2 (en) 2000-10-06 2005-03-08 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Switched reactance modulated E-class oscillator design
US6745077B1 (en) 2000-10-11 2004-06-01 Advanced Bionics Corporation Electronic impedance transformer for inductively-coupled load stabilization
US6971393B1 (en) 2000-11-15 2005-12-06 George Mamo Minimally invasive method for implanting a sacral stimulation lead
US6847849B2 (en) 2000-11-15 2005-01-25 Medtronic, Inc. Minimally invasive apparatus for implanting a sacral stimulation lead
US6600954B2 (en) 2001-01-25 2003-07-29 Biocontrol Medical Bcm Ltd. Method and apparatus for selective control of nerve fibers
US6975906B2 (en) 2001-02-08 2005-12-13 Wilson Greatbatch Ltd. One piece header assembly over molded to an implantable medical device
US6901287B2 (en) 2001-02-09 2005-05-31 Medtronic, Inc. Implantable therapy delivery element adjustable anchor
US6597953B2 (en) 2001-02-20 2003-07-22 Neuropace, Inc. Furcated sensing and stimulation lead
US6708065B2 (en) 2001-03-02 2004-03-16 Cardiac Pacemakers, Inc. Antenna for an implantable medical device
US6584355B2 (en) 2001-04-10 2003-06-24 Cardiac Pacemakers, Inc. System and method for measuring battery current
US8145324B1 (en) 2001-04-13 2012-03-27 Greatbatch Ltd. Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices
US6892098B2 (en) 2001-04-26 2005-05-10 Biocontrol Medical Ltd. Nerve stimulation for treating spasticity, tremor, muscle weakness, and other motor disorders
US6521350B2 (en) 2001-06-18 2003-02-18 Alfred E. Mann Foundation For Scientific Research Application and manufacturing method for a ceramic to metal seal
EP1417000B1 (en) 2001-07-11 2018-07-11 Nuvasive, Inc. System for determining nerve proximity during surgery
JP2003047179A (ja) 2001-07-26 2003-02-14 Matsushita Electric Works Ltd 非接触電力伝達装置
US6456256B1 (en) 2001-08-03 2002-09-24 Cardiac Pacemakers, Inc. Circumferential antenna for an implantable medical device
US7151914B2 (en) 2001-08-21 2006-12-19 Medtronic, Inc. Transmitter system for wireless communication with implanted devices
US7734355B2 (en) 2001-08-31 2010-06-08 Bio Control Medical (B.C.M.) Ltd. Treatment of disorders by unidirectional nerve stimulation
US6999819B2 (en) 2001-08-31 2006-02-14 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
EP1435828A4 (en) 2001-09-25 2009-11-11 Nuvasive Inc SYSTEM AND METHODS FOR EVALUATIONS AND SURGICAL ACTS
AU2002334749A1 (en) 2001-09-28 2003-04-07 Northstar Neuroscience, Inc. Methods and implantable apparatus for electrical therapy
US7187978B2 (en) 2001-11-01 2007-03-06 Medtronic, Inc. Method and apparatus for programming an implantable medical device
US6894456B2 (en) 2001-11-07 2005-05-17 Quallion Llc Implantable medical power module
US6721603B2 (en) 2002-01-25 2004-04-13 Cyberonics, Inc. Nerve stimulation as a treatment for pain
WO2009021080A2 (en) 2007-08-06 2009-02-12 Great Lakes Biosciences, Llc Methods and apparatus for electrical stimulation of tissues using signals that minimize the effects of tissue impedance
US7317948B1 (en) 2002-02-12 2008-01-08 Boston Scientific Scimed, Inc. Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance
US7582058B1 (en) 2002-06-26 2009-09-01 Nuvasive, Inc. Surgical access system and related methods
US8386048B2 (en) 2002-06-28 2013-02-26 Boston Scientific Neuromodulation Corporation Systems and methods for communicating with or providing power to an implantable stimulator
US20040098068A1 (en) 2002-06-28 2004-05-20 Rafael Carbunaru Chair pad charging and communication system for a battery-powered microstimulator
US7328068B2 (en) 2003-03-31 2008-02-05 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudendal and associated nerves, and the optional delivery of drugs in association therewith
US7369894B2 (en) 2002-09-06 2008-05-06 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the sacral and/or pudendal nerves
AU2002951738A0 (en) 2002-09-30 2002-10-17 Cochlear Limited Feedthrough with extended conductive pathways
US7127298B1 (en) 2002-10-18 2006-10-24 Advanced Bionics Corporation Switched-matrix output for multi-channel implantable stimulator
US7933655B2 (en) 2002-10-31 2011-04-26 Medtronic, Inc. Neurostimulation therapy manipulation
ATE482743T1 (de) 2002-10-31 2010-10-15 Medtronic Inc Verfahren und vorrichtung zur anwendung von filterinformationen zur identifizierung von kombinationen von elektroden
US7181286B2 (en) 2002-10-31 2007-02-20 Medtronic, Inc. Distributed system for neurostimulation therapy programming
EP1417986A1 (en) 2002-11-05 2004-05-12 Wilson Greatbatch Technologies, Inc. One piece header assembly for an implantable medical device
US6990376B2 (en) 2002-12-06 2006-01-24 The Regents Of The University Of California Methods and systems for selective control of bladder function
US7952349B2 (en) 2002-12-09 2011-05-31 Ferro Solutions, Inc. Apparatus and method utilizing magnetic field
TR200202651A2 (tr) 2002-12-12 2004-07-21 Met�N�Tulgar VücutÁdışındanÁdirekÁtedaviÁsinyaliÁtransferliÁÁbeyinÁpili
US7742821B1 (en) 2003-06-11 2010-06-22 Boston Scientific Neutomodulation Corporation Remote control for implantable medical device
US7463928B2 (en) 2003-04-25 2008-12-09 Medtronic, Inc. Identifying combinations of electrodes for neurostimulation therapy
US7317947B2 (en) 2003-05-16 2008-01-08 Medtronic, Inc. Headset recharger for cranially implantable medical devices
US7617002B2 (en) 2003-09-15 2009-11-10 Medtronic, Inc. Selection of neurostimulator parameter configurations using decision trees
US20050075696A1 (en) 2003-10-02 2005-04-07 Medtronic, Inc. Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device
US7225032B2 (en) 2003-10-02 2007-05-29 Medtronic Inc. External power source, charger and system for an implantable medical device having thermal characteristics and method therefore
US7286880B2 (en) 2003-10-02 2007-10-23 Medtronic, Inc. System and method for transcutaneous energy transfer achieving high efficiency
US7515967B2 (en) 2003-10-02 2009-04-07 Medtronic, Inc. Ambulatory energy transfer system for an implantable medical device and method therefore
US8140168B2 (en) 2003-10-02 2012-03-20 Medtronic, Inc. External power source for an implantable medical device having an adjustable carrier frequency and system and method related therefore
US6989200B2 (en) 2003-10-30 2006-01-24 Alfred E. Mann Foundation For Scientific Research Ceramic to noble metal braze and method of manufacture
US6986453B2 (en) 2003-11-13 2006-01-17 Alfred E. Mann Foundation For Scientific Research Manufacturing method for a ceramic to metal seal
WO2005082453A1 (en) 2004-02-25 2005-09-09 Advanced Neuromodulation Systems, Inc. System and method for neurological stimulation of peripheral nerves to treat low back pain
US7738963B2 (en) 2004-03-04 2010-06-15 Advanced Neuromodulation Systems, Inc. System and method for programming an implantable pulse generator
US7212110B1 (en) 2004-04-19 2007-05-01 Advanced Neuromodulation Systems, Inc. Implantable device and system and method for wireless communication
US7532936B2 (en) 2004-04-20 2009-05-12 Advanced Neuromodulation Systems, Inc. Programmable switching device for implantable device
US7245972B2 (en) 2004-04-29 2007-07-17 Alfred E. Mann Foundation For Scientific Research Electrical treatment to treat shoulder subluxation
US7359751B1 (en) 2004-05-05 2008-04-15 Advanced Neuromodulation Systems, Inc. Clinician programmer for use with trial stimulator
US7450991B2 (en) 2004-05-28 2008-11-11 Advanced Neuromodulation Systems, Inc. Systems and methods used to reserve a constant battery capacity
US7539538B2 (en) 2004-05-28 2009-05-26 Boston Science Neuromodulation Corporation Low power loss current digital-to-analog converter used in an implantable pulse generator
WO2006022993A2 (en) 2004-06-10 2006-03-02 Ndi Medical, Llc Implantable generator for muscle and nerve stimulation
WO2006012426A2 (en) 2004-07-20 2006-02-02 Medtronic, Inc. Locating an implanted object based on external antenna loading
US7061780B2 (en) 2004-09-09 2006-06-13 System General Corp. Switching control circuit with variable switching frequency for primary-side-controlled power converters
US7771838B1 (en) 2004-10-12 2010-08-10 Boston Scientific Neuromodulation Corporation Hermetically bonding ceramic and titanium with a Ti-Pd braze interface
US7578819B2 (en) 2005-05-16 2009-08-25 Baxano, Inc. Spinal access and neural localization
US8768452B2 (en) 2005-02-23 2014-07-01 Medtronic, Inc. Implantable neurostimulator supporting trial and chronic modes
US8774912B2 (en) 2005-02-23 2014-07-08 Medtronic, Inc. Implantable neurostimulator supporting trial and chronic modes
US8744585B2 (en) 2005-02-23 2014-06-03 Medtronics, Inc. Implantable medical device providing adaptive neurostimulation therapy for incontinence
US7979119B2 (en) 2005-04-26 2011-07-12 Boston Scientific Neuromodulation Corporation Display graphics for use in stimulation therapies
US7406351B2 (en) 2005-04-28 2008-07-29 Medtronic, Inc. Activity sensing for stimulator control
US7774069B2 (en) 2005-04-29 2010-08-10 Medtronic, Inc. Alignment indication for transcutaneous energy transfer
EP1904160B1 (en) 2005-06-09 2011-12-21 Medtronic, Inc. Peripheral nerve field stimulation and spinal cord stimulation
US7813803B2 (en) 2005-06-09 2010-10-12 Medtronic, Inc. Regional therapies for treatment of pain
KR100792311B1 (ko) 2005-07-30 2008-01-07 엘에스전선 주식회사 충전전력 공급장치, 충전 장치, 배터리 장치, 무접점 충전 시스템 및 무접점 충전 방법
US8175717B2 (en) 2005-09-06 2012-05-08 Boston Scientific Neuromodulation Corporation Ultracapacitor powered implantable pulse generator with dedicated power supply
US7640059B2 (en) 2005-09-08 2009-12-29 Medtronic, Inc. External presentation of electrical stimulation parameters
US7551960B2 (en) 2005-09-08 2009-06-23 Medtronic, Inc. External presentation of electrical stimulation parameters
US7444181B2 (en) 2005-12-14 2008-10-28 Boston Scientific Neuromodulation Corporation Techniques for sensing and adjusting a compliance voltage in an implantable stimulator device
US7720547B2 (en) 2006-01-04 2010-05-18 Kenergy, Inc. Extracorporeal power supply with a wireless feedback system for an implanted medical device
US7809443B2 (en) 2006-01-31 2010-10-05 Medtronic, Inc. Electrical stimulation to alleviate chronic pelvic pain
US8019423B2 (en) 2006-02-17 2011-09-13 Marc Possover Laparoscopic implantation of neurostimulators
US7747330B2 (en) 2006-03-09 2010-06-29 Medtronic, Inc. Global parameter adjustment for multiple stimulation programs
US8447402B1 (en) 2006-03-31 2013-05-21 Alfred E. Mann Foundation For Scientific Research Zirconia to platinum assembly using a titanium connector
US7738965B2 (en) 2006-04-28 2010-06-15 Medtronic, Inc. Holster for charging pectorally implanted medical devices
US7715920B2 (en) 2006-04-28 2010-05-11 Medtronic, Inc. Tree-based electrical stimulator programming
US7761166B2 (en) 2006-04-28 2010-07-20 Medtronic, Inc. Electrical stimulation of iliohypogastric nerve to alleviate chronic pelvic pain
US8219202B2 (en) 2006-04-28 2012-07-10 Medtronic, Inc. Electrical stimulation of ilioinguinal nerve to alleviate chronic pelvic pain
US20070265675A1 (en) 2006-05-09 2007-11-15 Ams Research Corporation Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation
EP2032203B1 (en) 2006-06-05 2013-10-23 AMS Research Corporation Electrical muscle stimulation to treat fecal incontinence and/or pelvic prolapse
US20070282376A1 (en) 2006-06-06 2007-12-06 Shuros Allan C Method and apparatus for neural stimulation via the lymphatic system
US8116862B2 (en) 2006-06-08 2012-02-14 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
WO2008021524A2 (en) 2006-08-18 2008-02-21 Second Sight Medical Products, Inc. Package for an implantable neural stimulation device
US7979126B2 (en) 2006-10-18 2011-07-12 Boston Scientific Neuromodulation Corporation Orientation-independent implantable pulse generator
US20100076534A1 (en) 2006-10-25 2010-03-25 William Alan Mock Malleable needle having a plurality of electrodes for facilitating implantation of stimulation lead and method of implanting an electrical stimulation lead
US7857819B2 (en) 2006-11-30 2010-12-28 Boston Scientific Neuromodulation Corporation Implant tool for use with a microstimulator
US8010205B2 (en) 2007-01-11 2011-08-30 Boston Scientific Neuromodulation Corporation Multiple telemetry and/or charging coil configurations for an implantable medical device system
US8549015B2 (en) 2007-05-01 2013-10-01 Giancarlo Barolat Method and system for distinguishing nociceptive pain from neuropathic pain
US7932696B2 (en) 2007-05-14 2011-04-26 Boston Scientific Neuromodulation Corporation Charger alignment indicator with adjustable threshold
WO2009035712A1 (en) 2007-09-13 2009-03-19 Medtronic, Inc. Medical electrical profiled lead
WO2009042170A1 (en) 2007-09-26 2009-04-02 Medtronic, Inc. Therapy program selection
WO2009051539A1 (en) 2007-10-16 2009-04-23 Milux Holding Sa A method and system for controlling supply of energy to an implantable medical device
US8244367B2 (en) 2007-10-26 2012-08-14 Medtronic, Inc. Closed loop long range recharging
EP2222371B1 (en) 2007-10-26 2011-05-18 Medtronic, Inc. Method and apparatus for dynamic adjustment of recharge parameters
JP5072607B2 (ja) 2008-01-07 2012-11-14 株式会社東芝 A/d変換装置
NZ565234A (en) 2008-01-18 2010-11-26 Telemetry Res Ltd Selectable resonant frequency transcutaneous energy transfer system
US8332040B1 (en) 2008-03-10 2012-12-11 Advanced Neuromodulation Systems, Inc. External charging device for charging an implantable medical device and methods of regulating duty of cycle of an external charging device
US8509909B2 (en) 2008-04-10 2013-08-13 Medtronic, Inc. Using telemetry coupling as a surrogate for recharger coupling
JP5587864B2 (ja) 2008-04-11 2014-09-10 バル・シール・エンジニアリング・インコーポレイテッド 電力移行用のコネクタカートリッジ積層体
US8314594B2 (en) 2008-04-30 2012-11-20 Medtronic, Inc. Capacity fade adjusted charge level or recharge interval of a rechargeable power source of an implantable medical device, system and method
US8103360B2 (en) 2008-05-09 2012-01-24 Foster Arthur J Medical lead coil conductor with spacer element
EP2138203B1 (en) 2008-06-26 2013-01-30 Greatbatch Ltd. Stimulation lead design
WO2010011721A1 (en) 2008-07-24 2010-01-28 Boston Scientific Neuromodulation Corporation System and method for maintaining a distribution of currents in an electrode array using independent voltage sources
US20120119698A1 (en) 2008-09-27 2012-05-17 Aristeidis Karalis Wireless energy transfer for vehicles
WO2010042056A1 (en) 2008-10-10 2010-04-15 Milux Holding S.A. Charger for implant with means for indicating alignment between charger and implant
WO2010042057A1 (en) 2008-10-10 2010-04-15 Milux Holding S.A. Charger for implant
US8219196B2 (en) 2008-10-31 2012-07-10 Medtronic, Inc. Determination of stimulation output capabilities throughout power source voltage range
US8311639B2 (en) 2009-07-08 2012-11-13 Nevro Corporation Systems and methods for adjusting electrical therapy based on impedance changes
US8255057B2 (en) 2009-01-29 2012-08-28 Nevro Corporation Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions
US8538530B1 (en) 2008-11-19 2013-09-17 Advanced Bionics Hermetically sealed feedthrough case
EP2385805A4 (en) 2008-11-21 2012-10-17 Milux Holding Sa POWER SUPPLY SYSTEM
US7741981B1 (en) * 2008-12-30 2010-06-22 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Dual-use comparator/op amp for use as both a successive-approximation ADC and DAC
US8228076B2 (en) * 2009-03-27 2012-07-24 Texas Instruments Incorporated Deconvolution-based capacitive touch detection circuit and method
US8214042B2 (en) 2009-05-26 2012-07-03 Boston Scientific Neuromodulation Corporation Techniques for controlling charging of batteries in an external charger and an implantable medical device
JP2011004166A (ja) 2009-06-18 2011-01-06 Nikon Corp 固体撮像装置
EP2288033B1 (en) * 2009-08-18 2014-12-31 STMicroelectronics Srl Successive approximation analog-to-digital converter
US8571677B2 (en) 2009-10-21 2013-10-29 Medtronic, Inc. Programming techniques for stimulation with utilization of case electrode
US8577474B2 (en) 2009-11-11 2013-11-05 Boston Scientific Neuromodulation Corporation Minimizing interference between charging and telemetry coils in an implantable medical device
US8457756B2 (en) 2009-11-11 2013-06-04 Boston Scientific Neuromodulation Corporation Using the case of an implantable medical device to broaden communication bandwidth
JP2011114785A (ja) * 2009-11-30 2011-06-09 Renesas Electronics Corp 固体撮像装置
US9123470B2 (en) 2009-12-18 2015-09-01 Cardiac Pacemakers, Inc. Implantable energy storage device including a connection post to connect multiple electrodes
DE102010006837B4 (de) 2010-02-03 2013-01-17 Heraeus Precious Metals Gmbh & Co. Kg (Meth)acrylsäurealkylester aufweisende elektrische Durchführung
CN102958563B (zh) 2010-05-11 2016-01-13 心脏起搏器股份公司 具有自动恢复中断的治疗的装置的植入式医用设备
US8989861B2 (en) 2010-06-07 2015-03-24 Medtronic, Inc. Stimulation therapy for bladder dysfunction
US8700165B2 (en) 2010-07-16 2014-04-15 Boston Scientific Neuromodulation Corporation System and method for estimating lead configuration from neighboring relationship between electrodes
US9155891B2 (en) 2010-09-20 2015-10-13 Neuropace, Inc. Current management system for a stimulation output stage of an implantable neurostimulation system
CN102545900B (zh) * 2010-12-20 2015-05-20 意法半导体研发(上海)有限公司 用于模数(a/d)转换的系统和方法
US8543223B2 (en) 2011-03-11 2013-09-24 Greatbach Ltd. Implantable lead with braided conductors
US8738141B2 (en) 2011-04-07 2014-05-27 Greatbatch, Ltd. Contact assembly for implantable pulse generator and method of use
US9623257B2 (en) 2011-04-18 2017-04-18 Medtronic, Inc. Recharge tuning techniques for an implantable device
US9136728B2 (en) 2011-04-28 2015-09-15 Medtronic, Inc. Implantable medical devices and systems having inductive telemetry and recharge on a single coil
US9265958B2 (en) 2011-04-29 2016-02-23 Cyberonics, Inc. Implantable medical device antenna
US9259582B2 (en) 2011-04-29 2016-02-16 Cyberonics, Inc. Slot antenna for an implantable device
US9240630B2 (en) 2011-04-29 2016-01-19 Cyberonics, Inc. Antenna shield for an implantable medical device
US9089712B2 (en) 2011-04-29 2015-07-28 Cyberonics, Inc. Implantable medical device without antenna feedthrough
US8515545B2 (en) 2011-04-29 2013-08-20 Greatbatch Ltd. Current steering neurostimulator device with unidirectional current sources
US20130006330A1 (en) 2011-06-28 2013-01-03 Greatbatch, Ltd. Dual patient controllers
US8954148B2 (en) 2011-06-28 2015-02-10 Greatbatch, Ltd. Key fob controller for an implantable neurostimulator
US8571667B2 (en) 2011-07-01 2013-10-29 Greatbatch Ltd. Active current control using the enclosure of an implanted pulse generator
US8700175B2 (en) 2011-07-19 2014-04-15 Greatbatch Ltd. Devices and methods for visually indicating the alignment of a transcutaneous energy transfer device over an implanted medical device
US9446254B2 (en) 2011-10-13 2016-09-20 Boston Scientific Neuromodulation Corporation Charger alignment in an implantable medical device system employing reflected impedance modulation
US9981137B2 (en) 2012-01-27 2018-05-29 Nuvectra Corporation Heat dispersion for implantable medical devices
WO2013169896A2 (en) * 2012-05-08 2013-11-14 The Cleveland Clinic Foundation Implantable pressure sensor
US8761897B2 (en) 2012-08-31 2014-06-24 Greatbatch Ltd. Method and system of graphical representation of lead connector block and implantable pulse generators on a clinician programmer
US9502754B2 (en) 2014-01-24 2016-11-22 Medtronic, Inc. Implantable medical devices having cofire ceramic modules and methods of fabricating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85104529A (zh) * 1985-06-13 1986-12-10 科德曼及舒特莱夫有限公司 用于经皮肤的神经刺激装置的治疗脉冲序列
US6351145B1 (en) * 1999-06-21 2002-02-26 Xilinx, Inc. Realizing analog-to-digital converter on a digital programmable integrated circuit
CN101099670A (zh) * 2007-06-15 2008-01-09 西安电子科技大学 失眠的神经反馈治疗装置

Also Published As

Publication number Publication date
EP2974034A2 (en) 2016-01-20
CA2903860A1 (en) 2014-09-18
AU2014232255A1 (en) 2015-09-10
WO2014146019A2 (en) 2014-09-18
US20140277269A1 (en) 2014-09-18
US9044614B2 (en) 2015-06-02
JP2016517674A (ja) 2016-06-16
CN104769847A (zh) 2015-07-08
US9682237B2 (en) 2017-06-20
WO2014146019A3 (en) 2015-03-05
CA2903860C (en) 2018-04-03
AU2014232255B2 (en) 2017-08-31
US20150374997A1 (en) 2015-12-31
JP6174781B2 (ja) 2017-08-02
EP2974034B1 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
CN104769847B (zh) 高压监控逐次逼近型模数转换器
JP5615980B2 (ja) 埋め込み型神経刺激器における電圧をモニタするためのサンプル及び保持回路
CN105164920B (zh) 具有快速开启时间的电流感测多输出电流刺激器
US8588927B2 (en) Implantable pulse generator
AU2013232107B2 (en) Neurostimulation system for preventing magnetically induced currents in electronic circuitry
CN107847731A (zh) 具有无asic的内部电子设备的可植入神经刺激器以及使用方法
AU2012275891A1 (en) Architecture for sharing of current sources in an implantable medical device
EP3085414A1 (en) Device and method for selective nerve stimulation
Vidal et al. Towards a switched-capacitor based stimulator for efficient deep-brain stimulation
AU2013280459B2 (en) Neurostimulation system for enabling magnetic field sensing with a shut-down hall sensor
CN205268830U (zh) 骶神经刺激发生器
CN104837522B (zh) 具有减少组织囊加热的电磁干扰过滤器设备的可植入医疗设备
CN110464984A (zh) 基于无线能量和数据传输的植入式高压脑深部电刺激系统
Andreu et al. Synchronous Multichannel Stimulator with Embedded Safety Procedure to Perform 12-Poles TIME-3H 3D Stimulation
US20240033523A1 (en) Neurostimulation system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant