CN104745600B - 水稻基因OsVHA1在延缓植物叶片衰老和提高植物耐盐性中的应用 - Google Patents
水稻基因OsVHA1在延缓植物叶片衰老和提高植物耐盐性中的应用 Download PDFInfo
- Publication number
- CN104745600B CN104745600B CN201510156258.5A CN201510156258A CN104745600B CN 104745600 B CN104745600 B CN 104745600B CN 201510156258 A CN201510156258 A CN 201510156258A CN 104745600 B CN104745600 B CN 104745600B
- Authority
- CN
- China
- Prior art keywords
- plant
- gene
- osvha1
- osvhal
- rice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
本发明公开了水稻基因OsVHAl在延缓植物叶片衰老和提高植物耐盐性中的应用,所述水稻基因OsVHAl的核苷酸序列如SEQ ID NO.1所示。所述的应用,包括:将所述水稻基因OsVHAl连入表达载体中,构建得到重组表达载体;将所述重组表达载体转化受体植物。本发明通过图拉克隆技术从水稻早衰突变体osvhal中克隆获得基因OsVHAl;并通过功能互补实验证明基因OsVHAl能够延缓植物叶片衰老,通过盐处理实验证明基因OsVHAl能够提高植物的耐盐能力;该基因OsVHAl可应用于植物育种领域,对耐衰老、耐盐植物品种的筛选和选育具有重要意义。
Description
技术领域
本发明涉及植物基因工程和水稻分子育种技术领域,尤其涉及一种水稻基因OsVHA1在延缓植物叶片衰老和提高植物耐盐性中的应用。
背景技术
水稻是最重要的粮食作物之一,世界上超过一半的人口以稻米为主食。在我国,随着人口的不断增加和土地面积的减少,对于水稻产量增加的要求越来越迫切,国家粮食安全战略也就显得尤为重要。因此,培育高产优质水稻品种,不断提高水稻单产,是确保我国粮食安全的第一重任。叶片是水稻最重要的光合器官,据理论推算,水稻籽粒灌浆的60%~80%营养物质来自叶片的光合作用。所以,水稻抽穗到灌浆期间,功能叶的过早衰老,将影响水稻灌浆速度,进而导致产量和品质下降(Thomas H and Smart CM.Crops that staygreen.Ann Appl Biol,1993,123:193-219)。研究表明,若在水稻籽粒灌浆后期设法延长水稻功能叶片的寿命1天,稻谷产量可以增加1%~2%左右(刘道宏.植物叶片的衰老.植物生理学通讯,1993,2:14-19;马跃芳和陆定志.灌水方式对杂交水稻衰老及生育后期一些生理活性的影响,中国水稻科学,1990,2:56-6)。
叶片衰老是一个细胞程序性死亡的过程,是水稻在长期进化和适应环境的基础上形成的,是其生长发育的一个必经阶段。水稻叶片衰老常常伴随着水解化合物的大量重组并向植物生长部分运输,例如幼嫩的叶片和发育的种子等,因此,叶片的衰老对水稻营养物质分配再利用与生殖发育有重要意义(Lim P O,Kim H J,Nam H G.Leaf senescence.AnnuRev Plant Biol,2007,58:115-136)。叶片自然衰老,依赖年龄的方式进行,并由诸多环境因素诱导,受生长发育时期复杂的内外因素之间的相互作用影响(Yoshida S.Molecularregulation of leaf senescence.Curr Opin Plant Biol,2003,6:79-84;Lim P O,Kim HJ,Nam H G.Leaf senescence.Annu Rev Plant Biol,2007,58:115-136)。外界因素包括持续黑暗、涝害、干旱、盐害、极端温度和紫外线等,内部因素包括内源激素和大量衰老相关基因等(Lim P O,Kim H J,Nam H G.Leaf senescence.Annu Rev Plant Biol,2007,58:115-136;Wu X Y,Kuai B K,Jia J Z,Jing H C.Regulation of leaf senescence and cropgenetic improvement.J Integr Plant Biol,2012,54:936-952)。Liu等(Liu L,Zhou Y,Zhou G,Ye R,Zhao L,Li X,Lin Y.Identification of early senescence-associatedgenes in rice flag leaves.Plant Mol Biol,2008,67:37-55)利用抑制差减杂交法鉴定获得533个叶片衰老相关的差异表达基因,其功能涉及大分子物质代谢、调控蛋白质合成、能量代谢、调节基因、解毒、病原性和逆境、细胞骨架构成和花发育等。
质子泵是依赖于ATP水解释放的能量驱动逆浓度梯度转运氢离子通过膜的膜整合糖蛋白,从而造成膜两侧的pH梯度和电位梯度,进而调控植物生长发育。在植物细胞中存在三类质子泵,分别是位于质膜上的质膜质子泵(Plasma Membrane H+-ATPase)、位于液泡膜上的H+-PPase(Vacuolar H+-pyrophosphatse)以及囊泡型H+-ATPase(Vacuolar-type H+-ATPase)(Gaxiola R A,Palmgren M G,Schumacher K S.Plant proton pumps.FEBSLetters,2007,581:2204-2214)。其中囊泡型H+-ATPase不仅是植物细胞中最古老也是最复杂的蛋白复合体,在结构上及组成上与F-type ATPase类似,由V0和V1两个蛋白复合体组成,前者位于膜内,由a、c、c”、d和e等5种亚基组成,总分子量约260kD,负责质子转运;后者是位于膜外的亲水性复合体,由A-H等8种亚基组成,总分子量640kD,负责ATP的水解(Schumacher K,Krebs M.The V-ATPase:small cargo,large effects.Curr Opin PlantBiol.2010,13:724-730)。在双子叶模式植物拟南芥和单子叶模式植物水稻中,分别由28个和24个基因编码13个亚基(Schumacher K,Krebs M.The V-ATPase:small cargo,largeeffects.Curr Opin Plant Biol.2010,13:724-730)。因此,囊泡型H+-ATPase作为质子泵中的重要成员之一,最重要的功能是驱动H+逆浓度梯度泵入液泡腔中,酸化液泡,为物质运输提供能量,从而影响膨压和细胞扩增;以及维持高尔基体、溶酶体、吞饮小泡和突触小泡等细胞器内的低pH值,为溶酶体的消化功能或受体介导的内吞后受体再循环或高尔基体加工蛋白质等生理活动提供必要条件(Ratajczak R.Structure,function and regulationofthe plant vacuolar H(+)-translocating ATPase.Biochim Biophys Acta.2000,1465:17-36;Nishi T,Forgac M.The vacuolar(H+)-ATPases--nature′s most versatileproton pumps.Nat Rev Mol Cell Biol.2002,3:94-10)。。现有的研究显示,植物囊泡型H+-ATPase的主要功能为:其一是囊泡型H+-ATPase在转运H+的基础上调节液泡和细胞质中的pH,以及调节细胞质中的Na+、Ca2+和K+等离子浓度,响应盐胁迫(Apse MP,Aharon GS,Snedden WA,Blumwald E Salt tolerance conferred by overexpression of avacuolar Na+/H+antiport in Arabidopsis.Science.1999,285:1256-1258;Yang MF,Song J,Wang BS.Organ-specific responses of vacuolar H-ATPase in the shootsand roots of C halophyte Suaeda salsa to NaCl.J Integr Plant Biol.2010,52:308-314);其二是囊泡型H+-ATPase的活性与众多激素息息相关,能够响应GA、ABA和SA(Cooley MB,Yang H,Dahal P,Mella RA,Downie AB,Haigh AM,Bradford KJ.Vacuolar H(+)-ATPase is expressed in response to gibberellin during tomato seedgermination.Plant Physiol.1999,121:1339-1348);其三是囊泡型H+-ATPase的活性与NO信号传导紧密相关,响应非生物胁迫(Chen J,Xiao Q,Wu F,Dong X,He J,Pei Z,ZhengH.Nitric oxide enhances salt secretion and Na(+)sequestration in a mangroveplant,Avicennia marina,through increasing the expression of H(+)-ATPase andNa(+)/H(+)antiporter under high salinity.Tree Physiol.2010,30:1570-1585;ZhangY,Wang L,Liu Y,Zhang Q,Wei Q,Zhang W.Nitric oxide enhances salt tolerance inmaize seedlings through increasing activities of proton-pump and Na+/H+antiport in the tonoplast.Planta.2006,224:545-555);其四是囊泡型H+-ATPase在细胞壁形成中扮演重要角色(Schachtschabel等,2012;Chen等,2013);其五是囊泡型H+-ATPase还在植物叶片的保卫细胞中起到重要作用,可以调节气孔的开闭(Chen G1,Liu X,Zhang L,Cao H,Lu J,Lin F.Involvement of MoVMA 11,a Putative Vacuolar ATPasec′Subunit,in Vacuolar Acidification and Infection-Related Morphogenesis ofMagnaporthe oryzae.PLoS One.2013,8:e67804);以及囊泡型H+-ATPase a1a2双突变将导致叶尖以及花均出现不同程度的坏死(Krebs M,Beyhl D,E,Al-Rasheid K,MartenI,Stierhof Y,Hedrich R,Schumacher K.Arabidopsis V-ATPase activity at thetonoplast is required for efficient nutrient storage but not for sodiumaccumulation.PNAS,2010,107:3251-3256)。
囊泡型H+-ATPase的A亚基(Vacuolar H +-ATPase A-subunit,简称VHA)和B亚基主要参与ATP水解,A亚基是催化ATP水解的亚基,而B亚基则为非催化亚基,两者均有ATP结合位点。在单子叶水稻和玉米中均有2个基因编码A亚基,而在双子叶拟南芥中则仅有1个基因编码A亚基(Schumacher K,Krebs M.The V-ATPase:small cargo,large effects.CurrOpin Plant Biol.2010,13:724-730),其在苹果(Dong QL,Wang CR,Liu DD,Hu DG,FangMJ,You CX,Yao YX,Hao YJ.MdVHA-A encodes an apple subunit A of vacuolar H(+)-ATPase and enhances drought tolerance in transgenic tobacco seedlings.J PlantPhysiol.2013,15;170:601-609)、甜菜(Kirsch M,An Z,Viereck R,R,Rausch T.Saltstress induces an increased expression of V-type H(+)-ATPase in mature sugarbeet leaves.Plant Mol Biol.1996,32:543-547)、拟南芥(Magnotta SM,GogartenJP.Multi site polyadenylation and transcriptional response to stress of avacuolar type H+-ATPase subunit A gene in Arabidopsis thaliana.BMC PlantBiol.2002,2:3)和番茄(Bageshwar UK,Taneja-Bageshwar S,Moharram HM,BinzelML.Two isoforms of the A subunit of the vacuolar H(+)-ATPase in Lycopersiconesculentum:highly similar proteins but divergent patterns of tissuelocalization.Planta.2005,220:632-643)中呈组成性表达。这些研究结果均说明A亚基在植物的多种生命活动中可能起重要作用。然而,现有的研究却显示其仅参与部分性状的调控,如拟南芥A亚基的功能缺失会导致完全雄性不育和部分雌性配子体致死(Dettmer J,Schubert D,Calvo-Weimar O,Stierhof YD,Schmidt R,Schumacher K.Essential roleof the V-ATPase in male gametophyte development.Plant J.2005,41:117-122),而反义抑制胡萝卜的A亚基则导致细胞变小和叶片分裂更多(Gogarten J P,Fichmann J,BraunY,et al.The use of antisense mRNA to inhibit the tonoplast H+-ATPase incarrot.The Plant Cell,1992,4:851-864),反义抑制水稻的A1亚基则仅导致叶片气孔密度增大以及对盐和干旱敏感(Zhang H,Niu X,Liu J,Xiao F,Cao S,Liu Y.RNAi-directeddownregulation of vacuolar H(+)-ATPase subunit a results in enhanced stomatalaperture and density in rice.PLOS ONE.2013,8:e69046),以及在烟草中过量表达苹果A亚基则可以提高转基因的耐盐特性(Dong QL,Wang CR,Liu DD,Hu DG,Fang MJ,You CX,Yao YX,Hao YJ.MdVHA-A encodes an apple subunit A of vacuolar H(+)-ATPase andenhances drought tolerance in transgenic tobacco seedlings.J PlantPhysiol.2013,170:601-609)。
到目前为止,尽管现有的诸多研究表明A亚基在植物生长发育中起到非常重要的作用,但有关其调控植物叶片衰老的研究尚未见报道。因此,进一步研究A亚基与水稻叶片衰老的关系,理清引起衰老的原因,延缓水稻衰老进程,进而提高叶片的光和效率,对提高水稻产量与品质具有重要的理论价值及现实意义。
发明内容
本发明提供了一种水稻基因OsVHA1在延缓植物叶片衰老和提高植物耐盐性中的应用,该基因不仅能够延缓植物叶片衰老,还能提高植物耐盐能力。
水稻基因OsVHA1在延缓植物叶片衰老中的应用,所述水稻基因OsVHA1的核苷酸序列如SEQ ID NO.1所示。
水稻基因OsVHA1在提高植物耐盐性中的应用,所述水稻基因OsVHA1的核苷酸序列如SEQ ID NO.1所示。
所述水稻基因OsVHA1编码的蛋白质氨基酸序列如SEQ ID NO.2所示。该蛋白是植物液泡型H+-ATPase的重要组成蛋白,能够催化ATP水解,调控水稻细胞质和液泡的pH值,进而延缓植物叶片的衰老、提高植物的耐盐能力。
具体地,所述的应用,包括:
(1)将所述水稻基因OsVHA1连入表达载体中,构建得到重组表达载体;
(2)将所述重组表达载体转化受体植物。
其中,所述受体植物为水稻或拟南芥,作为优选,所述受体植物为水稻。
本发明还提供了一种重组表达载体,包括原始载体和插入所述原始载体的目的基因,所述目的基因的碱基序列如SEQ ID NO.1所示。
重组表达载体的构建方法为常规方法。作为优选,所述重组表达载体中所述的原始载体为pCAMBIA1300或pSB326-Actin-NOS。其中,超表达载体pSB326-Actin-NOS是双T-DNA载体,可显著提高目的基因的表达量。
本发明还提供了一种包含所述重组表达载体的转化子。转化受体植物时,可采用农杆菌介导转化的方法,具体地,所述的农杆菌为农杆菌EHA105。
与现有技术相比,本发明具有以下有益效果:
本发明通过图拉克隆技术从水稻早衰突变体osvha1中克隆获得基因OsVHA1;并通过功能互补实验证明基因OsVHA1能够延缓植物叶片衰老,通过盐处理实验证明基因OsVHA1在植物耐盐特性上具有明显的调节作用,能够提高植物的耐盐能力;该基因OsVHA1可应用于植物育种领域,对耐衰老、耐盐的植物品种的筛选和选育具有重要意义。
附图说明
图1为本发明突变体osvha1分蘖期的表型;
图2为本发明突变体osvha1盐敏感性分析结果;
(A)盐胁迫下处理7天;(B)恢复生长5天;
图3为本发明OsVHA1基因的定位与测序分析结果;
(A)基因初定位;(B)基因精细定位;(C)定位区间的BAC;(D)定位区间的ORF;(E)突变基因的结构及突变位点;(F)突变体突变位点的测序图谱;(G)野生型位点的测序图谱;(H)突变位点的dCAPS标记鉴定;
图4为本发明突变体osvha1的遗传互补验证结果;
图5为本发明超表达OsVHA1的转基因拟南芥耐盐性筛选。
具体实施方式
以下实施例所使用的分子生物学和生物化学方法均为已知的技术,在Ausubel编写的由John Wiley and Sons公司出版的Current Protocols in Molecular Biology和J.Sambrook等编写的由Cold Spring Harbor Laboratory Press(2001)出版的MolecularCloning:A Laboratory Mannual,3rd ED.等文献均有详细的说明。以下施例中所用的实验材料如无特殊说明均为市售购买产品。
实施例1 突变体的分离与遗传分析
通过60Co辐射诱变持久高抗稻瘟病材料自选1号(来源于恩施农业科学院水稻研究所),从后代中筛选出叶片早衰及盐敏感突变体osvha1,经多代回交和自交获得突变性状稳定的株系。早衰性状始于osvha1突变体植株的分蘖期(图1A和1B),到抽穗开花期时,所有叶片均出现不同程度的早衰症状(图1C)。以osvha1作母本,分别与自选1号和粳稻材料02428进行杂交获得F1,F1植株表现正常;F1自交获得的F2后代则出现野生型和突变体表型,其分离比例野生型∶突变体=3∶1,从而说明衰老性状受单隐性基因控制。
实施例2 突变体osvha1的盐敏感性分析
在100mmol L-1NaCl胁迫下处理7d后,osvha1突变体叶片卷曲,叶尖部分枯死(图2A)。同时,株高和生物学产量比实施例1所述野生型对照自选1号分别下降10.6%和29.0%(图2A),而7d植株净生长高度、根净生长长度与净生物学产量则分别比对照下降13.7%、9.9%和37.5%。恢复生长5d后,有12.4%的突变体萎焉枯死,而且处理后的突变体生长速度明显慢于处理后的野生型对照(图2B),突变体株高和生物学产量分别比对照少43.5%和53.8%,而5d植株净生长高度、根净生长长度与净生物学产量则分别比对照下降81.0%、11.2%和61.6%。
实施例3 衰老基因OsVHA1的精细定位
选择均匀分布于水稻12条染色体上的500对SSR标记和50对InDel标记,逐条对osvha1突变体与02428进行多态性筛选,结果表明178对引物在两亲本之间具有多态性,多态性比例为32.4%。然后用这178对标记分别对所构建的两个基因池进行BSA分析,结果发现水稻第6号染色体长臂上的3个SSR标记RM20361、RM20491和RM3430,以及1个InDel标记R6M44在突变池和正常池间具有明显偏分离。随后,用以上4个标记分别对50个F2突变表型单株进行基因型分析,结合每个分子标记的基因型确定4个标记与OsVHA1基因在6号染色体的物理排列位置为RM20361-R6M44-RM20491-OsVHA1-RM3430(图3A)。为了进一步定位OsVHA1基因,于是在RM20491和RM3430之间设计20对SSR标记或InDel标记,其中6对标记在亲本间有多态性(表1),利用这6对标记对F2早衰群体进行基因连锁分析,最终把OsVHA1基因定位在InDel标记S3和SSR标记RM20547之间(图3B),物理距离为210kb,横跨OSJNBa0051O02和OSJNBb0065C04两个BAC(图3C),并且与SSR标记S4和InDel标记S5共分离。
表1OsVHA1基因连锁的SSR标记及其引物序列
实施例4 衰老突变基因预测及测序比对分析
根据实施例3的定位结果,对该区间16个注释基因进行功能分析后(图3D),利用16对特异性引物对其中4个候选基因进行了测序,结果发现在候选基因LOC_Os06g45120的ORF区域发生了一个碱基(C)的缺失(图3E、3F),进而造成该基因的氨基酸编码区发生移码突变。为了进一步验证该突变位点是否存在,我们对野生型进行测序,结果不存在该突变位点(图3G)。我们还进一步开发了针对该SNP突变位点的dCAPs标记并挑选了合适的内切酶(表2),进行酶切验证,发现酶切结果(图3H)和测序结果完全一致,在osvha1突变体中确实存在该碱基的缺失突变。
表2基于SNP位点开发的dCAPS标记
实施例5 OsVHA1的遗传互补验证
基因互补载体的构建:根据GenBank中的OsVHA1基因的全长cDNA(TIGR Locus:LOC_Os06g45120)的序列设计一对引物:
上游引物:OsVHA1F:5′-ATGTCGTACGATCGCGTCAC-3′;
下游引物:OsVHA1R:5′-CAGTCCCGGGTCACCTAGCTTCATCTTCTAG-3′(含有SmaI的酶切位点);
利用RT-PCR技术从日本晴总RNA扩增获得OsVHA1基因的cDNA,并电泳纯化获得OsVHA1-cDNA片段;
同时借助高保真酶PrimerSTAR(Takara),用以下引物:
OsVHA1PF:5′-CAGTCCCGGGATCATTACAATTTGCCATA-3′(含有SmaI的酶切位点)
OsVHA1PR:5′-GTGACGCGATCGTACGACAT-3′
PCR反应体系:
反应条件参数:98℃变性10秒,55℃退火15秒,72℃延伸1分30秒,共35个循环。72℃延伸5分钟。
扩增日本晴基因组获得OsVHA1基因的启动子,并电泳纯化获得OsVHA1-Promoter片段;再利用融合PCR技术,将OsVHA1-cDNA片段与OsVHA1-Promoter片段融合并利用引物OsVHA1PF和OsVHA1R进行扩展,最终获得含有启动子和cDNA的OsVHA1片段,用SmaI对纯化后的PCR产物进行酶切,连入农杆菌质粒pCAMBIA1300-Nos形成pC1300-OsVHA1,选择插入正确的质粒进行测序以确定正确的插入片段。
利用农杆菌介导法转化农杆菌EHA105,并用于转化突变体osvha1。
结果显示,转pC1300-OsVHA1的转基因后代恢复正常,未出现早衰现象(图4)。
实施例6 无标记基因的耐衰老转基因水稻培育
基因超表达载体的构建:根据SEQ ID NO.1的序列设计一对引物:
上游引物OsVHA1-F:5’-CAGTCTAGACATGTCGTACGATCGCGTCAC-3’(含有XbaI的酶切位点);
下游引物OsVHA1-R:5’CAGTGGTACCTCACCTAGCTTCATCTTCTAG-3’(含有KpnI的酶切位点);
利用PCR技术从实施例5中的质粒pC1300-OsVHA1扩增获得OsVHA1基因,并电泳纯化获得OsVHA1-cDNA片段,用XbaI和KpnI双酶切OsVHA1-cDNA片段,并插入到经XbaI和KpnI酶切的超表达载体pSB326-Actin-NOS中获得pSB326-Actin-OsVHA1-NOS,选择插入正确的质粒进行测序以确定正确的插入片段。
PCR反应体系:
反应参数:
98℃变性10秒,55℃退火15秒,72℃延伸1分30秒,共35个循环。72℃延伸5分钟。
转基因水稻的获得方法是采用现有的技术(Pan G.,et al.,Map-based cloningof a novel rice cytochrome P450genes Cyp81A6that confers resistance to twodifferent classes of herbicides.Plant Molecular Biology,2006,61:933-943).选取饱满的水稻品种日本晴种子,去壳,诱导产生愈伤组织作为转化材料。通过电激法将实施例5中获得的T-DNA载体pSB326-Actin-OsVHA1-NOS导入农杆菌EHA105。取含T-DNA载体pSB326-Actin-OsVHA1-NOS的农杆菌划板,挑单菌落在LB培养基中培养,为水稻转化准备农杆菌。
将待转化的水稻愈伤组织在无菌滤纸上稍微吸干,将愈伤组织放入OD600为0.5的农杆菌菌液中(含乙酰丁香酮,200μmol/L),室温下放置40分钟后弃菌液,再将水稻愈伤组织置于无菌滤纸上吸去多余菌液,把愈伤组织转移到共培养基上培养50-55小时,将表面没有很多农杆菌的愈伤组织转入抑菌培养基上培养5-7天,而后再将表面没有农杆菌的愈伤组织转入筛选培养基上培养6周(每两周继代一次)。把筛选后获得的抗性愈伤转移到预分化培养基上(先暗培养5-7天,而后16小时光照分化发芽)4-6周,待抗性幼苗长成后转移到生根培养基上生根,最后将再生植株洗去培养基于温室中或田间培养,直至收获种子。用Nos终止子和潮霉素磷酸转移酶基因(以下简称HPH基因)的引物PCR鉴定T0代植株,收获含有OsVHA1基因和HPH基因的T0代植株上的种子。将T0代植株上的种子种植成T1代转基因苗,Nos终止子和HPH基因引物鉴定转基因苗,选择收获仅有OsVHA1基因的转基因水稻苗的种子。
将上述转基因水稻种子和未转入OsVHA-A1基因的水稻种子育苗移栽至田间后,观察和检测其分蘖期、抽穗开花期叶片的生长情况,发现从抽穗开花28天后过表达OsVHA-A1基因的水稻叶绿素总量显著高于对照,达23.04%(见表3),这就预示该基因能延缓水稻衰老。
表3过表达转基因植株及对照抽穗当天及抽穗28天后剑叶叶绿素含量
实施例7 耐盐转基因拟南芥的培育
根据SEQ ID NO.1的序列,分别合成两条引物,从质粒pC1300-OsVHA1中PCR扩增出OsVHA1基因。
上游引物OsVHA1-2F:
5’-CACGGGGGACTCTAGACCATGTCGTACGATCGCGTCAC-3’;
下游引物OsVHA1-2R:
5’-CGGGGGATCCTCTAGTCACCTAGCTTCATCTTCTAG-3’;
PCR反应体系:
反应参数:98℃变性10秒,55℃退火15秒,72℃延伸1分30秒,共35个循环。72℃延伸5分钟。
PCR产物经PCR产物纯化试剂盒纯化后,以XbaI酶切双T-DNA载体pLM-B001,用Clontech的HD Cloning Kit将OsVHA1克隆到pLM-B001,用XbaI酶切鉴定,获得的阳性克隆再测序(PE公司,377测序仪;上海生工生物工程技术服务有限公司)验证,测序正确的质粒命名为pLM-OsVHA1。
农杆菌介导侵染拟南芥采用的是Clough和Bent(Clough SJ,Bent AF.Floraldip:a simplified method for Agrobacterium-mediated transformation ofArabidopsis thaliana.Plant J,1998,16:735-743)的浸花法,具体步骤如下:
①转基因前3d,接种含有双元载体的农杆菌GV3001到5ml含Ti质粒和T-DNA质粒的选择性抗性的5ml LB培养基中,28℃,220rpm,摇菌。
②2d后,接种步骤①中的1ml菌液至200ml LB培养基中,28℃,220rpm继续培养24h。(注:如使用YEP培养基可以得到更高浓度的农杆菌)
③停止对拟南芥进行浇水,使基质稍稍干燥,可以减少浸染过程中的脱落。
④室温条件下,GSA转子中6000rpm离心10min,此时沉淀为粉红色。
⑤将沉淀在400ml渗透培养基中重新悬浮。
⑥将农杆菌悬浮物转移到一个方便的容器中用来侵染拟南芥,比如烧杯,培养皿等。
⑦剪掉拟南芥苗上已结的荚果,将拟南芥的花浸润到悬液中,停留约30s,视情况增加或减少侵染时间。(注:防止土壤污染农杆菌)
⑧侵染过后,将拟南芥移入培养箱,其上罩一个透明的盖子24h,使农杆菌充分吸附在花蕾上。
⑨24h后,移除盖子,并还原原始培养条件。
⑩3-4星期后,收集种子。
将T0代种子种植在营养土中,出苗后用5mM的NaCl浇灌幼苗,结果大部分幼苗停止生长甚至枯死,仅有少部分依然保持绿色(见图5箭头所示)。经用OsVHA1基因的特异引物PCR鉴定,所有存活的幼苗均含目的基因,从而说明该基因具有提高植物的耐盐特性。
Claims (1)
1.水稻基因OsVHA1在通过提高叶绿素含量来延缓水稻叶片衰老中的应用,其特征在于,所述水稻基因OsVHA1的核苷酸序列如SEQ ID NO.1所示;
所述应用,包括:
(1)将所述水稻基因OsVHA1连入表达载体中,构建得到重组表达载体;
(2)将所述重组表达载体转化水稻。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510156258.5A CN104745600B (zh) | 2015-04-03 | 2015-04-03 | 水稻基因OsVHA1在延缓植物叶片衰老和提高植物耐盐性中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510156258.5A CN104745600B (zh) | 2015-04-03 | 2015-04-03 | 水稻基因OsVHA1在延缓植物叶片衰老和提高植物耐盐性中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104745600A CN104745600A (zh) | 2015-07-01 |
CN104745600B true CN104745600B (zh) | 2018-04-17 |
Family
ID=53585859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510156258.5A Expired - Fee Related CN104745600B (zh) | 2015-04-03 | 2015-04-03 | 水稻基因OsVHA1在延缓植物叶片衰老和提高植物耐盐性中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104745600B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109912703B (zh) * | 2017-12-13 | 2021-03-16 | 中国科学院遗传与发育生物学研究所 | 蛋白质OsARE1在调控植物衰老中的应用 |
CN108070028A (zh) * | 2018-02-13 | 2018-05-25 | 海南大学 | 一种提高植物耐盐性的方法 |
CN110229801B (zh) * | 2019-07-02 | 2020-10-13 | 四川农业大学 | 一种控制水稻叶片衰老的基因及其编码的蛋白质 |
CN111675757B (zh) * | 2020-07-16 | 2022-04-12 | 南京农业大学 | 杜梨液泡型质子泵PbVHA-B1及其在植物抗盐遗传改良中的应用 |
-
2015
- 2015-04-03 CN CN201510156258.5A patent/CN104745600B/zh not_active Expired - Fee Related
Non-Patent Citations (3)
Title |
---|
RNAi-Directed Downregulation of Vacuolar H+-ATPase Subunit A Results in Enhanced Stomatal Aperture and Density in Rice;Huiying Zhang等;《PLOS ONE》;20130731;第8卷(第7期);摘要,Materials and Methods,Results * |
The V-ATPase from etiolated barley (Hordeum vulgare L.) shoots is activated by blue light and interacts with 14-3-3 proteins;O. I. Klychnikov等;《Journal of Experimental Botany》;20061221;全文 * |
水稻旱育稀植高产栽培的生理生态研究Ⅱ .早稻高产形成与生理生化特性;林文雄等;《应用生态学报》;19980831;第9卷(第4期);摘要 * |
Also Published As
Publication number | Publication date |
---|---|
CN104745600A (zh) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107435047B (zh) | 一种植物磷信号网络中耐低磷关键基因GmPHR25及其与应用 | |
CN104745600B (zh) | 水稻基因OsVHA1在延缓植物叶片衰老和提高植物耐盐性中的应用 | |
Aswath et al. | IbMADS4 regulates the vegetative shoot development in transgenic chrysanthemum (Dendrathema grandiflora (Ramat.) Kitamura) | |
WO2012139532A1 (en) | Use of oxhs4 gene in controlling rice drought resistance | |
US10041086B2 (en) | Method for production of transgenic cotton plants | |
US20140373193A1 (en) | Use of OsPP18 Gene in Controlling Rice Drought Resistance | |
CN112342236B (zh) | 水稻组蛋白甲基转移酶在增强作物干旱抗性及改善单株产量中的应用 | |
CN109971766A (zh) | 一种与植物耐逆相关蛋白PwRBP1及其编码基因与应用 | |
WO2012142970A1 (en) | USE OF MODIFIED OsbZIP46 GENE IN CONTROLLING PLANT DROUGHT RESISTANCE | |
CN106591324B (zh) | 谷子SiASR4基因及应用 | |
CN106367433B (zh) | 提高植物对赤霉素抑制剂敏感性的方法及其应用 | |
CN106892973A (zh) | 植物抗逆性相关蛋白GhMYB4及编码基因与应用 | |
CN110684088B (zh) | 蛋白ZmbZIPa3及其编码基因在调控植物生长发育与耐逆性中的应用 | |
CN104862319B (zh) | 控制植物分枝的拟南芥基因AtTIE1及其应用 | |
US11242537B2 (en) | Method for improving sensitivity of plant to gibberellin inhibitor and use thereof | |
CN108752442A (zh) | 彩色马铃薯耐盐性相关StDof2蛋白及其编码基因与应用 | |
CN105821017B (zh) | 玉米焦磷酸酶基因ZmPPase4在提高植物抗逆性中的应用 | |
CN104805093B (zh) | 水稻基因OsLOL3在延缓植物叶片衰老和提高植物耐旱性中的应用 | |
CN107663232A (zh) | 植物抗逆相关蛋白OsIAA18及其编码基因与应用 | |
CN107417780A (zh) | Ubc32蛋白及其编码基因在调控植物耐旱性中的应用 | |
CN104610438A (zh) | 一种棉花胁迫应答相关蛋白GhGeBP及其编码基因与应用 | |
CN102936279A (zh) | 植物体细胞胚胎发生相关蛋白GhSERK2及其编码基因与应用 | |
CN102731640B (zh) | 植物耐逆相关蛋白TaMYB30及其编码基因和应用 | |
CN105255914A (zh) | 枸杞有丝分裂原活化蛋白激酶激酶及增强植物耐盐碱应用 | |
CN105802930B (zh) | Crk5蛋白及其编码基因在调控植物茎叶生长中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180417 |