CN104704434A - 用于压力式质量流控制器自我校验的方法和设备 - Google Patents

用于压力式质量流控制器自我校验的方法和设备 Download PDF

Info

Publication number
CN104704434A
CN104704434A CN201380049600.0A CN201380049600A CN104704434A CN 104704434 A CN104704434 A CN 104704434A CN 201380049600 A CN201380049600 A CN 201380049600A CN 104704434 A CN104704434 A CN 104704434A
Authority
CN
China
Prior art keywords
flow
fluid
pressure
restriction means
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380049600.0A
Other languages
English (en)
Other versions
CN104704434B (zh
Inventor
丁军华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MKS Instruments Inc
Original Assignee
MKS Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MKS Instruments Inc filed Critical MKS Instruments Inc
Publication of CN104704434A publication Critical patent/CN104704434A/zh
Application granted granted Critical
Publication of CN104704434B publication Critical patent/CN104704434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • G01F1/88Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with differential-pressure measurement to determine the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • G01F15/043Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • G01F15/043Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means
    • G01F15/046Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0647Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0379By fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve

Abstract

一种质量流控制系统,当对到过程的流体流控制时可针对其精确度自我校验。所述系统包括:用于作为控制信号的函数来控制通过系统的流体流的控制阀;用于作为通过系统的流体的测得流量和目标流量设定值的函数来产生控制信号的控制器;压力传感器,用于测量和控制在测量和校验流率中使用的流体压力;以及流体源,其用于提供用于在控制过程的步骤之间的任何时候校验系统精确度的已知体积的流体。

Description

用于压力式质量流控制器自我校验的方法和设备
技术领域
本公开通常涉及质量流控制器,以及更具体地涉及压力式质量流控制器的自我校验。如本文所用的术语“气体”被认为包括气体或蒸气。
背景技术
通常情况下,质量流控制器(MFC)实时地控制和监测流体(即,气体或蒸气)流的速率,使得流动通过装置的气体质量的流率可被计量和控制。质量流控制器(MFC)通常用于在半导体制造过程期间控制气体的流动,其中流入到半导体工具诸如真空腔室内的气体流必须被小心地加以控制以产生高产率的半导体产品。MFC通常设计和校准成在特定的流率范围内控制特定类型气体的流率。所述装置基于给定设定值来控制流率,所述给定设定值通常由用户或诸如半导体工具本身的外部装置预先确定。设定值可取决于针对每一步骤所需的流率来随着过程的每一步骤来改变。MFC可以是模拟或数字的。它们通常设计成与入口气体的压力范围配合使用,MFC通常可适用于低压和高压。所有的MFC具有入口端口,和出口端口,包括质量流传感器和比例控制阀的质量流计。系统控制器用作反馈控制系统的一部分,其根据如由设定值所确定的流率与由质量流传感器所感测的测得的流率的比较(或作为所述比较的函数)来给控制阀提供控制信号。反馈控制系统从而操作该阀,以使得所测得的流量保持在由设定值所确定的流率下。
这种控制系统假设MFC保持在特定公差范围内的校准状态。为了测试MFC是否在校准的公差范围内,通常利用这种装置作为质量流校验器来对MFC进行离线测试。后者即质量流校验器用于测试流率。虽然离线测试是非常精确的,但是总有一个问题,即MFC会在过程运行期间(实时地)变得未进行校准,并且直到过程完成才被检测。这通常会导致半导体产品的更低产率,并甚至是完全失败导致整体产品产率损失。这可能是昂贵的,而且显然是不希望的。所需要的是在过程正在运行的同时用于持续实时地测试MFC精确度的系统和方法。
质量流控制器包括两种类型,热式和压力式质量流控制器。序列号为13/354,988美国专利申请描述了一种用于测试热式质量流控制器使得质量流控制器的精确度可以无需离线作业的方式进行校验的系统和方法,该美国专利申请于2012年1月20日以Junhua Ding的名义提交,其标题为“实时监测通过质量流控制器的流动的系统和方法(System and Method of Monitoring Flow Through Mass FlowControllers in Real Time)”;并转让给本受让人。
发明内容
本发明的某些实施例涉及到质量流控制系统,当对到过程的流体流控制时其精确度可实时地自我校验,所述系统包括:
用于根据控制信号(或作为所述控制信号的函数)来控制通过系统的流体流的控制阀;
用于根据通过系统的流体的测得流量和设定值(或作为其函数)来产生控制信号的控制器;以及
流体源,其用于提供用于在流控制过程的步骤之间的任何时候校验系统精确度的已知体积的流体。在一个实施方式中,该系统还包括流限制装置以针对流量测量产生阻塞流动状态;压力传感器,其用于提供代表系统中流限制装置上游的流体的所测得压力的压力测量信号;以及温度传感器,其用于提供代表系统中流体的所测得温度的温度测量信号。
在另一实施方式中,该系统进一步包括第二压力传感器,其用于提供代表所述流限制装置下游流体的所测得压力的压力测量信号,使得可针对非阻塞流动状态测量流率。
根据另一个实施方式,提供当对到过程的流控制时校验质量流控制系统精确度的方法。该方法包括:根据控制信号控制通过系统的流体流;根据通过系统的流体的所测得流量和设定值来产生控制信号;并提供用于在流控制过程的步骤之间的任何时候校验系统精确度的已知体积的流体。
附图说明
附图仅仅通过实例的方式而并非通过限制性的方式描绘了根据本发明教导的一个或多个实施方式。在附图中,相同的附图标记指代相同或相似的元件。
图1是压力式MFC的一个实施例的总体示意图,其配置成允许以无需离线作业的方式来测试MFC的精确度;以及
图2是压力式MFC的第二实施例的总体示意图,其配置成允许以无需离线作业的方式来测试MFC的精确度。
具体实施方式
在下面的详细描述中,许多具体细节通过实例的方式提出,以便提供对有关教导的透彻理解。然而,对于本领域内的那些技术人员应当显而易见的是本教导可在没有这些细节的情况下加以实施。在其它情况下,以相对高程度地且无需细节的方式对已知的方法、程序、组件和/或电路进行了说明,以便避免不必要地模糊本教导的方面。
应当理解的是,本主题技术的其它配置对于本领域内的那些技术人员而言从下面的详细描述将变得容易显而易见,其中主题技术的各种配置通过实例的方式进行了示出和说明。如将被认识到的那样,主题技术能够具有其它和不同的配置,且其若干细节能够在各种其它方面中进行变型,但是所有这些都不脱离主题技术的范围。因此,附图和具体实施方式在本质上应被视为是说明性的而并非限制性的。
本公开涉及压力式MFC。存在两个实施例,一个用于阻塞流动状态,而另一个用于非阻塞流动状况。如将被看到的那样,一个装置可配置成在任一模式下进行操作。
阻塞流动是一种可压缩流动效应。变得“阻塞”或受到限制的参数是流体的速度。阻塞流动因此是一种流体动态状态,其中在给定的压力和温度下流动通过MFC的流体在其通过一个限制(诸如一个固定横截面面积的孔口或喷嘴)进入一较低的压力环境下时速度将增加。阻塞流动是一种限制状态,当质量流率在上游压力固定的同时将不随着下游压力环境下的进一步降低而增加时发生上述限制状态。在阻塞流动状态下,质量流率可通过增加上游压力或者通过降低上游温度来增加。因为质量流率无关于下游压力,而仅依赖于限制上游侧的温度和压力,因此气体的阻塞流动在许多应用中是有用的。在阻塞流动状态下,诸如阀的流限制装置、校准孔口板和喷嘴可用于产生所需的质量流率。针对阻塞流动状态,相对于流限制装置的上游压力Pu和下游压力Pd必须满足以下基准:
P d P u ≤ ( 2 γ + 1 ) γ / ( γ - 1 ) - - - ( 1 )
其中γ是气体的比热比。
如图1中所示,新颖的压力式MFC 100的实施例配置成:(a)适于阻塞流动状态;和(b)用于实时提供能够校验MFC精确度的信息。MFC 100在MFC 100的入口端口120处接收流体110。流体从入口端口通过支撑块件140的导管130引导到出口端口150。MFC 100块件140的上游部分支撑上游比例控制阀160,所述上游比例控制阀配置成响应于并根据施加到上游阀的流量控制信号调节通过MFC 100出口150的流体110的流率。具体地,上游控制阀160可根据并响应于来自控制器170的流量控制信号在完全打开和完全关闭位置之间的任何位置下操作以便控制来自MFC出口150的流体110的流率。流量控制信号根据下述由控制器170产生:所示的施加到控制器170并代表通过MFC的流体的所需(流量设定值)流率的设定流量信号(由用户和/或来自诸如独立计算机或过程工具的外部装置的外部程序设定);以及(b)代表所测得流率的所测得流量信号,所测得流率为流动通过MFC的流体的压力和温度的函数。控制器170包括用于存储校准系数的存储器,所述校准系统是基于由所述系统接收到的所感测温度和压力信号提供精确测得的流量信号所必需的。在示出的实施例中,该测得的流量信号作为由压力传感器180(以压力换能器的形式在图1中示出)所提供的压力信号和由温度传感器190所提供的温度信号的函数来提供。MFC 100的出口150设有以200指示的某些类型的流限制装置,其可由下游控制阀210提供(通过控制所述阀的位置而形成受限制的开口),或由单独的装置提供,诸如流喷嘴/孔口,其在阻塞流动状态下具有限制流体从出口150流动的流量和压力的效果。
为了实时地校验MFC的精确度,在图1所示的实施例,MFC 100还进一步包括在出口150处由块件140支撑的下游控制阀210,和贮存器220。贮存器220由块件140支撑在两个控制阀160和210之间。贮存器配置成存储流入到MFC内的已知体积的流体。温度传感器190耦联到贮存器220,这样它测量所述贮存器壁的温度,该温度近似于贮存器220中流体并由此近似于在MFC内流动的流体的温度。温度传感器190将代表所测得的温度信号提供给控制器170。所测得的流率是该测得的温度以及由压力传感器180所测得压力的函数。压力传感器180在两个阀160和210之间还与导管130耦联,并配置成测量流动通过导管130到达示出为下游控制阀210的孔口200的流限制装置的流体110的压力。
在操作过程中,下游控制阀210是打开的,而流量设定值被设定在非零值,从而使得控制器170来控制通过上游阀160的流动,这样所测得的流量将等于非零设定值。代表所感测温度和压力的数据以信号的形式从温度传感器190和压力传感器180传送到控制器170以便用于确定流动通过MFC的所测得的质量流。如下面更详细描述的那样,控制器170根据针对阻塞流动状态的方程式(2)确定所测得的流率
Qp=C′·A·f(m,γ,T)·Pu,  (2)
其中,C′是孔口200的孔口排放系数,A为有效的孔口面积,m为气体的分子量,γ为气体的比热容量比,T为气体温度,Pu为上游压力,以及
f(m,γ,T)为与气体分子量m、气体的比热容量γ、和气体温度T有关的数学函数。
控制器170将阀控制信号提供给阀160,用于控制流入和流出MFC100的流,这样所测得的流率QP追踪由流量设定值所指令的流动。只要MFC被正确地校准,则两者将基本保持相等(在允许的公差范围内)。在阀210用于限定流限制装置的孔口的情况下,在阻塞流动状态下,阀210的位置将保持不变。
可在被指令的零设定值的任何时间执行流量(或流动)校验检查,诸如像在气体输送过程中的两个步骤之间的时间段内进行,或是在完成该过程之后进行。在流量校验期间,当流体持续从贮存器220流动(与MFC下游的压力相比,这处于更高的压力下)时,控制器170将自动地关闭上游比例控制阀160,以允许控制器170基于由压力传感器170所提供的压力信号的衰变率来校验流率。该校验阶段通常需要约100-300毫秒以便执行测量。在某些实施例中,该校验阶段可在100到300毫秒之间。在该校验阶段期间,来自贮存器220的流体110被引导流出MFC 100的出口150。由衰变率原理所确定的流率,QV,其为剩余流体110离开系统时所处的流率的指示,可通过方程式(3)来确定:
Q v = - k · V · d ( P u / T ) dt - - - ( 3 )
其中,t表示时间,k表示转换常数,以及V、Pu和T分别表示贮存器220的体积、如由压力传感器170所测得的气体压力、以及如由温度传感器160所测得的气体温度。
一旦校验阶段结束,下游比例控制阀210就完全关闭,以防止任何剩余流体110离开所述MFC 100。在校验阶段期间,MFC 100使用方程式(2)对照衰变流率,如根据方程式(3)所确定的QV来校验所计算出的流率Qp
如果Qp从QV偏差的程度高于预定的精确度公差极限,则MFC 100可将警报发送出到主控制器(未示出),以警告脱离校准状态。备选地,MFC 100可基于校验值QV以数学方式调整或更新系数,诸如调整或更新在流量计算方程式(2)中的C′和/或A,以至于在Qp和QV之间的流量误差最小化,等于或低于预定的精确度公差极限。因此,在该流量校验阶段期间,MFC 100在公差极限范围内重新校准。因此,一旦调整,当随后指令非零状态,则MFC 100利用经校验的流率值,以达到流体离开系统时所处的目标流率。
图2示出用于针对非阻塞流动状态操作MFC的实施例。具体地,MFC 250包括与图1所示实施例相同或相似的组件,但具有附加的压力传感器260(示出为压力换能器),其布置成感测流限制装置200下游的气体压力。第二压力传感器260可安装到块件140,或与块件分开地安装。
应当理解的是图2的实施例。可用于阻塞流动状态和非阻塞流动状态。图2实施例的操作模式从而确定MFC 250是否是针对阻塞流动状态还是针对非阻塞流动状态而操作。
针对非阻塞流动状态,所测得的流率通过方程式(4)计算成:
Qp=f(Pu,Pd,T,m,γ,A),  (4)
其中f是上游压力Pu、下游压力Pd、气体温度T、气体分子量m、气体比热比γ和有效孔口面积A的数学函数。
在非阻塞流动状态下的流动过程中,为了进行校验,上游阀再次关闭,且气体将接着从贮存器220流动并流出MFC 250的出口150(在阀260的下游)。经校验的流率,QV,仍通过上述方程式(3)来确定。
与Qp和QV值有关的数据可在控制器170中累积,以及然后可将与Qp和QV相关的数据进行比较,以确定MFC是否超出特定的校准公差。进一步地,在方程式(4)中的所述系数可被更新,以将Qp和QV之间的流量误差最小化。因此,MFC 250在流量校验阶段期间被重新校准。
因此,前述是在过程正在运行的同时用于持续实时地测试和校验MFC校准设定的系统和方法。在一个附加实施例中,如果在存储于控制器170的存储器中的当前系数与从由系统所进行的测量所确定的系数之间存在差异,则该系统还可通过基于所述校验结果调节流量计算系数进行自我校准。在这种布置中,用于所测得流率Qp的流量计算方程式的所述系数可基于校验结果重新计算,使得Qp和QV之间的流量误差最小化,等于或低于预定的精确度公差极限,以便在流量校验阶段期间在公差极限范围内重新校准系统。
由于在不脱离本文所包含的本发明范围的情况下可对上述设备和过程进行的其它变化和修改,因此意旨包含在上述说明中的所有主题应以说明性而非限制性的意义来加以解释。

Claims (28)

1.一种质量流控制系统,当对到过程的流体流控制时该系统的精确度可实时地自我校验,所述系统包括:
用于作为控制信号的函数来控制通过系统的流体流的控制阀;
用于作为通过系统的流体的测得的流量和设定值的函数来产生控制信号的控制器;以及
流体源,其用于提供用于在流控制过程的步骤之间的任何时候校验系统精确度的已知体积的流体。
2.根据权利要求1所述的质量流控制系统,还包括流限制装置以针对通过系统的流体流产生阻塞流动状态;
3.根据权利要求2所述的质量流控制系统,其中所述流限制装置具有孔口,所述孔口的横截面面积是可调节的。
4.根据权利要求2所述的质量流控制系统,还包括第二控制阀,其用于提供限定流限制装置的可调节开口。
5.根据权利要求1所述的质量流控制系统,还包括配置成提供代表系统中流体的所测得压力的压力测量信号的压力传感器;以及配置成提供代表系统中流体的所测得温度的温度测量信号的温度传感器。
6.根据权利要求5所述的质量流控制系统,其中所述控制器配置成作为系统中流体的所测得压力和温度的函数将通过系统的流体的所测得流量Qp确定成:
Qp=C′·A·f(m,γ,T)·Pu
其中,C′是流限制装置的孔口排放系数,A为流限制装置的有效孔口面积,m为气体的分子量,γ为气体的比热容量比,T为气体温度,Pu为上游压力,以及f(m,γ,T)为与气体分子量、气体的比热容量、和气体温度有关的数学函数。
7.根据权利要求1所述的质量流控制系统,其中流体源是定位在控制阀下游的已知体积的贮存器,这样当指令零流量设定值时控制阀关闭,并且仍允许流体从贮存器流动并由系统基于阻塞流动状态测量QP,其中另一个流量测量QV可由来自贮存器的流体衰变率而得出为:
Q v = - k · V · d ( P u / T ) dt ,
其中,t表示时间,k表示转换常数,以及V、Pu和T分别表示贮存器的体积、贮存器中气体的压力和温度。
8.根据权利要求7所述的质量流控制系统,其中系统可作为由来自贮存器的流体衰变率所得出的流量测量QV和由系统基于阻塞流动状态所测得的流率QP之间差异的函数来自我校验其流量精确度。
9.根据权利要求7所述的质量流控制系统,还包括第二阀,其中在流量校验完成之后所述第二控制阀关闭以便履行零流量设定值命令。
10.根据权利要求7所述的质量流控制系统,其中在流控制过程的步骤之间的任何时候的校验阶段期间进行校验,校验阶段在100和300毫秒之间。
11.根据权利要求7所述的质量流控制系统,其中所述贮存器定位在控制阀和所述流限制装置之间。
12.根据权利要求7所述的质量流控制系统,其中如果Qp从QV偏差的程度高于预定的精确度公差极限,则系统将警报提供给主控制器以警告脱离校准状态。
13.根据权利要求7所述的质量流控制系统,其中系统可基于校验结果针对所测得流率QP调节流量计算方程的系数,使得在Qp和QV之间的流量误差最小化,等于或低于预定的精确度公差极限,以便系统在流量校验阶段期间在公差极限范围内重新校准。
14.根据权利要求1所述的质量流控制系统,还包括流限制装置、第一压力传感器以及第二压力传感器,所述第一压力传感器用于产生作为流限制装置上游的流体压力的函数的信号,所述第二压力传感器用于产生作为流限制装置下游的流体压力的函数的信号以便在非阻塞流动状态期间测量流体流量,其中所测得的流率QP基于以下方程式:
Qp=f(Pu,Pd,T,m,γ,A),
其中f是上游压力Pu、下游压力Pd、气体温度T、气体分子量m,气体比热比γ和有效孔口面积A的数学函数。
15.一种当对到过程的流控制时校验质量流控制系统精确度的方法,所述方法包括:
作为控制信号的函数控制通过系统的流体流;
作为通过系统的流体的所测得流量和设定值的函数来产生控制信号;以及
提供用于在流控制过程的步骤之间的任何时候校准系统的已知体积的流体。
16.根据权利要求15所述的方法,其中控制流体流包括控制通过流限制装置的流体流,从而产生阻塞流动状态。
17.根据权利要求16所述的方法,其中控制通过所述流限制装置的流动包括控制通过孔口的流,所述孔口的横截面面积是可调节的。
18.根据权利要求16所述的方法,其中控制通过所述流限制装置的流动包括控制通过第二控制阀的流,所述第二控制阀用于提供限定流限制装置的可调节开口。
19.根据权利要求15所述的方法,还包括提供代表系统中流体的所测得压力的压力测量信号;以及提供代表系统中流体的所测得温度的温度测量信号。
20.根据权利要求19所述的方法,还包括作为系统中流体的所测得压力和温度的函数将通过系统的流体的所测得流量Qp确定成:
Qp=C′·A·f(m,γ,T)·Pu
其中,C′是流限制装置的孔口排放系数,A为流限制装置的有效孔口面积,m为气体的分子量,γ为气体的比热容量比,T为气体温度,Pu为上游压力,以及f(m,γ,T)为与气体分子量、气体的比热容量、和气体温度有关的数学函数。
21.根据权利要求15所述的方法,还包括提供来自定位在控制阀下游的已知体积的贮存器的流体源,这样当指令零流量设定值时控制阀关闭,并且仍允许流体从贮存器流动并由系统基于阻塞流动状态测量QP,其中另一个流量测量QV可由来自贮存器的流体衰变率而得出为:
Q v = - k · V · d ( P u / T ) dt ,
其中,t表示时间,k表示转换常数,以及V、Pu和T分别表示贮存器的体积、贮存器中气体的压力和温度。
22.根据权利要求21所述的方法,还包括作为由来自贮存器的流体衰变率所得出的流量测量QV和由系统基于阻塞流动状态所测得的流率QP之间差异的函数来自我校验系统的流量精确度。
23.根据权利要求21所述的方法,还包括在流量校验完成之后关闭第二控制阀以便履行零流量设定值命令。
24.根据权利要求21所述的方法,其中在流控制过程的步骤之间的任何时候的校验阶段期间进行校验,校验阶段在100和300毫秒之间。
25.根据权利要求21所述的方法,其中所述贮存器定位在控制阀和所述流限制装置之间。
26.根据权利要求21所述的方法,还包括如果Qp从QV偏差的程度高于预定的精确度公差极限,则将警报发送给主控制器以警告脱离精确状态。
27.根据权利要求21所述的方法,还包括基于校验结果针对所测得流率QP调节流量计算方程的系数,使得在Qp和QV之间的流量误差最小化,等于或低于预定的精确度公差极限,以便系统在流量校验阶段期间在公差极限范围内重新校准。
28.根据权利要求15所述的方法,还包括产生作为流限制装置上游的流体压力的函数的信号,以及产生作为流限制装置下游的流体压力的函数的信号以便在非阻塞流动状态期间测量流体流量,其中所测得的流率QP基于以下方程式:
Qp=f(Pu,Pd,T,m,γ,A),
其中f是上游压力Pu、下游压力Pd、气体温度T、气体分子量m,气体比热比γ和有效孔口面积A的数学函数。
CN201380049600.0A 2012-09-25 2013-08-29 用于压力式质量流控制器自我校验的方法和设备 Active CN104704434B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/626,432 US10031005B2 (en) 2012-09-25 2012-09-25 Method and apparatus for self verification of pressure-based mass flow controllers
US13/626,432 2012-09-25
PCT/US2013/057184 WO2014051925A1 (en) 2012-09-25 2013-08-29 Method and apparatus for self verification of pressure based mass flow controllers

Publications (2)

Publication Number Publication Date
CN104704434A true CN104704434A (zh) 2015-06-10
CN104704434B CN104704434B (zh) 2018-12-04

Family

ID=49162251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380049600.0A Active CN104704434B (zh) 2012-09-25 2013-08-29 用于压力式质量流控制器自我校验的方法和设备

Country Status (8)

Country Link
US (2) US10031005B2 (zh)
EP (1) EP2901227B1 (zh)
JP (1) JP6093019B2 (zh)
KR (1) KR101662046B1 (zh)
CN (1) CN104704434B (zh)
SG (1) SG11201501847VA (zh)
TW (1) TWI561948B (zh)
WO (1) WO2014051925A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111103020A (zh) * 2018-10-29 2020-05-05 北京七星华创流量计有限公司 流量检测装置、流量控制系统及流量检测方法
US10801867B2 (en) 2012-09-25 2020-10-13 Mks Instruments, Inc. Method and apparatus for self verification of pressured based mass flow controllers
CN112020689A (zh) * 2018-03-26 2020-12-01 应用材料公司 用于基于压力衰减速率来进行质量流量校验的方法、系统和设备

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188989B1 (en) 2011-08-20 2015-11-17 Daniel T. Mudd Flow node to deliver process gas using a remote pressure measurement device
US9958302B2 (en) 2011-08-20 2018-05-01 Reno Technologies, Inc. Flow control system, method, and apparatus
JP5665793B2 (ja) * 2012-04-26 2015-02-04 株式会社フジキン 可変オリフィス型圧力制御式流量制御器
US8845940B2 (en) 2012-10-25 2014-09-30 Carboncure Technologies Inc. Carbon dioxide treatment of concrete upstream from product mold
EP2951122B1 (en) 2013-02-04 2020-05-27 Carboncure Technologies Inc. System and method of applying carbon dioxide during the production of concrete
US9376345B2 (en) 2013-06-25 2016-06-28 Carboncure Technologies Inc. Methods for delivery of carbon dioxide to a flowable concrete mix
US9108883B2 (en) 2013-06-25 2015-08-18 Carboncure Technologies, Inc. Apparatus for carbonation of a cement mix
US9388072B2 (en) 2013-06-25 2016-07-12 Carboncure Technologies Inc. Methods and compositions for concrete production
US20160107939A1 (en) 2014-04-09 2016-04-21 Carboncure Technologies Inc. Methods and compositions for concrete production
US10927042B2 (en) 2013-06-25 2021-02-23 Carboncure Technologies, Inc. Methods and compositions for concrete production
WO2015123769A1 (en) 2014-02-18 2015-08-27 Carboncure Technologies, Inc. Carbonation of cement mixes
US9605346B2 (en) * 2014-03-28 2017-03-28 Lam Research Corporation Systems and methods for pressure-based liquid flow control
EP3129126A4 (en) 2014-04-07 2018-11-21 Carboncure Technologies Inc. Integrated carbon dioxide capture
JP6781758B2 (ja) * 2015-08-31 2020-11-04 エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated 圧力式流量測定のためのシステム、非一時的な機械読取り可能媒体及び圧力式流量制御の方法
US10126761B2 (en) 2015-12-29 2018-11-13 Hitachi Metals, Ltd. Gas insensitive mass flow control systems and methods
US10312119B2 (en) * 2016-02-17 2019-06-04 Lam Research Corporation Line charge volume with integrated pressure measurement
US10515783B2 (en) 2016-02-23 2019-12-24 Lam Research Corporation Flow through line charge volume
MX2018012464A (es) 2016-04-11 2019-08-01 Carboncure Tech Inc Metodos y composiciones para tratamiento de agua de lavado de concreto.
US10684159B2 (en) 2016-06-27 2020-06-16 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on choked flow
US10303189B2 (en) 2016-06-30 2019-05-28 Reno Technologies, Inc. Flow control system, method, and apparatus
US11144075B2 (en) 2016-06-30 2021-10-12 Ichor Systems, Inc. Flow control system, method, and apparatus
US10679880B2 (en) 2016-09-27 2020-06-09 Ichor Systems, Inc. Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same
US10838437B2 (en) 2018-02-22 2020-11-17 Ichor Systems, Inc. Apparatus for splitting flow of process gas and method of operating same
CN109964194B (zh) * 2016-09-19 2022-12-27 流体设备系统有限公司 用于基于压力的自校正质量流量控制器的装置和方法
US10031004B2 (en) 2016-12-15 2018-07-24 Mks Instruments, Inc. Methods and apparatus for wide range mass flow verification
US10663337B2 (en) 2016-12-30 2020-05-26 Ichor Systems, Inc. Apparatus for controlling flow and method of calibrating same
US20190352888A1 (en) * 2017-01-14 2019-11-21 Mario LARACH Smart monitoring unit apparatus for real-time monitoring and active management of upstream and downstream pressure and flow, incorporating self-cleaning and plug-and-play maintenance
EP3642170A4 (en) 2017-06-20 2021-03-10 Carboncure Technologies Inc. PROCESSES AND COMPOSITIONS FOR THE TREATMENT OF CONCRETE WASHING WATER
JP6811147B2 (ja) * 2017-06-23 2021-01-13 東京エレクトロン株式会社 ガス供給系を検査する方法
JP7164938B2 (ja) * 2017-07-31 2022-11-02 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
US10738754B2 (en) * 2017-09-26 2020-08-11 The Boeing Company Rapid sample ignition test system
US11550341B2 (en) * 2017-09-29 2023-01-10 Hitachi Metals, Ltd. Mass flow control system, and semiconductor manufacturing equipment and vaporizer including the system
KR20190050611A (ko) * 2017-11-03 2019-05-13 삼성전자주식회사 모니터링 장치 및 이를 포함하는 반도체 제조 장치
EP3713484A4 (en) * 2017-11-20 2021-07-28 The Regents of The University of Michigan DIGITAL EXTERNAL VENTRICULAR BYPASS WITH INTRACRANIAL PRESSURE MONITOR AND BUILT-IN FLOW MONITOR / CEPHALORACHIDAL PRESSURE REGULATOR
WO2019108658A1 (en) 2017-11-28 2019-06-06 Pfeifer Peter Fredrick Method and apparatus for isolating a pressure-driven system from a source
KR102628015B1 (ko) * 2017-12-01 2024-01-23 삼성전자주식회사 질량 유량 제어기, 반도체 소자의 제조장치 및 그의 관리방법
US10649471B2 (en) 2018-02-02 2020-05-12 Mks Instruments, Inc. Method and apparatus for pulse gas delivery with isolation valves
JP7217742B2 (ja) * 2018-04-19 2023-02-03 株式会社堀場エステック 流量制御装置、診断方法、及び、流量制御装置用プログラム
WO2019208417A1 (ja) * 2018-04-27 2019-10-31 株式会社フジキン 流量制御方法および流量制御装置
KR102421587B1 (ko) * 2018-06-26 2022-07-15 가부시키가이샤 후지킨 유량 제어 방법 및 유량 제어 장치
JP7148302B2 (ja) * 2018-07-17 2022-10-05 株式会社堀場エステック 流量制御装置
US10725484B2 (en) 2018-09-07 2020-07-28 Mks Instruments, Inc. Method and apparatus for pulse gas delivery using an external pressure trigger
DE102018124915A1 (de) * 2018-10-09 2020-04-09 Ebm-Papst Landshut Gmbh Gasventileinheit und Verfahren zur modulierenden Steuerung eines Gasventils der Gasventileinheit
US11675374B2 (en) 2018-10-26 2023-06-13 Illinois Tool Works Inc. Mass flow controller with advanced zero trending diagnostics
KR102169937B1 (ko) * 2019-03-27 2020-10-26 한국항공대학교산학협력단 드라이아이스 배스를 이용하는 휴대용 급속 냉각 열 교환기
US11404290B2 (en) * 2019-04-05 2022-08-02 Mks Instruments, Inc. Method and apparatus for pulse gas delivery
US20200348702A1 (en) * 2019-04-30 2020-11-05 Illinois Tool Works Inc. Advanced pressure based mass flow controllers and diagnostics
US11073845B2 (en) * 2019-08-26 2021-07-27 Hitachi Metals, Ltd. Parasitic flow correction method and apparatus
DE102019126883A1 (de) * 2019-10-07 2021-04-08 Endress+Hauser Flowtec Ag Verfahren zum Überwachen eines Meßgeräte-Systems
JP7122335B2 (ja) * 2020-03-30 2022-08-19 Ckd株式会社 パルスショット式流量調整装置、パルスショット式流量調整方法、及び、プログラム
WO2022004349A1 (ja) * 2020-06-29 2022-01-06 株式会社フジキン 流体制御装置、流体供給システムおよび流体供給方法
DE102020210777A1 (de) * 2020-08-26 2022-03-03 Festo Se & Co. Kg Durchflussregler, Ventilanordnung und Verfahren
WO2022186971A1 (en) 2021-03-03 2022-09-09 Ichor Systems, Inc. Fluid flow control system comprising a manifold assembly
FR3130962A1 (fr) * 2021-12-17 2023-06-23 Commissariat A L’Energie Atomique Et Aux Energies Alternatives dispositif de mesure de débit d’air et procédé
US20230304837A1 (en) * 2022-03-23 2023-09-28 Mks Instruments, Inc. Method and Apparatus for Mass Flow Verification

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096351A1 (en) * 1999-04-16 2001-05-02 Fujikin Incorporated Parallel bypass type fluid feeding device, and method and device for controlling fluid variable type pressure system flow rate used for the device
US20060008328A1 (en) * 2004-07-07 2006-01-12 Morgan Daniel P Flow control apparatus and method with internally isothermal control volume for flow verification
US20060278276A1 (en) * 2004-06-21 2006-12-14 Makoto Tanaka Flow controller and its regulation method
US20060283254A1 (en) * 2005-03-25 2006-12-21 Mks Instruments, Inc. Critical flow based mass flow verifier
US20090112504A1 (en) * 2005-03-25 2009-04-30 Mks Instruments, Inc. High Accuracy Mass Flow Verifier with Multiple Inlets
US20090183548A1 (en) * 2008-01-18 2009-07-23 Pivotal Systems Corporation Method and apparatus for in situ testing of gas flow controllers
US20090266139A1 (en) * 2008-04-25 2009-10-29 Applied Materials, Inc Real time lead-line characterization for mfc flow verification
CN101583855A (zh) * 2005-07-12 2009-11-18 朗姆研究公司 用于校验从气体供应系统进入等离子体处理室的气体流率的方法
US20110022334A1 (en) * 2009-07-24 2011-01-27 Junhua Ding Upstream volume mass flow verification systems and methods field of the disclosure
WO2011047361A1 (en) * 2009-10-15 2011-04-21 Pivotal Systems Corporation Method and apparatus for gas flow control
CN102301208A (zh) * 2008-11-18 2011-12-28 Mks仪器公司 双模式质量流检验以及质量流递送系统和方法

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487213A (en) 1982-09-09 1984-12-11 Omicron Technology Corporation Mass flow controller apparatus
US4965756A (en) * 1988-10-11 1990-10-23 Gas Research Institute Method and apparatus for calibration of electronic gas meters
JPH03166611A (ja) 1989-11-27 1991-07-18 Nec Corp 質量流量制御装置
JPH03211601A (ja) 1990-01-17 1991-09-17 Fujitsu Ltd ガス流量制御装置
US5062446A (en) * 1991-01-07 1991-11-05 Sematech, Inc. Intelligent mass flow controller
EP0547617B1 (en) * 1991-12-18 1996-07-10 Pierre Delajoud Mass flow meter and method
JP3516772B2 (ja) 1995-05-15 2004-04-05 株式会社テイエルブイ 蒸気乾き度制御装置
US5944048A (en) * 1996-10-04 1999-08-31 Emerson Electric Co. Method and apparatus for detecting and controlling mass flow
US6394120B1 (en) 2000-10-06 2002-05-28 Scales Air Compressor Method and control system for controlling multiple compressors
US6439253B1 (en) 2000-12-28 2002-08-27 International Business Machines Corporation System for and method of monitoring the flow of semiconductor process gases from a gas delivery system
GB2376080B (en) 2001-05-30 2004-08-04 Micro Motion Inc Flowmeter proving device
US6652240B2 (en) 2001-08-20 2003-11-25 Scales Air Compressor Method and control system for controlling multiple throttled inlet rotary screw compressors
JP3619187B2 (ja) 2001-12-04 2005-02-09 シーケーディ株式会社 流量制御装置と流量制御方法
US7136767B2 (en) * 2002-06-24 2006-11-14 Mks Instruments, Inc. Apparatus and method for calibration of mass flow controller
US6948508B2 (en) * 2002-06-24 2005-09-27 Mks Instruments, Inc. Apparatus and method for self-calibration of mass flow controller
US7073392B2 (en) 2002-07-19 2006-07-11 Celerity, Inc. Methods and apparatus for pressure compensation in a mass flow controller
JP4502590B2 (ja) 2002-11-15 2010-07-14 株式会社ルネサステクノロジ 半導体製造装置
JP4137666B2 (ja) 2003-02-17 2008-08-20 株式会社堀場エステック マスフローコントローラ
JP2008506116A (ja) 2004-07-09 2008-02-28 セレリティ・インコーポレイテッド フロー測定およびマスフロー調整器の検証のための方法およびシステム
US7174263B2 (en) 2005-03-25 2007-02-06 Mks Instruments, Inc. External volume insensitive flow verification
US7461549B1 (en) 2007-06-27 2008-12-09 Mks Instruments, Inc. Mass flow verifiers capable of providing different volumes, and related methods
US7654151B2 (en) 2005-05-10 2010-02-02 Agar Corporation Ltd. Method and apparatus for measuring multi-streams and multi-phase flow
CA2610250C (en) 2005-06-22 2012-11-20 Los Robles Advertising, Inc. Mass velocity and area weighted averaging fluid composition sampler and mass flow meter
JP4856905B2 (ja) 2005-06-27 2012-01-18 国立大学法人東北大学 流量レンジ可変型流量制御装置
US7296465B2 (en) 2005-11-22 2007-11-20 Mks Instruments, Inc. Vertical mount mass flow sensor
TW200834275A (en) 2006-09-05 2008-08-16 Celerity Inc Multi-gas flow device
US7881886B1 (en) * 2006-11-17 2011-02-01 Lam Research Corporation Methods for performing transient flow prediction and verification using discharge coefficients
US8112897B2 (en) 2008-01-18 2012-02-14 Cypress Semiconductor Corporation Monitoring devices, assemblies and methods for attachment to gauges and the like
US8197133B2 (en) 2008-02-22 2012-06-12 Brooks Instruments, Llc System and method for sensor thermal drift offset compensation
WO2009110895A1 (en) 2008-03-05 2009-09-11 Brooks Instrument, Llc A system, method, and computer program for determining fluid flow rate using a pressure sensor and a thermal mass flow sensor
JP5177864B2 (ja) 2008-06-04 2013-04-10 株式会社フジキン 熱式質量流量調整器用自動圧力調整器
EP2313815B1 (en) 2008-08-13 2012-02-15 Shell Internationale Research Maatschappij B.V. Method for controlling a gas flow between a plurality of gas streams
US7826986B2 (en) 2008-09-26 2010-11-02 Advanced Energy Industries, Inc. Method and system for operating a mass flow controller
US8109289B2 (en) 2008-12-16 2012-02-07 Honeywell International Inc. System and method for decentralized balancing of hydronic networks
JP2010169657A (ja) 2008-12-25 2010-08-05 Horiba Stec Co Ltd 質量流量計及びマスフローコントローラ
JP4750866B2 (ja) 2009-02-18 2011-08-17 信越化学工業株式会社 石英ガラスの製造方法及び装置
DE102009046758A1 (de) 2009-11-17 2011-05-19 Endress + Hauser Process Solutions Ag Sich selbst überwachende Durchflussmessanordnung und Verfahren zu deren Betrieb
US8271211B2 (en) 2009-12-09 2012-09-18 Pivotal Systems Corporation Method and apparatus for enhancing in-situ gas flow measurement performance
US8265888B2 (en) 2009-12-09 2012-09-11 Pivotal Systems Corporation Method and apparatus for enhancing in-situ gas flow measurement performance
US8271210B2 (en) 2009-12-09 2012-09-18 Pivotal Systems Corporation Method and apparatus for enhancing in-situ gas flow measurement performance
US9056366B2 (en) 2010-05-21 2015-06-16 Illinois Tool Works Inc. Welding gas leak detection system and method
JP5607501B2 (ja) 2010-11-08 2014-10-15 株式会社堀場エステック マスフローコントローラ
US9400004B2 (en) 2010-11-29 2016-07-26 Pivotal Systems Corporation Transient measurements of mass flow controllers
US10353408B2 (en) 2011-02-25 2019-07-16 Mks Instruments, Inc. System for and method of fast pulse gas delivery
US9644796B2 (en) * 2011-09-29 2017-05-09 Applied Materials, Inc. Methods for in-situ calibration of a flow controller
US9846074B2 (en) 2012-01-20 2017-12-19 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time
US9760096B2 (en) 2012-03-07 2017-09-12 Illinois Tool Works Inc. System and method for using a model for improving control of a mass flow controller
US10031005B2 (en) * 2012-09-25 2018-07-24 Mks Instruments, Inc. Method and apparatus for self verification of pressure-based mass flow controllers

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096351A1 (en) * 1999-04-16 2001-05-02 Fujikin Incorporated Parallel bypass type fluid feeding device, and method and device for controlling fluid variable type pressure system flow rate used for the device
US20060278276A1 (en) * 2004-06-21 2006-12-14 Makoto Tanaka Flow controller and its regulation method
US20060008328A1 (en) * 2004-07-07 2006-01-12 Morgan Daniel P Flow control apparatus and method with internally isothermal control volume for flow verification
US20060283254A1 (en) * 2005-03-25 2006-12-21 Mks Instruments, Inc. Critical flow based mass flow verifier
US20090112504A1 (en) * 2005-03-25 2009-04-30 Mks Instruments, Inc. High Accuracy Mass Flow Verifier with Multiple Inlets
CN101583855A (zh) * 2005-07-12 2009-11-18 朗姆研究公司 用于校验从气体供应系统进入等离子体处理室的气体流率的方法
TW200819712A (en) * 2006-06-30 2008-05-01 Mks Instr Inc Critical flow based mass flow verifier
US20090183548A1 (en) * 2008-01-18 2009-07-23 Pivotal Systems Corporation Method and apparatus for in situ testing of gas flow controllers
US20090266139A1 (en) * 2008-04-25 2009-10-29 Applied Materials, Inc Real time lead-line characterization for mfc flow verification
CN102301208A (zh) * 2008-11-18 2011-12-28 Mks仪器公司 双模式质量流检验以及质量流递送系统和方法
US20110022334A1 (en) * 2009-07-24 2011-01-27 Junhua Ding Upstream volume mass flow verification systems and methods field of the disclosure
CN102483344A (zh) * 2009-07-24 2012-05-30 Mks仪器公司 上游体积质量流量检验系统和方法
WO2011047361A1 (en) * 2009-10-15 2011-04-21 Pivotal Systems Corporation Method and apparatus for gas flow control
CN102687087A (zh) * 2009-10-15 2012-09-19 关键系统公司 用于气体流量控制的方法和设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801867B2 (en) 2012-09-25 2020-10-13 Mks Instruments, Inc. Method and apparatus for self verification of pressured based mass flow controllers
CN112020689A (zh) * 2018-03-26 2020-12-01 应用材料公司 用于基于压力衰减速率来进行质量流量校验的方法、系统和设备
CN111103020A (zh) * 2018-10-29 2020-05-05 北京七星华创流量计有限公司 流量检测装置、流量控制系统及流量检测方法
CN111103020B (zh) * 2018-10-29 2022-06-03 北京七星华创流量计有限公司 流量检测装置、流量控制系统及流量检测方法

Also Published As

Publication number Publication date
US20140083514A1 (en) 2014-03-27
JP6093019B2 (ja) 2017-03-08
EP2901227B1 (en) 2019-03-06
EP2901227A1 (en) 2015-08-05
KR101662046B1 (ko) 2016-10-04
TW201433897A (zh) 2014-09-01
KR20150060788A (ko) 2015-06-03
US20180306615A1 (en) 2018-10-25
TWI561948B (en) 2016-12-11
WO2014051925A1 (en) 2014-04-03
JP2015530668A (ja) 2015-10-15
US10031005B2 (en) 2018-07-24
CN104704434B (zh) 2018-12-04
US10801867B2 (en) 2020-10-13
SG11201501847VA (en) 2015-04-29

Similar Documents

Publication Publication Date Title
CN104704434A (zh) 用于压力式质量流控制器自我校验的方法和设备
US10606285B2 (en) System for and method of monitoring flow through mass flow controllers in real time
KR102303943B1 (ko) 질량 유량 컨트롤러를 통해 유동을 모니터링하는 시스템 및 방법
US9870006B2 (en) Pressure type flow control system with flow monitoring
US10054959B2 (en) Real time diagnostics for flow controller systems and methods
EP2805136B1 (en) System for monitoring flow through mass flow controllers in real time
CN102483344B (zh) 上游体积质量流量检验系统和方法
US9471066B2 (en) System for and method of providing pressure insensitive self verifying mass flow controller
EP3105647B1 (en) System for and method of providing pressure insensitive self verifying mass flow controller
KR20070031445A (ko) 유동 측정 그리고 질량 유동 제어기의 검증을 위한 방법 및시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant