CN104674191B - 多模式薄膜沉积设备以及薄膜沉积方法 - Google Patents

多模式薄膜沉积设备以及薄膜沉积方法 Download PDF

Info

Publication number
CN104674191B
CN104674191B CN201310712741.8A CN201310712741A CN104674191B CN 104674191 B CN104674191 B CN 104674191B CN 201310712741 A CN201310712741 A CN 201310712741A CN 104674191 B CN104674191 B CN 104674191B
Authority
CN
China
Prior art keywords
gas
processing technology
reaction chamber
supply
film deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310712741.8A
Other languages
English (en)
Other versions
CN104674191A (zh
Inventor
林龚樑
陈建志
董福庆
陈志勇
林士钦
林冠宇
张家豪
吴学宪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN104674191A publication Critical patent/CN104674191A/zh
Application granted granted Critical
Publication of CN104674191B publication Critical patent/CN104674191B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

本发明公开一种多模式薄膜沉积设备以及薄膜沉积方法。多模式薄膜沉积设备包括反应腔室、承载座、气体喷洒头、惰性气体供应源、第一进气系统与第二进气系统。承载座设置于反应腔室中。气体喷洒头具有气体混合室与位于气体混合室一侧的多个气孔,且气孔朝向承载座使气体混合室与反应腔室连通。第一进气系统连接于反应腔室并提供第一薄膜沉积模式时所需的第一制作工艺气体。惰性气体供应源连接于气体混合室,提供惰性气体。第二进气系统连接于气体混合室并提供第二薄膜沉积模式时所需的第二制作工艺气体。

Description

多模式薄膜沉积设备以及薄膜沉积方法
技术领域
本发明涉及一种薄膜沉积设备及薄膜沉积方法,特别是涉及一种多模式薄膜沉积设备及薄膜沉积方法。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)中的有机半导体材料及低功函数电极极易受氧气与水气劣化,有效的封装技术以增加元件稳定性及使用寿命一直是有机发光二极管商品化过程的挑战。传统封装方法制作成本高,且不具有可挠曲性,无法满足需求。利用原子层沉积(ALD)或等离子体辅助化学气相沉积(PECVD)薄膜封装技术来制备可挠性阻障薄膜(barrier film)已成为趋势。
原子层沉积制作工艺沉积高致密低缺陷无机薄膜如氧化铝(Al2O3)等,由于制作工艺速率慢,为达有效的有机发光二极管封装需求的厚度(约20~30nm),制作工艺将需耗费约200~300分钟,无法有效降低制造成本,市场接受度低。若单纯使用等离子体辅助化学气相沉积制作工艺虽可大幅增加薄膜沉积速度,但有机发光二极管元件却容易受到等离子体环境中高能离子轰击而造成损害(plasma induced damage)。若结合两者制作工艺技术的优点,先利用原子层沉积制作工艺沉积数十个原子层(~2nm,20min)的无缺陷薄膜(即氧化铝薄膜),再利用等离子体辅助化学气相沉积制作工艺沉积较厚的氮化硅(SiNx)用以保护氧化铝层避免于大气中产生水解。由于原子层沉积制作工艺所制备的无缺陷薄膜甚为致密,于等离子体辅助化学气相沉积制作工艺中可保护有机发光二极管元件不受等离子体损害的影响。如此制作工艺方法可大幅降低阻障薄膜的制作工艺所需时间(由原4-5小时降到0.5小时左右)。
然而,对于现今制作工艺技术而言,原子层沉积制作工艺与等离子体辅助化学气相沉积制作工艺分属两个不同制作工艺腔体,不仅设备成本高,在元件转移(transfer)的过程中,未完成封装的有机发光二极管元件会暴露于环境中,造成阻障薄膜(barrierfilm)品质的降低。此外,等离子体辅助化学气相沉积制作工艺与原子层沉积制作工艺技术截然不同,等离子体辅助化学气相沉积制作工艺需透过气体喷洒头(showerhead)使混合的制作工艺气体均匀分布,并产生等离子体以解离制作工艺气体形成镀膜前驱反应物,因此,气体喷洒头会设计1~3层的气体扩散空间以作为缓冲区域,用于达到均匀出气的目的。而原子层沉积制作工艺则是讲求在最短的工作周期(low cycle time)让气体前驱物饱和分布并附着在制作工艺基板上。因此,若单纯利用等离子体辅助化学气相沉积制作工艺的气体喷洒头来进行原子层沉积制作工艺,制作工艺气体将需要充满整个气体喷洒头以及制作工艺腔空间才能达到饱和分布,如此一来,势必造成工作周期及气体使用量的增加。
发明内容
本发明的目的在于提供一种多模式薄膜沉积设备,适于将基板在单一腔体中进行不同模式的薄膜沉积制作工艺。
为达上述目的,本发明的一实施例提供一种多模式薄膜沉积设备。多模式薄膜沉积设备包括反应腔室、承载座、气体喷洒头、惰性气体供应源、第一进气系统与第二进气系统。反应腔室具有第一开口及第二开口,第一开口与第二开口为同一轴向,以贯穿反应腔室。承载座适于承载基板,且设置于反应腔室中。气体喷洒头具有气体混合室与多个气孔,其中所述气孔位于气体混合室的一侧,且所述气孔朝向承载座,气体混合室通过所述气孔而与反应腔室连通。第一进气系统,适于提供第一薄膜沉积模式时所需的第一制作工艺气体,且第一进气系统连接于该第一开口。惰性气体供应源,连接于气体喷洒头的气体混合室,适于提供不与第一制作工艺气体反应的惰性气体。第二进气系统,适于提供第二薄膜沉积模式时所需的第二制作工艺气体,且第二进气系统连接于气体喷洒头的气体混合室。
本发明的又一实施例是提出一种利用上述的多模式薄膜沉积设备进行的薄膜沉积方法,其包括:提供基板,配置于承载座上。进行该第一薄膜沉积模式,同步开启第一进气系统及惰性气体供应源,使第一进气系统经由第一开口提供第一制作工艺气体至反应腔室,同时惰性气体经由气体喷洒头的所述气孔进入到反应腔室,接着控制惰性气体的进气,使气体混合室与所述气孔的压力大于反应腔室,通过气体喷洒头喷出惰性气体以将第一制作工艺气体附着在基板上,并于基板上形成第一薄膜,之后关闭第一进气系统及惰性气体供应源。进行该第二薄膜沉积模式,开启第二进气系统,使第二制作工艺气体经由气体喷洒头的所述气孔进入到反应腔室,并于基板上形成第二薄膜。
本发明的再一实施例是提出一种薄膜沉积方法,其包括:提供基板,配置于反应腔室中。进行原子层沉积制作工艺模式,提供第一制作工艺气体,包含至少二不同的前驱物气体分别经由第一开口进入反应腔室,接着在二前驱物气体进入反应腔室时,经由气体喷洒头同步提供惰性气体,通过气体喷洒头喷出惰性气体以将第一制作工艺气体附着在基板上,并于基板上形成第一薄膜。进行等离子体辅助化学气相沉积制作工艺模式,由气体喷洒头提供第二制作工艺气体,以于基板上形成第二薄膜。其中原子层沉积制作工艺与等离子体辅助化学气相沉积制作工艺是在同一反应腔室中进行。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附附图作详细说明如下。
附图说明
图1为本发明一实施例的多模式薄膜沉积设备的示意图;
图2为本发明一实施例的多模式薄膜沉积设备进行第一薄膜沉积模式时,制作工艺气体流动的示意图;
图3为本发明一实施例的多模式薄膜沉积设备进行第二薄膜沉积模式时,制作工艺气体流动的示意图。
符号说明
1:多模式沉积设备
10:反应腔室
12:第一开口
14:第二开口
20:承载座
22:基板
24:承载座升降机构
30:第一进气系统
32:第一气体供应源
34:第二气体供应源
36:第一气体供应管路
38:第二气体供应管路
40:气体喷洒头
42:气体混合室
44:气孔
50:惰性气体供应源
60:第二进气系统
70:抽气系统
80:第一电压供应源
82:第二电压供应源
90:流量控制单元
PC1:第一前驱物气体
PC2:第二前驱物气体
PS1:第一制作工艺气体
PS2:第二制作工艺气体
IG:惰性气体
具体实施方式
图1为本发明一实施例的多模式薄膜沉积设备的示意图。请参照图1,其为本发明一实施例的多模式薄膜沉积设备。多模式薄膜沉积设备1包含反应腔室10、承载座20、第一进气系统30、气体喷洒头40、惰性气体供应源50及第二进气系统60。反应腔室10具有第一开口12与第二开口14,第一开口12与第二开口14的开口方向可为同一轴向,以横向的贯穿整个反应腔室10。承载座20设置在反应腔室10中,且适于承载基板22。举例而言,在本实施例中,多模式薄膜沉积设备1可还包括承载座升降机构24,连接于承载座20,适于调节承载座20的位置。第一进气系统30适于提供第一薄膜沉积模式时所需的第一制作工艺气体PS1,且第一进气系统30连接于第一开口12。其中,承载座20的设置方向平行于第一开口12与第二开口14的轴向,使由第一开口12进入的第一制作工艺气体PS1能沿着基板22设置方向流动至第二开口14。气体喷洒头40具有气体混合室42与多个气孔44,所述气孔44位于气体混合室42的一侧,且朝向承载座20,气体混合室42通过所述气孔42而与反应腔室10连通。惰性气体供应源50连接于气体喷洒头40的气体混合室42,以适于提供惰性气体IG。要注意的是,此处所指的惰性,意指不与第一制作工艺气体PS1产生反应的气体,在一实施例中,惰性气体IG可为元素周期表上VIIIA族,例如是:氩(Ar),但不以此为限。第二进气系统60连接于气体喷洒头40的气体混合室42,适于提供第二薄膜沉积模式时所需的第二制作工艺气体PS2。
在本实施例中,多模式薄膜沉积设备1还可包括抽气系统70,连接于反应腔室10的第二开口14。抽气系统70例如是帮浦,但不以此为限。抽气系统70主要为在模式转换或是模式执行过程中,提供抽气作用,将反应腔室10及气体混合室42中的气体及制作工艺反应物抽出,避免造成污染。
详细来说,第一进气系统30包含第一气体供应源32与第二气体供应源34,第一气体供应源32是透过第一气体供应管路36而与反应腔室10的第一开口12连接,第二气体供应源34是透过第二气体供应管路38而与反应腔室10的第一开口12连接。在本实施例中,第一薄膜沉积模式为原子层沉积(Atomic Layer Deposition,ALD)模式。当执行第一薄膜沉积模式时,第一制作工艺气体PS1会包含第一前驱物气体PC1及第二前驱物气体PC2,且第一前驱物气体PC1及第二前驱物气体PC2分别经由第一气体供应源32与第二气体供应源34所提供。
此外,在另一实施例中,第一薄膜沉积模式也可为单晶片等离子体辅助原子层沉积(Plasma-enhanced Atomic Layer Deposition,PEALD)模式,此时多模式薄膜沉积设备1还包括第二电压供应源82,耦接于第一进气系统30。在执行单晶片等离子体辅助原子层沉积模式时,第二电压供应源82可对第一制作工艺气体PS1施加偏压以产生等离子体。更进一步来说,第二电压供应源82可对第一制作工艺气体PS1中的第一前驱物气体PC1与第二前驱物气体PC2其中的施加偏压,使其中一前驱物气体形成单晶片等离子体,以在基板上形成薄膜。
另一方面,本发明的多模式薄膜沉积设备1还可包括第一电压供应源80,耦接于气体喷洒头40,且第二薄膜沉积模式为等离子体辅助化学气相沉积(Plasma-enhancedchemical vapor deposition,PECVD)模式。在执行等离子体辅助化学气相沉积模式时,第一电压供应源80可对由第二进气系统60进入气体喷洒头40的第二制作工艺气体PS2施加偏压,以产生等离子体,并用于执行等离子体辅助化学气相沉积模式。
此外,本发明的多模式薄膜沉积设备1可包含流量控制单元90,分别与第一进气系统30、第二进气系统60以及惰性气体供应源50连接,以在不同的薄膜沉积模式进行中,控制第一制作工艺气体PS1、第二制作工艺气体PS2与惰性气体IG的气体流量。
以下将搭配图2及图3针对多模式薄膜沉积设备在各薄膜沉积模式中的运作情形进行描述:
图2为本发明一实施例的多模式薄膜沉积设备进行第一薄膜沉积模式时,制作工艺气体流动的示意图。请参照图2,首先,提供基板22,配置于反应腔室10的承载座20上。接着,进行第一薄膜沉积模式。请参照图2,当进行第一薄膜沉积模式时,同步开启第一进气系统30及惰性气体供应源50,使第一进气系统30经由第一开口12提供第一制作工艺气体PS1至反应腔室10,同时惰性气体IG经由气体喷洒头40的所述气孔44进入到反应腔室10。此时,流量控制单元90控制惰性气体供应源50调控惰性气体IG的进气,使气体喷洒头40的气体混合室42与所述气孔44的压力大于反应腔室10。详细来说,第一制作工艺气体PS1由第一开口12进入到反应腔室10时,第一制作工艺气体PS1原本会先充满反应腔室10与气体混合室42,并顺着流动方向而往第二开口14流出,但通过气体喷洒头40喷出的惰性气体IG,压力差的关致使第一制作工艺气体PS1无法经由所述气孔44进入到气体混合室42中,如此一来,可避免第一制作工艺气体PS1薄膜沉积在气孔44上造成阻塞。再者,若无惰性气体IG的灌入来充满气体喷洒头40的气体混合室42与所述气孔44,当进行第一薄膜沉积模式时,第一制作工艺气体PS1便须充满整个反应腔室10及气体喷洒头40的气体混合室42与所述气孔44的空间,如此将会造成第一制作工艺气体PS1的浪费。进一步来说,由于反应腔室10通入有不与第一制作工艺气体PS1反应的惰性气体IG,因此第一制作工艺气体PS1在反应腔室10中便会如图2所示,顺着方向往第二出口14流动。在本实施例中,第一开口12与第二开口14的开口方向为同一轴向,且横向贯穿反应腔室10,气体喷洒头40的所述气孔44朝向承载座20,如此的配置关系可使从第一开口12进入的第一制作工艺气体PS1在往第二出口14方向流动的过程中,通过气体喷洒头40喷出的惰性气体IG,以将第一制作工艺气体PS1附着在基板22上,并于基板22上形成第一薄膜。
更详细而言,在本实施例中,第一薄膜沉积模式为原子层沉积制作工艺模式,因此第一制作工艺气体PS1包含至少二种不同的前驱物气体(如前所述的第一前驱物气体PC1与第二前驱物气体PC2),二前驱物气体可分别由第一气体供应源32与第二气体供应源34提供,并经由第一开口12进入到反应腔室10。其中,第一前驱物气体PC1与第二前驱物气体PC2具有时间间隔地输入反应腔室10中。详细来说,在原子层沉积制作工艺模式中,会先将第一前驱物气体PC1输入于反应腔室10中,此时气体喷洒头40同步提供惰性气体IG,流量控制单元90会控制第一前驱物气体PC1与惰性气体IG的进气量,使气体混合室42的压力大于反应腔室10。在一实施例中,第一前驱物气体PC1与惰性气体IG在反应腔室10的流量比例介于2/3至5/4之间。然而,第一前驱物气体PC1与惰性气体IG在反应腔室10的流量比例流量并不以上述为限,控制单元90控制第一前驱物气体PC1与惰性气体IG的进气量,使第一前驱物气体PC1仅于基板22表面达到饱和分布即可执行原子层沉积制作工艺模式。之后,通过抽气系统70经第二开口14对反应腔室10抽气,以将第一前驱物PC1及惰性气体IG抽出。于一时间间隔后,再将第二前驱物气体PC2输入,此时同步灌入惰性气体IG,详细情形与第一前驱物气体PC1雷同,于此不再赘述。当第二前驱物气体PC2接触到基板22时,反应产生第一薄膜,此时关闭第一进气系统30及惰性气体供应源50,以完成原子层沉积制作工艺模式。在一实施例中,在进行原子层沉积制作工艺时,也可全程开启抽气系统70,以调节反应腔室10的气体压力。
图3为本发明一实施例的多模式薄膜沉积设备进行第二薄膜沉积模式时,制作工艺气体流动的示意图。另一方面,请参考图3,当进行第二薄膜沉积模式时,开启第二进气系统60,第二制作工艺气体PS2会先进入到气体喷洒头40的气体混合室42充分混合后,再经由所述气孔44进入到反应腔室10。在本实施例中,第二薄膜沉积模式可为等离子体辅助化学气相沉积制作工艺模式。当气体喷洒头40提供的第二制作工艺气体PS2进入到反应腔室10时,开启第一电压供应源80,以提供射频偏压于第二制作工艺气体PS2,进而产生等离子体,以于基板22上形成第二薄膜。
其中,由于在第一薄膜沉积模式运作时,会注入惰性气体IG于反应腔室10中,因此不需过多的第一制作工艺气体PS1即可进行第一薄膜沉积制作工艺。此外,也因为惰性气体IG的注入,能够避免第一制作工艺气体PS1阻塞气体喷洒头40的所述气孔40,以维持第二薄膜沉积模式运作时的品质。据此,第一薄膜沉积模式(原子层沉积制作工艺)与第二薄膜沉积模式(等离子体辅助化学气相沉积制作工艺)时,皆可在同一该反应腔室中进行。
此外,当进行原子层沉积制作工艺模式时,第一电压供应源为关闭状态。然而当多模式薄膜沉积设备1包括有耦接于第一进气系统30的第二电压供应源82时,还可进一步执行单晶片等离子体辅助原子层沉积制作工艺。执行单晶片等离子体辅助原子层沉积制作工艺时,开启第二电压供应源82,使第一前驱物气体PC1与第二前驱物气体PC2其中一形成单晶片等离子体,以于基板22上形成第三薄膜。
本发明的多模式薄膜沉积设备在第一薄膜沉积模式中,通过控制第一制作工艺气体与惰性气体在反应腔室的流量,以使第一制作工艺气体能在基板上产生反应并进行薄膜沉积。此外,由于在第一薄膜沉积模式进行时,会加入惰性气体,如此可避免第一制作工艺气体流入气孔中而造成阻塞,还可避免第一制作工艺气体充满整个气体喷洒头与反应腔室,造成第一制作工艺气体的浪费。因此,本发明的多模式薄膜沉积设备在各薄膜沉积模式执行时,可在同一反应腔室中进行,而不需因应不同的薄膜沉积需求而将基板移转到不同的腔室中,能省下腔室之间基板移转过程中所耗费的时间。
虽然已结合以上实施例公开了本发明,然而其并非用以限定本发明,任何所属技术领域中熟悉此技术者,在不脱离本发明的精神和范围内,可作些许的更动与润饰,故本发明的保护范围应以附上的权利要求所界定的为准。

Claims (21)

1.一种多模式薄膜沉积设备,其特征在于,包括:
反应腔室,具有第一开口及第二开口,该第一开口与该第二开口为同一轴向,以贯穿该反应腔室;
承载座,适于承载基板,该承载座设置于该反应腔室中;
第一进气系统,适于提供第一薄膜沉积模式时所需的第一制作工艺气体,该第一进气系统连接于该第一开口;
气体喷洒头,具有气体混合室与多个气孔,其中该多个气孔位于该气体混合室的一侧,且该多个气孔朝向该承载座,该气体混合室通过该多个气孔而与该反应腔室连通;
惰性气体供应源,连接于该气体喷洒头的该气体混合室,适于提供不与该第一制作工艺气体反应的惰性气体;以及
第二进气系统,适于提供第二薄膜沉积模式时所需的第二制作工艺气体,该第二进气系统连接于该气体喷洒头的该气体混合室。
2.如权利要求1所述的多模式薄膜沉积设备,其特征在于,还包括承载座升降机构,连接于该承载座,适于调节该承载座的位置。
3.如权利要求1所述的多模式薄膜沉积设备,其特征在于,还包括抽气系统,连接至该反应腔室的该第二开口。
4.如权利要求1所述的多模式薄膜沉积设备,其特征在于,还包括第一电压供应源,耦接于该气体喷洒头,适于将该第二制作工艺气体施加射频偏压以产生等离子体。
5.如权利要求1所述的多模式薄膜沉积设备,其特征在于,还包括第二电压供应源,耦接于该第一进气系统,适于将该第一制作工艺气体施加偏压以产生等离子体。
6.如权利要求1所述的多模式薄膜沉积设备,其特征在于,该第一进气系统包含第一气体供应源与第二气体供应源,该第一气体供应源是透过第一气体供应管路而与该反应腔室的该第一开口连接,该第二气体供应源是透过第二气体供应管路而与该反应腔室的该第一开口连接。
7.如权利要求6所述的多模式薄膜沉积设备,其特征在于,该第一薄膜沉积模式为原子层沉积模式,该第一制作工艺气体包含第一前驱物气体及第二前驱物气体,且该第一前驱物气体及该第二前驱物气体分别经由该第一气体供应源与该第二气体供应源提供。
8.如权利要求1所述的多模式薄膜沉积设备,其特征在于,该第二薄膜沉积模式为等离子体辅助化学气相沉积模式。
9.如权利要求1所述的多模式薄膜沉积设备,其特征在于,还包括流量控制单元,分别与该第一进气系统、该第二进气系统以及该惰性气体供应源连接,以控制该第一制作工艺气体、该第二制作工艺气体与该惰性气体的气体流量。
10.一种利用多模式薄膜沉积设备进行的薄膜沉积方法,是利用权利要求1至9其中之一所述的多模式薄膜沉积设备进行,其特征在于,该薄膜沉积方法包括:
提供该基板,配置于该承载座上;
进行该第一薄膜沉积模式,包括:
同步开启该第一进气系统及该惰性气体供应源,使该第一进气系统经由该第一开口提供该第一制作工艺气体至该反应腔室,同时该惰性气体经由该气体喷洒头的该多个气孔进入到该反应腔室;
控制该惰性气体的进气,使该气体混合室与该多个气孔的压力大于该反应腔室,通过该气体喷洒头喷出该惰性气体以将该第一制作工艺气体附着在该基板上,并于该基板上形成第一薄膜;以及
关闭该第一进气系统及该惰性气体供应源;
进行该第二薄膜沉积模式,包括:
开启该第二进气系统,使该第二制作工艺气体经由该气体喷洒头的该多个气孔进入到该反应腔室,并于该基板上形成第二薄膜。
11.如权利要求10所述的薄膜沉积方法,其特征在于,该第一制作工艺气体包含第一前驱物气体及第二前驱物气体,该第一前驱物气体与该第二前驱物气体具有时间间隔地输入该反应腔室中。
12.如权利要求10所述的薄膜沉积方法,其特征在于,该第一制作工艺气体与该惰性气体在该反应腔室的流量比例介于2/3至5/4之间。
13.一种薄膜沉积方法,其特征在于,包括:
提供基板,配置于反应腔室中;
进行原子层沉积制作工艺模式,包括:
提供第一制作工艺气体,该第一制作工艺气体包含至少两种不同的前驱物气体,该两种不同的前驱物气体分别经由第一开口进入该反应腔室;
在该两种不同的前驱物气体进入该反应腔室时,经由气体喷洒头同步提供惰性气体,通过该气体喷洒头喷出该惰性气体以将该第一制作工艺气体附着在该基板上,并于该基板上形成第一薄膜;以及
进行等离子体辅助化学气相沉积制作工艺模式,包括:
由该气体喷洒头提供第二制作工艺气体,以于该基板上形成第二薄膜;以及
其中该原子层沉积制作工艺与该等离子体辅助化学气相沉积制作工艺是在同一该反应腔室中进行。
14.如权利要求13所述的薄膜沉积方法,其特征在于,该至少两种不同的前驱物气体具有时间间隔地输入该反应腔室中。
15.如权利要求14所述的薄膜沉积方法,其特征在于,可通过抽气系统于该至少两种不同的前驱物气体输入该反应腔室的时间间隔中进行该反应腔室的抽气,该抽气系统连接该反应腔室的第二开口。
16.如权利要求13所述的薄膜沉积方法,其特征在于,该第一制作工艺气体与该惰性气体在该反应腔室的流量比例介于2/3至5/4之间。
17.如权利要求13所述的薄膜沉积方法,其特征在于,该气体喷洒头包含有气体混合室,进行该原子层沉积制作工艺模式的方法还包括:控制该惰性气体的进气,使该气体混合室的压力大于该反应腔室。
18.如权利要求13所述的薄膜沉积方法,其特征在于,进行该等离子体辅助化学气相沉积制作工艺模式时,开启第一电压供应源,该第一电压供应源耦接于该气体喷洒头。
19.如权利要求18所述的薄膜沉积方法,其特征在于,进行该原子层沉积制作工艺模式时,该第一电压供应源为关闭状态。
20.如权利要求13所述的薄膜沉积方法,其特征在于,进行该原子层沉积制作工艺模式时,开启第二电压供应源,该第二电压供应源耦接于提供该第一制作工艺气体的第一进气系统,使其中一该前驱物气体形成单晶片等离子体,并于该基板上形成第三薄膜,以执行单晶片等离子体辅助原子层沉积制作工艺。
21.如权利要求13所述的薄膜沉积方法,其特征在于,该第一制作工艺气体、该第二制作工艺气体与该惰性气体,是透过流量控制单元进行流量的控制。
CN201310712741.8A 2013-11-27 2013-12-20 多模式薄膜沉积设备以及薄膜沉积方法 Active CN104674191B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102143232A TWI480415B (zh) 2013-11-27 2013-11-27 多模式薄膜沉積設備以及薄膜沉積方法
TW102143232 2013-11-27

Publications (2)

Publication Number Publication Date
CN104674191A CN104674191A (zh) 2015-06-03
CN104674191B true CN104674191B (zh) 2017-04-12

Family

ID=53001646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310712741.8A Active CN104674191B (zh) 2013-11-27 2013-12-20 多模式薄膜沉积设备以及薄膜沉积方法

Country Status (3)

Country Link
US (1) US9023693B1 (zh)
CN (1) CN104674191B (zh)
TW (1) TWI480415B (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US8637411B2 (en) 2010-04-15 2014-01-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
JP6538300B2 (ja) 2012-11-08 2019-07-03 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated 感受性基材上にフィルムを蒸着するための方法
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US10566187B2 (en) 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
KR102424597B1 (ko) * 2015-06-30 2022-07-25 엘지디스플레이 주식회사 플렉서블 유기발광다이오드 표시장치 및 그 제조 방법
KR102381344B1 (ko) 2015-09-18 2022-03-31 삼성전자주식회사 캠형 가스 혼합부 및 이것을 포함하는 반도체 소자 제조 장치들
US9601693B1 (en) 2015-09-24 2017-03-21 Lam Research Corporation Method for encapsulating a chalcogenide material
CN106876299B (zh) 2015-12-11 2019-08-23 北京北方华创微电子装备有限公司 半导体加工设备
JP6718730B2 (ja) * 2016-04-19 2020-07-08 株式会社ニューフレアテクノロジー シャワープレート、気相成長装置及び気相成長方法
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10629435B2 (en) 2016-07-29 2020-04-21 Lam Research Corporation Doped ALD films for semiconductor patterning applications
CN106048561B (zh) * 2016-08-17 2019-02-12 武汉华星光电技术有限公司 一种原子层沉积装置及方法
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US10074543B2 (en) 2016-08-31 2018-09-11 Lam Research Corporation High dry etch rate materials for semiconductor patterning applications
US10128116B2 (en) 2016-10-17 2018-11-13 Lam Research Corporation Integrated direct dielectric and metal deposition
US10832908B2 (en) 2016-11-11 2020-11-10 Lam Research Corporation Self-aligned multi-patterning process flow with ALD gapfill spacer mask
US10454029B2 (en) 2016-11-11 2019-10-22 Lam Research Corporation Method for reducing the wet etch rate of a sin film without damaging the underlying substrate
US10134579B2 (en) 2016-11-14 2018-11-20 Lam Research Corporation Method for high modulus ALD SiO2 spacer
CN109964331B (zh) * 2016-12-02 2021-09-03 应用材料公司 薄膜封装处理系统和工艺配件
DE102017206612A1 (de) * 2017-04-19 2018-10-25 Centrotherm Photovoltaics Ag Verfahren und Vorrichtung zum Ausbilden einer Schicht auf einem Halbleitersubstrat sowie Halbleitersubstrat
KR102416568B1 (ko) * 2017-08-14 2022-07-04 삼성디스플레이 주식회사 금속 산화막 형성 방법 및 플라즈마 강화 화학기상증착 장치
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
KR102300756B1 (ko) * 2017-11-21 2021-09-10 와틀로 일렉트릭 매뉴팩츄어링 컴파니 원자 보호층을 갖는 세라믹 받침대
US11404275B2 (en) 2018-03-02 2022-08-02 Lam Research Corporation Selective deposition using hydrolysis
TW202045753A (zh) * 2019-06-04 2020-12-16 金碳洁股份有限公司 循環式磊晶沉積系統
CN112342528B (zh) * 2019-08-06 2023-02-17 台湾积体电路制造股份有限公司 半导体制程机台及其应用的方法
CN116288261A (zh) * 2021-12-07 2023-06-23 拓荆科技股份有限公司 沉积系统及方法
CN115537781A (zh) * 2022-10-27 2022-12-30 上海埃延半导体有限公司 一种弥漫层流反应腔体及控制方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW540093B (en) * 2001-04-05 2003-07-01 Angstron Systems Inc Atomic layer deposition system and method
DE10320597A1 (de) * 2003-04-30 2004-12-02 Aixtron Ag Verfahren und Vorrichtung zum Abscheiden von Halbleiterschichten mit zwei Prozessgasen, von denen das eine vorkonditioniert ist
KR100527048B1 (ko) * 2003-08-29 2005-11-09 주식회사 아이피에스 박막증착방법
KR20060076714A (ko) * 2004-12-28 2006-07-04 에이에스엠지니텍코리아 주식회사 원자층 증착기
WO2006078666A2 (en) * 2005-01-18 2006-07-27 Asm America, Inc. Reaction system for growing a thin film
KR100731164B1 (ko) * 2005-05-19 2007-06-20 주식회사 피에조닉스 샤워헤드를 구비한 화학기상 증착 방법 및 장치
US8815014B2 (en) 2005-11-18 2014-08-26 Tokyo Electron Limited Method and system for performing different deposition processes within a single chamber
US20070128861A1 (en) * 2005-12-05 2007-06-07 Kim Myoung S CVD apparatus for depositing polysilicon
KR101004927B1 (ko) * 2008-04-24 2010-12-29 삼성엘이디 주식회사 Cvd용 샤워 헤드 및 이를 구비하는 화학 기상 증착 장치
TW201027784A (en) 2008-10-07 2010-07-16 Applied Materials Inc Advanced platform for processing crystalline silicon solar cells
WO2012039310A1 (ja) * 2010-09-22 2012-03-29 株式会社アルバック 有機el素子の製造方法、成膜装置、有機el素子
US20120135609A1 (en) 2010-11-30 2012-05-31 Applied Materials, Inc. Apparatus and Process for Atomic Layer Deposition
US8906160B2 (en) 2010-12-23 2014-12-09 Intermolecular, Inc. Vapor based processing system with purge mode
US9540277B2 (en) * 2011-03-23 2017-01-10 Pilkington Group Limited Apparatus for depositing thin film coatings and method of deposition utilizing such apparatus
TW201250017A (en) * 2011-06-08 2012-12-16 Ind Tech Res Inst Method and apparatus for depositing selenium thin-film and plasma head thereof
CN102420272B (zh) * 2011-12-14 2013-11-06 无锡迈纳德微纳技术有限公司 一种太阳能电池钝化层分层镀膜装置
KR20140116120A (ko) 2012-01-03 2014-10-01 어플라이드 머티어리얼스, 인코포레이티드 결정질 실리콘 태양 전지들을 패시베이팅하기 위한 진보된 플랫폼
TW201335974A (zh) * 2012-02-17 2013-09-01 Pinecone Material Inc 水浴槽及使用此水浴槽之薄膜沈積裝置

Also Published As

Publication number Publication date
US20150147890A1 (en) 2015-05-28
US9023693B1 (en) 2015-05-05
TW201520362A (zh) 2015-06-01
TWI480415B (zh) 2015-04-11
CN104674191A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
CN104674191B (zh) 多模式薄膜沉积设备以及薄膜沉积方法
KR102649860B1 (ko) 고 계수 ald sio2 스페이서를 위한 방법
US10176984B2 (en) Selective deposition of silicon oxide
US10832908B2 (en) Self-aligned multi-patterning process flow with ALD gapfill spacer mask
KR102598660B1 (ko) 기판 에지들에서 이면 증착을 감소시키고 두께 변화들을 완화하기 위한 시스템들 및 방법들
US10777407B2 (en) Selective deposition of silicon nitride on silicon oxide using catalytic control
TW201832351A (zh) 3維反及製造中之階梯形包覆
KR20160070683A (ko) 효과적인 혼합 및 퍼징을 위한 유입부
TW201708597A (zh) 使用碳基膜之間隙填充
TW200802605A (en) Integrated process modulation (IPM) a novel solution for gapfill with HDP-CVD
WO2009011532A3 (en) Apparatus, method for depositing thin film on wafer and method for gap-filling trench using the same
CN103348502A (zh) 有机发光二极管的混合式封装方法
WO2009117565A3 (en) Method and apparatus of a substrate etching system and process
US20200105523A1 (en) Asymmetric wafer bow compensation by chemical vapor deposition
US20220319854A1 (en) Selective deposition using hydrolysis
SG151184A1 (en) Impurity control in hdp-cvd dep/etch/dep processes
KR20150097957A (ko) 원자층 증착 장치
CN109750274A (zh) 半导体生产设备及半导体工艺方法
US10109476B2 (en) Substrate processing method for depositing a barrier layer to prevent photoresist poisoning
WO2021138018A1 (en) Station-to-station control of backside bow compensation deposition
KR20160093392A (ko) 원자층 증착장치
JP2016094653A (ja) 原子層堆積装置及び原子層堆積方法
KR100926187B1 (ko) 반도체증착장비용 샤워헤드방식 가스공급장치 및가스공급방법
KR20070093704A (ko) 반도체 제조장치용 샤워헤드
KR20060131303A (ko) 반도체소자 제조설비의 샤워헤드

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant